Supporting Information

TADDOLs-based group of P, S-bidentate phosphoramidite ligands in palladium-catalyzed asymmetric allylic substitution

Konstantin N. Gavrilov, ${ }^{* a}$ Ilya V. Chuchelkin, ${ }^{*}{ }^{*}$ Ilya D. Firsin, ${ }^{a}$ Valeria M. Trunina, ${ }^{a}$ Vladislav K. Gavrilov, ${ }^{\text {a }}$ Sergey V. Zheglov, ${ }^{\text {a }}$ Denis A. Fedorov, ${ }^{\text {b }}$ Victor A. Tafeenko, ${ }^{\text {c }}$ Ilya A. Zamilatskov, ${ }^{\text {d }}$ Vladislav S. Zimarev ${ }^{\text {a,c }}$ and Nataliya S. Goulioukina ${ }^{\text {a,c,d }}$
${ }^{a}$ Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation. E-mail: rsu.chem@gmail.com, chuchelkin1989@gmail.com
${ }^{b}$ Department of General Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Moscow Region, Russian Federation
${ }^{c}$ Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation
${ }^{d}$ A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31/4, 119071, Moscow, Russian Federation

TABLE OF CONTENTS

General S2
Experimental section S4
Catalytic results S25
References S38
NMR and mass spectra S40
HPLC traces for the Pd-catalyzed allylic substitution S108
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Bruker Avance 600 (242.9 MHz for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 150.9 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and 600.1 MHz for $\left.{ }^{1} \mathrm{H}\right)$, Bruker Avance $400\left(162.0 \mathrm{MHz}\right.$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 100.6$ MHz for $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ and 400.1 MHz for ${ }^{1} \mathrm{H}$) and Varian Inova $500\left(202.3 \mathrm{MHz}\right.$ for ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 125.7 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and 499.8 MHz for ${ }^{1} \mathrm{H}$) instruments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ signals were attributed using APT, DEPT, ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}-\operatorname{COSY}$ and ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}-\mathrm{HSQC}$ techniques. The chemical shifts are referenced to residual CHCl_{3} peaks (${ }^{1} \mathrm{H}, \mathrm{NMR}$), CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl} 2$ peaks (${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$) and $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%$ as external standard (${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$). Data are represented as follows: chemical shift, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet), J, Hz. HPLC analyses were performed on a Stayer instrument using Kromasil 5-CelluCoat, Daicel Chiralcel OD-H and Daicel Chiralpak AD-H columns. Optical rotations were measured with an Atago AP-300 polarimeter. Elemental analyses were performed on a CHN-microanalyzer Carlo Erba EA1108 CHNS-O. HRMS spectra were recorded on a AB Sciex TripleTOF 5600+ mass spectrometer with Turbo Ion Spray ionization (ESI). The sample ($0.2 \mu \mathrm{~L}$) was injected into the $0.3 \mathrm{~mL} / \mathrm{min}$ methanol stream without chromatographic separation directly into the ion source. The spectra were recorded in the positive ion mode.

X-ray data was collected by using STOE diffractometer Pilatus100K detector, focusing mirror collimation Cu K $\alpha(1.54086$ Å) radiation, rotation method mode. STOE X-AREA software was used for cells refinement and data reduction. Data collection and image processing was performed with X-Area 1.67 (STOE \& Cie GmbH, Darmstadt, Germany, 2013). Intensity data were scaled with LANA (part of XArea) in order to minimize differences of intensities of symmetry-equivalent reflections (multi-scan method). The structures were solved and refined with SHELX ${ }^{[1]}$ program. The non-hydrogen atoms were refined by using the anisotropic full matrix least-square procedure. Molecular geometry calculations were performed with the SHELX program, and the molecular graphics were prepared by using DIAMOND ${ }^{[2]}$ software. The crystal data one can see in the Table S1 and can be obtained, free of charge, from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

All reactions were carried out under a dry argon atmosphere in flame-dried glassware and in freshly dried and distilled solvents. Thin-layer chromatography was performed on E. Merck pre-coated silica gel 60 F254 and Macherey-Nagel Alugram Alox N/UV 254 plates. Column chromatography was performed using silica gel MN Kieselgel 60 (230 - 400 mesh) and MN-Aluminum oxide, basic, Brockmann Activity 1. For the preparation of analytically pure samples, the obtained compounds were additionally dried in high vacuum (10^{-3} Torr) for 16 h .

The following compounds were synthesized according to literature procedures: ((4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (1a) and ((4R,5R)-2-phenyl-1,3-dioxolane-4,5diyl)bis(diphenylmethanol) (1b), ${ }^{[3]} \quad((4 R, 5 R)$-2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(bis(4-(tert- yl)diphenylmethanol (1d),,${ }^{[5]} \mathrm{N}$-methyl-2-(methylthio)ethan-1-amine (2a), ${ }^{[6]} \mathrm{N}$-methylbutan-1-amine (5), ${ }^{[7]}$
(S)- N -methyl-1-phenyl-2-(phenylthio)ethan-1-amine
(7) ${ }^{[8]}$
(S)-1-phenyl- N -(2-(phenylthio)ethyl)ethan-1-amine (8), ${ }^{[9]}(S)-2-\left((\right.$ phenylthio $)$ methyl) pyrrolidine (9), ${ }^{[8]}[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ and (E) -1,3-diphenylallyl acetate (10a), ${ }^{[10]}(E)-1,3$-diphenylallyl ethyl carbonate ($\mathbf{1 0 b}$), ${ }^{[11]}$ cinnamyl methyl carbonate (12b), ${ }^{[12]}$ ethyl 2-acetamido-3-oxobutanoate (15) ${ }^{[13]}$ and 2-(diethoxyphosphoryl)-1-phenylallyl acetate (19), ${ }^{[14]}$ ligands $L_{A, B} \cdot{ }^{[15]}$

Pd-catalyzed allylic alkylation of (E)-1,3-diphenylallyl acetate (10a) and (E)-1,3-diphenylallyl ethyl carbonate (10b) with dimethyl malonate, di-tert-butyl malonate and dibenzyl malonate, their amination with pyrrolidine, allylic alkylation of cinnamyl acetate (12a) and cinnamyl methyl carbonate (12b) with ethyl 2-oxocyclohexane-1-carboxylate (13) and ethyl 2-acetamido-3-oxobutanoate (15), allylic alkylation of cinnamyl methyl carbonate (12b) with 2,5-dimethylpyrrole (17), allylic amination of 2-(diethoxyphosphoryl)-1-phenylallyl acetate (19) with aniline were performed according to the appropriate procedures. ${ }^{[14,16]}$

Thiophenol, 2-chloroacetamide, 2-mercapto- N-phenylacetamide (S3), 3-(methylthio)propan-1amine (S5), 2-(tert-butylthio)- N-methylethan-1-amine (2b), 2-(methylthio)ethan-1-amine (3a), 2-(methylthio)ethan-1-ol (6), dimethyl malonate, di-tert-butyl malonate, dibenzyl malonate, BSA ($\mathrm{N}, \mathrm{O}-$ bis(trimethylsilyl)acetamide), cinnamyl acetate (12a), ethyl 2-oxocyclohexane-1-carboxylate (13) and 2,5-dimethylpyrrole (17) were purchased from Aldrich and Acros Organics.

EXPERIMENTAL SECTION

Procedure for the Preparation of Thioether-amine 2c: 2-(Phenylthio)acetamide (S1). To a stirred solution of thiophenol $(2.19 \mathrm{~mL}, 21.4 \mathrm{mmol})$ in methanol $(25 \mathrm{~mL})$ was added sodium methylate $(1.16 \mathrm{~g}$, 21.4 mmol) and 2-chloroacetamide ($2 \mathrm{~g}, 21.4 \mathrm{mmol}$). Within 5 min , a precipitate of NaCl falls out. The reaction mixture was brought to a boil, cooled to $20^{\circ} \mathrm{C}$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added. The resulting mixture was evaporated to half and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The combined organic phase was washed with 2 M NaOH , water and brine, dried over MgSO_{4}, filtered, and concentrated under vacuum (40 Torr). The product $\mathbf{S 1}$ was obtained as white crystals, yield 3.19 g (89%). The NMR spectra corresponds to the one described in the literature. ${ }^{[17]}$

2-(Phenylthio)ethan-1-amine ($\mathbf{S 2}$). $\mathrm{NaBH}_{4}(3.59 \mathrm{~g}, 95 \mathrm{mmol})$ was added to a vigorously stirred solution of $\mathbf{S 1}(3.18 \mathrm{~g}, 19 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Then, a solution of $\mathrm{I}_{2}(11.17 \mathrm{~g}, 44 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added within 30 min at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$ and boiled for 24 h . Then the mixture was quenched with methanol (60 mL) at $0^{\circ} \mathrm{C}$ and concentrated under vacuum (40 Torr). The resulting residue was refluxed with $5 \mathrm{M} \mathrm{KOH} \mathrm{(} 60 \mathrm{~mL}$) for 6 h . The mixture was cooled to 20 ${ }^{\circ} \mathrm{C}$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum (40 Torr). The product was distilled in the vacuum. Colorless oil, yield 1.95 g , (67%). Bp $64-65^{\circ} \mathrm{C}$ (0.2 torr). The NMR spectra corresponds to the one described in the literature. ${ }^{[18]}$

A solution of $\mathbf{S 2}(1.95 \mathrm{~g}, 12.7 \mathrm{mmol})$ in ethyl formate (12 mL) was refluxed for 6 h and concentrated under reduced pressure (40 Torr). The N-formyl derivative of $\mathbf{S 2}$ was obtained as beige powder, yield 2.28 g (99\%).
N-Methyl-2-(phenylthio)ethan-1-amine (2c). To a vigorously stirred cold suspension of $\mathrm{LiAlH}_{4}(0.38$ $\mathrm{g}, 9.9 \mathrm{mmol})$ in THF (20 mL) the crude N-(2-(phenylthio)ethyl)formamide ($1.2 \mathrm{~g}, 6.6 \mathrm{mmol}$) was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 6 h and quenched with $0.7 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 0.13 g KOH at $0^{\circ} \mathrm{C}$. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with THF (25 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$, the combined filtrates were concentrated under reduced pressure (40 Torr). The product was distilled in the vacuum. Colorless oil, yield 0.92 g , (83%). Bp $68-70{ }^{\circ} \mathrm{C}$ (0.2 Torr). The NMR spectra corresponds to the one described in the literature. ${ }^{[19]}$

[^0]
EXPERIMENTAL SECTION

Procedure for the Preparation of Thioether-amine 3b: 2-(Methylthio)-N-phenylacetamide (S4). To a stirred solution of 2-mercapto- N-phenylacetamide (S3) ($4.0 \mathrm{~g}, 24 \mathrm{mmol}$) in methanol (60 mL) was added $\mathrm{NaOH}(1.0 \mathrm{~g}, 25 \mathrm{mmol})$. The reaction mixture was stirred for 10 min and methyl iodide (1.57 mL , 25 mmol) was added at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred overnight at $20^{\circ} \mathrm{C}$, concentrated under vacuum (40 Torr) and the obtained residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$. The product was extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$), the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum (40 Torr). The compound S4 was obtained as beige powder, yield 4.0 g (92\%). The NMR spectra corresponds to the one described in the literature. ${ }^{[20]}$

N -(2-(methylthio)ethyl)aniline (3b). To a vigorously stirred cold suspension of $\mathrm{LiAlH}_{4}(1.26 \mathrm{~g}, 33$ $\mathrm{mmol})$ in THF (60 mL) the compound $\mathbf{S 4}(4.0 \mathrm{~g}, 22 \mathrm{mmol})$ was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 8 h and quenched with $2.38 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and 0.43 g KOH at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with $\mathrm{THF}(40 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$, the combined filtrates were concentrated under reduced pressure (40 Torr). The obtained residue was purified by column chromatography on SiO_{2} (petroleum ether/ethyl acetate $10 / 1$). The product was obtained as yellowish viscous oil, yield 2.8 g (76%). The NMR spectra corresponds to the one described in the literature. ${ }^{[21]}$

a) $\mathrm{NaOH}, \mathrm{CH}_{3} \mathrm{I}, \mathrm{MeOH} ;$ b) LiAlH_{4}, THF.

Procedure for the Preparation of Thioether-amine 4: A solution of 3-(methylthio)propan-1-amine (S5) ($4.49 \mathrm{~mL}, 40 \mathrm{mmol}$) in ethyl formate (30 mL) was refluxed for 6 h and concentrated under reduced pressure (40 Torr). The residue was purified by bulb-to-bulb vacuum distillation (b. p. $156-157^{\circ} \mathrm{C}$, bath, 3 Torr) to give N-formyl derivative of $\mathbf{S 5}$ as clear oil.

To a vigorously stirred cold suspension of $\mathrm{LiAlH}_{4}(1.71 \mathrm{~g}, 45 \mathrm{mmol})$ in THF (50 mL) the crude N -(3(methylthio)propyl)formamide ($4.0 \mathrm{~g}, 30 \mathrm{mmol}$) was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 6 h and quenched with $3.3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and 0.59 g KOH at $0^{\circ} \mathrm{C}$. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with THF (50 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, the combined filtrates were concentrated under reduced pressure (40 Torr) and the residue was purified by bulb-to-bulb vacuum distillation.

EXPERIMENTAL SECTION

a) $\mathrm{HCO}_{2} \mathrm{Et}$, reflux; b) $\mathrm{LiAlH}_{4}, \mathrm{THF}$.
N-Methyl-3-(methylthio)propan-1-amine (4): Colorless oil, yield 3.08 g ($86 \%)$. Bp $162-163{ }^{\circ} \mathrm{C}$ (bath, 6 Torr). ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta 0.97$ (br.s, $1 \mathrm{H} ; \mathrm{NH}$), $1.77\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.09(\mathrm{~s}, 3 \mathrm{H}$; CH_{3}), $2.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.54\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.66\left(\mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right) . \mathrm{C}_{5} \mathrm{H}_{13} \mathrm{NS}$ (119.08): calcd. C, 50.37 ; H, 10.99; N, 11.75; found C, 50.51 ; H, 11.04; N, 11.70.

General Procedure for the Preparation of Ligands: A solution of the appropriate (R, R) - or (S, S)-diol 1a-d (4.0 mmol) in THF (30 mL) was added dropwise at $-10{ }^{\circ} \mathrm{C}$ over 10 min to a vigorously stirred solution of $\mathrm{PCl}_{3}(0.37 \mathrm{~mL}, 4.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.17 \mathrm{~mL}, 8.4 \mathrm{mmol})$ in THF (12 mL). The reaction mixture was brought to $20^{\circ} \mathrm{C}$ and allowed to stir for 2 h . Solid $\mathrm{Et}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ was filtered off, and the filtrate was concentrated in vacuum (40 Torr). The residue was triturated in pentane and dried in vacuum ($10^{-3} \mathrm{Torr}$) for 8 h .

The relevant compound 2-9 (2 mmol) was added at $20^{\circ} \mathrm{C}$ in one portion to a vigorously stirred solution of the appropriate phosphorylating reagent (2 mmol) and $\mathrm{Et}_{3} \mathrm{~N}(0.56 \mathrm{~mL}, 4 \mathrm{mmol})$ in toluene (15 mL). The reaction mixture was stirred during 24 h at $20^{\circ} \mathrm{C}$ and filtered through a short column with $\mathrm{SiO}_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}$, the column was washed with toluene ($2 \times 20 \mathrm{~mL}$), and the solvent was evaporated under reduced pressure (40 Torr). Products were additionally purified by flash chromatography on SiO_{2} (toluene). The obtained ligands were dried in vacuum ($10^{-3} \mathrm{Torr}$) for 8 h .
(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1a): Yellowish powder, yield 0.66 g (55%). ${ }^{1} \mathrm{H}$ NMR ($499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.29\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$), $1.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.04\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.55-2.62$ (ddd, ${ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}$), 2.63-2.69 (ddd, ${ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=13.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 3.22-3.29\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{OCH}), 5.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.15-7.35(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6\right.$ $\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6\right.$ $\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 15.64\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right)$, $25.62\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.65\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 32.24$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.1 \mathrm{~Hz} ; \mathrm{NCH}_{3}$), $33.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right.$), $48.87\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=27.3 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right.$), $81.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0\right.$ $\mathrm{Hz} ; \mathrm{CPh}_{2}$), $82.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.1 \mathrm{~Hz} ; \mathrm{OCH}\right.$), $82.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.50\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 111.93(\mathrm{~s} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.22(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.24(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.31(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.40(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.41(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$,
 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.18(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 141.95(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.38\left(\mathrm{~d} ;{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ph})\right), 146.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}\right.$;

EXPERIMENTAL SECTION

$\mathrm{C}(\mathrm{Ph})), 147.07$ (s; C(Ph)). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 139.91$ (s). $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{PS}$ (599.23): calcd. C, 70.10; H, 6.39; N, 2.34; found C, 70.35; H, 6.46; N, 2.26.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1a.
(3aR,8aR)-6-[2-(tert-butylthio)- N-methylethan-1-amino]-2,2-dimethyl-4,4,8,8-
tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1b): White powder, yield 1.26 g (98 \%). ${ }^{1} \mathrm{H}$ NMR (499.9 MHz, CDCl_{3}): $\delta 0.29\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.59-2.75(\mathrm{~m}$, $\left.2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.3 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 3.23\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=19.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}), 5.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 7.11-7.33(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.74\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 25.45\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.52\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.4.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 31.20\left(\mathrm{~s} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 32.22\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.2 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 42.02\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.82\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=27.4\right.$ $\left.\mathrm{Hz} ; \mathrm{NCH}_{2}\right), 81.50\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.22\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=19.9 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $3.6 \mathrm{~Hz} ; \mathrm{OCH}), 111.73\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.26(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.33(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.40(\mathrm{~s} ;$ $\mathrm{CH}(\mathrm{Ph})), 127.42(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.57(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.59(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.85(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.23(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.05 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.09 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.24$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, 141.99 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 142.43 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 146.74 (s ; $\mathrm{C}(\mathrm{Ph})), 147.12$ (s; C(Ph)). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 139.85$ (s) ppm. $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{PS}$ (641.27): calcd. C, 71.11; H, 6.91; N, 2.18; found C, 71.34; H, 7.01; N, 2.24.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1b.
(3aR,8aR)-6-[N-methyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1c): White powder, yield $1.03 \mathrm{~g}(78 \%) .{ }^{1} \mathrm{H}$ NMR (499.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 0.29\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.98-3.12\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right)$,

EXPERIMENTAL SECTION

3.24-3.36 (m, 2H; NCH2), 4.81 (d, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 5.15\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right)$, 7.15-7.35 (m, 17H; CH(Ph)), $7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.58$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})$), $7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 25.64$ ($\mathrm{s} ; \mathrm{CCH}_{3}$), $27.66\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 32.48\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.7 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 32.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.4 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 48.99\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.27.0 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 81.71\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.0 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.6 \mathrm{~Hz} ; \mathrm{OCH}\right)$, 82.53 ($\mathrm{s} ; \mathrm{CPh}_{2}$), 111.96 ($\left.\mathrm{s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.16(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.23(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.27(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.31$ (s; $\mathrm{CH}(\mathrm{Ph})), 127.42(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.43(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.58(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.64(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.88(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 128.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.05$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.08$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.54$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 136.36$ ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), $141.91(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.36\left(\mathrm{~d} ;{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ph})\right), 146.72\left(\mathrm{~d} ;{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ph})\right), 147.04(\mathrm{~s}$; $\mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 140.03$ (s). $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{PS}$ (661.24): calcd. C, 72.60; H, 6.09; N, 2.12; found C, 72.92; H, 6.00; N, 2.01.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1c.
(3aR,8aR)-6-[2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro$[1,3]$ dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1d): White powder, yield $0.39 \mathrm{~g}(33 \%) .{ }^{1} \mathrm{H}$ NMR (499.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.30\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.64-2.70\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 3.15(\mathrm{dt}$, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{P}}=32.7 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}\right), 3.28-3.48\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.16(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{P}}=3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.16-7.36(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$, $7.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 15.20\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 25.68\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.63\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 37.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.0 \mathrm{~Hz}\right.$; $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 38.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.4 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 81.89\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.8 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.31(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=19.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.77\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 112.05\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.26(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.31(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.36(\mathrm{~s} ;$ $\mathrm{CH}(\mathrm{Ph})), 127.42(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.51(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.55(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.67(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.90(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 128.27 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.08 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.12$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.18$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $141.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz}\right.$; $\mathrm{C}(\mathrm{Ph})), 142.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 146.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 146.90(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (202.4 Hz, CDCl $)$: $\delta 136.06$ (s). $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{PS}$ (585.21): calcd. C, 69.72; H, 6.20; N, 2.39; found C, 70.02; H, 6.29; N, 2.30.

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1d.
(3aR,8aR)-6-[N-(2-(methylthio)ethyl)anilino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-
[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1e): White powder, yield $0.53 \mathrm{~g}(40 \%) .{ }^{1} \mathrm{H}$ NMR (400.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.15\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.21\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.51-2.69\left(\mathrm{~m} ; \mathrm{CH}_{2} \mathrm{~S}\right), 3.73-3.96(\mathrm{~m}$, $2 \mathrm{H} ; \mathrm{NCH}_{2}$), $4.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.10\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 6.94\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.02\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.07-7.22(\mathrm{~m}, 16 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}$; $\mathrm{CH}(\mathrm{Ph})), 7.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.64\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100.6 \mathrm{~Hz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 15.41\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 25.17\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.57\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 32.99\left(\mathrm{~s} ; \mathrm{CH}_{2} \mathrm{~S}\right), 45.54\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.7 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right)$, $82.11\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.6 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=17.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.54(\mathrm{~s} ; \mathrm{OCH}), 82.73\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 111.77(\mathrm{~s}$; $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 123.27(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 123.40(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.14(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.21(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.46(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.60 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.73 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.14 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, 128.31 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.68 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 128.73$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $129.00(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 141.24(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 141.78(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 143.98\left(\mathrm{~d} ;{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=21.6 \mathrm{~Hz} ; \mathrm{NC}(\mathrm{Ph})\right.$), 146.01 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 146.64 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162.0 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 137.04$ (s). $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{PS}(661.24)$: calcd. C, 72.60; H, 6.09; N, 2.12; found C, 72.74; H, 6.15; N, 2.18.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1e.
(3aR,8aR)-6-[N-methyl-3-(methylthio)propan-1-amino]-2,2-dimethyl-4,4,8,8-
tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1f): White powder, yield 1.2 g (98 \%). ${ }^{1} \mathrm{H}$ NMR (499.9 MHz, CDCl_{3}): $\delta 0.30\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.75-1.86(\mathrm{~m}, 2 \mathrm{H}$; CH_{2}), 2.39-2.49 (m, 2H; CH2S), $2.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.8 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 3.07-3.19\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}), 5.17\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.16-7.31(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.40(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.73(\mathrm{~d}$,

EXPERIMENTAL SECTION

$\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 15.75$ (s; SCH3$), 25.60\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.69$ (s; CCH_{3}), $28.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.1 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 31.72\left(\mathrm{~s} ; \mathrm{CH}_{2} \mathrm{~S}\right), 31.81\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.2 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 48.30\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=30.5\right.$ $\left.\mathrm{Hz} ; \mathrm{NCH}_{2}\right), 81.53\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.1 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.20\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.2 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $3.6 \mathrm{~Hz} ; \mathrm{OCH}), 111.85\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.18(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.23(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.33(\mathrm{~s} ;$ $\mathrm{CH}(\mathrm{Ph})), 127.41(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.59(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.60(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.83(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.04(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.06 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $129.25(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 142.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 142.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right.$), $146.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right)$, $147.14(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 140.21(\mathrm{~s})$. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{PS}(613.24)$: calcd. C, $70.45 ; \mathrm{H}, 6.57$; N, 2.28; found C, $70.62 ; \mathrm{H}, 6.61 ; \mathrm{N}, 2.33$.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1f.
(3aR,8aR)-6-[N-methylbutan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L1g): White powder, yield $1.14 \mathrm{~g}(98 \%) .{ }^{1} \mathrm{H}$ NMR (499.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 0.27\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 0.87\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.24-1.31\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.42-1.56\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right)$, $2.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.95-3.09\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.17\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.14-7.32(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.47(\mathrm{~d}$, $\left.{ }^{3} J_{H, H}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.7 Hz, CDCl_{3}): $\delta 14.05\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 20.11\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 25.61\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.72\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 30.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $\left.5.0 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 31.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.3 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 49.12\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=31.6 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 81.43\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right)$, $82.06\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.0 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.78\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.12$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.15 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $127.22(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.35$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.47$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.53 (s ; $\mathrm{CH}(\mathrm{Ph})), 127.56(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.79(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.16(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.06(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.08(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, $129.28(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 142.22(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 146.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right)$, 147.27 (s; C(Ph)). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.4 Hz, CDCl_{3}): $\delta 139.80$ (s). $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{NO}_{4} \mathrm{P}$ (581.27): calcd. C, 74.33; H, 6.93; N, 2.41; found C, 74.55; H, 7.00; N, 2.34.

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1g.
(3aR,8aR)-6-[2-(methylthio)ethoxy]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5$e]\left[1,3,2\right.$]dioxaphosphepin (L1h): White powder, yield $1.15 \mathrm{~g}(98 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.63$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{CH}_{3}$) , $0.82\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.36-2.46\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 3.36-3.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{NCH}_{2}\right), 5.03$ (dd, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=1.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 7.13-7.36(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})$), 7.39$7.58(\mathrm{~m}, 8 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 15.89\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 26.52\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 26.90\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right)$, $34.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.1 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 62.11\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.1 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 81.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.4 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $14.8 \mathrm{~Hz} ; \mathrm{OCH}), 83.32\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 85.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.9 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 112.91\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.24(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.35 (s; CH(Ph)), 127.38 ($; ~ C H(P h)), 127.48$ ($; ~ C H(P h)), 127.52(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.82$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 128.09$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.28 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.88 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.26 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.28$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 130.39 (s ; $\mathrm{CH}(\mathrm{Ph})), 141.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 141.76(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 146.28(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 146.53(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.4 Hz, CDCl_{3}): $\delta 131.10$ (s). $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{PS}$ (586.19): calcd. C, 69.61; H, 6.01; found C, 69.86; H, 6.08.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L1h.
(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-
2,4,4,8,8-pentaphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L2a): White powder, yield $1.26 \mathrm{~g}(97 \%) .{ }^{1} \mathrm{H}$ NMR (600.1 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.00\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.49-2.65\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.3,3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 3.07-3.22(\mathrm{~m}, 2 \mathrm{H}$; NCH_{2}), 5.18-5.24 (m, $2 \mathrm{H} ; \mathrm{OCH}$) (major form), $2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.61-2.76\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=\right.$ 7.9, $3 \mathrm{H} ; \mathrm{NCH}_{3}$), 3.31-3.39 (m, $2 \mathrm{H} ; \mathrm{NCH}_{2}$), $4.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5,1 \mathrm{H} ; \mathrm{OCH}\right.$), 5.37-5.42 (m, 1H; OCH) (minor form), $6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right), 7.16\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right), 7.39-7.19(\mathrm{~m} ; \mathrm{CH}(\mathrm{Ph})), 7.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $3.4 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})), 7.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right), 7.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}\right.$;

EXPERIMENTAL SECTION

$\mathrm{CH}(\mathrm{Ph})), 7.64\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right), 7.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(150.9 \mathrm{~Hz}, \mathrm{CDCl} 3): \delta$ $15.51\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 32.23\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.0 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 32.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.1 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 48.62\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=28.1 \mathrm{~Hz}\right.$; $\left.\mathrm{NCH}_{2}\right), 80.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.6 \mathrm{~Hz} ; \mathrm{OCH}\right), 80.89\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.5 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=18.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 85.86$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.8 \mathrm{~Hz} ; \mathrm{CPh}_{2}$), $106.89\left(\mathrm{~s} ; \underline{\mathrm{CHPh})}\right.$ (major form), $15.73\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 32.22\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.3 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right)$, $33.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.6 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 49.06\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=29.1 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 80.84\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 81.27(\mathrm{~s}$; CPh_{2}), $81.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=23.6 \mathrm{~Hz} ; \mathrm{OCH}\right), 84.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.7 \mathrm{~Hz} ; \mathrm{OCH}\right.$), 104.51 ($\mathrm{s} ; \underline{\mathrm{C}} \mathrm{HPh}$) (minor form), 125.45 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 126.97 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.12 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.17 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.32 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.34 (s ; $\mathrm{CH}(\mathrm{Ph})), 127.36(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.44(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.47(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.51(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.54(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.68 (s; CH(Ph)), 127.74 ($; ~ C H(P h)), 127.84$ ($; ~ C H(P h)), 127.94(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.11$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.14 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.18 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, 128.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.29 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 128.32$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.34 (s ; $\mathrm{CH}(\mathrm{Ph})), 128.38(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.46(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.57(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.83(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.87(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.18 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.66 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.72 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 135.92$ ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 136.48 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})), 138.02$ (s ; $C(P h)), 140.78(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 140.84(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 141.86(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 141.91\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 145.62(\mathrm{~d}$, $\left.{ }^{3} J_{C, P}=1.3 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 145.80(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 146.52(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 146.57(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(242.9 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right):$ $\delta 140.92$ (s) (major form), 145.05 (s) (minor form). $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{NO}_{4} \mathrm{PS}$ (647.23): calcd. C, 72.31; H, 5.91; N, 2.16; found C, 72.44; H, 5.85; N, 2.10.

Minor form (41\%)
${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L2a.
(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetra(4-(tert-
butyl)phenyl)tetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L2b): White powder, yield 1.47 g

EXPERIMENTAL SECTION

(89%). ${ }^{1} \mathrm{H}$ NMR ($499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.20\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1,28\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 1,29(\mathrm{~s}$, $18 \mathrm{H} ; \mathrm{C}\left(\mathrm{CH}_{3}\right)$), $1.33\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.57-2.71\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$; NCH_{3}), 3.21-3.34 (m, 2H; NCH 2), $4.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 5.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$; OCH), 7.22-7.39 (m, 8H; CH(Ph)), $7.52\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$. ${ }^{13}{ }^{\mathrm{C}}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 15.69\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 25.30\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.73\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 31.46\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.50\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.55\left(\mathrm{~s}, \mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right), 32.38\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=14.6 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 33.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.3 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 34.52$ $\left(\mathrm{s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.57\left(\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.61\left(\mathrm{~s}, \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 49.00\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=26.4 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 81.56\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz}\right.$; CPh_{2}), $81.87\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.1 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.0 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.62\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 124.06 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 124.26 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 124.49 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 124.66 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 125.03 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 125.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 125.64 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 126.70 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 126.79 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 126.94 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.05 (s ; $\mathrm{CH}(\mathrm{Ph}))$, 128.07 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$), $128.52(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.55(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.64(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.91(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, $139.32\left(\mathrm{~d} ;{ }^{3}{ }_{\mathrm{C}, \mathrm{P}}=7.0 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ph})\right.$), $143.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.2 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right.$), $149.61(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 149.91(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 150.07$ ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right.$): $\delta 139.48$ (s). $\mathrm{C}_{51} \mathrm{H}_{70} \mathrm{NO}_{4} \mathrm{PS}$ (823.48): calcd. C, 74.33; $\mathrm{H}, 8.56 ; \mathrm{N}$, 1.70; found C, 74.66 ; H, 8.70; N, 1.60.

(3aR,8aS)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4-diphenyltetrahydro$[1,3]$ dioxolo $[4,5-e][1,3,2]$ dioxaphosphepin (L2c): White powder, yield $0.33 \mathrm{~g}(37 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(499.9 \mathrm{MHz}$, CDCl_{3}): $\delta 0.62\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.56-2.70\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.79\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=8.3\right.$ $\mathrm{Hz}, 3 \mathrm{H} ; \mathrm{NCH}_{3}$), 3.18-3.34 (m, 2H; NCH 2), 3.81-3.87 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{O}$), 4.10-4.16 (m, 1H; OCH), 4.27 (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}$ $\left.=27.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=11.1 \mathrm{~Hz},^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{O}\right), 4.89\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.6 \mathrm{~Hz}, 1 \mathrm{H} ; 0 \mathrm{OH}\right.$), $7.15-$ $7.31(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.31-7.40(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph}))$, $7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125.7 $\mathrm{Hz}, \mathrm{CDCl}_{3}$): $\delta 15.69\left(\mathrm{~s} ; \mathrm{SCH}_{3}\right), 25.75\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.63\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 31.97\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=13.4 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 33.17(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}, \mathrm{P}}=4.7 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 48.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=26.0 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 65.86\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.5 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{O}\right), 75.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.8 \mathrm{~Hz} ;\right.$ $\mathrm{OCH}), 81.34\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.1 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 86.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=18.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.08\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.04(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.15 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.70(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.23(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.73(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 141.51$ ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})), 146.84\left(\mathrm{~s} ;{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, \mathrm{C}(\mathrm{Ph})\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 146.56$ (s). $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{PS}$ (447.16): calcd. C, 61.73; H, 6.76; N, 3.13; found C, 62.03; H, 6.87; N, 3.00.

EXPERIMENTAL SECTION

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L2c.
(3aR,8aR)-6-[(S)-N-methyl-1-phenyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L3a): White powder, yield 1.33 g (90 \%). ${ }^{1} \mathrm{H}$ NMR (499.9 MHz, CDCl_{3}): $\delta 0.28\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}_{3}\right)$, $3.47\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 3.56\left(\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=13.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 4.65-$ $4.71(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHPh}), 4.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}, \mathrm{P}}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.13-$ $7.33(\mathrm{~m}, 22 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 25.64(\mathrm{~s}$; $\left.\mathrm{CCH}_{3}\right), 26.66\left(\mathrm{~s} ; \mathrm{NCH}_{3}\right), 27.77\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 36.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.8 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 61.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=41.5 \mathrm{~Hz} ; \mathrm{CHPh}\right), 81.64$ $\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.2 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.9 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.23\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz} ; \mathrm{OCH}\right)$, 111.73 ($\left.\mathrm{s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.19(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.10(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.21(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.36(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.52$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.63 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.75$ (s; CH(Ph)), 127.82 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 128.07$ (s; CH(Ph)), 128.10 (s; $\mathrm{CH}(\mathrm{Ph})), 128.37$ (s; CH(Ph)), 129.09 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.21 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.39 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.73 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 137.08(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 140.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.8 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 142.08(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.52(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph}))$, 146.92 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.1 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})$), 147.17 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (202.4 Hz, CDCl ${ }_{3}$): $\delta 140.86$ (s). $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{PS}$ (737.27): calcd. C, 74.88; H, 6.01; N, 1.90; found C, 74.80; H, 6.05; N, 1.98

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L3a.
(3aS,8aS)-6-[(S)-N-methyl-1-phenyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L3b): White powder, yield 1.03 g (70 \%). ${ }^{1} \mathrm{H}$ NMR (499.9 MHz, CDCl_{3}): $\delta 0.32\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.22\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=5.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NCH}_{3}\right)$, 3.41 (dd, ${ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}$), 3.51 ($\mathrm{dd},{ }^{2} J_{\mathrm{H}, \mathrm{H}}=12.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}$), 4.65-

EXPERIMENTAL SECTION

$4.75(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CHPh}), 4.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.10-$ $7.36(\mathrm{~m}, 22 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.37-7.45(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.67-7.75(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125.7 \mathrm{~Hz}$, CDCl_{3}) : $\delta 25.80\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.46\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz} ; \mathrm{NCH}_{3}\right), 27.65\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 37.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.0 \mathrm{~Hz} ; \mathrm{CH}_{2}\right)$, $61.04\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=37.5 \mathrm{~Hz} ; \mathrm{CHPh}\right), 82.01\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.0 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.23\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz}\right.$; $\left.\mathrm{CPh}_{2}\right), 82.89\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 112.04\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.17(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.10(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.22(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.34 (s; CH(Ph)), 127.52 ($; ~ C H(P h)), 127.68$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.80(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.88$ (s; CH(Ph)), 128.07 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.22 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.44 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.03 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.17 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.21 (s ; $\mathrm{CH}(\mathrm{Ph})), 129.36$ (s; CH(Ph)), 129.84 (s; CH(Ph)),136.85 (s; C(Ph)), 140.36 (s; C(Ph)), 142.06 (s; C(Ph)), 142.63 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})), 146.82(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 139.02$ (s). $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{PS}$ (737.27): calcd. C, 74.88; H, 6.01; N, 1.90; found C, 75.02 ; H, 6.08; N, 1.95.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L3b.
(3aR,8aR)-6-[(S)-1-phenyl- N-(2-(phenylthio)ethyl)ethan-1-amino]-2,2-dimethyl-4,4,8,8-
tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L4a): Yellowish powder, yield 1.23 g (82 \%). ${ }^{1} \mathrm{H}$ NMR (499.9 MHz, CDCl $)_{3}$) $\delta 0.28\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$; $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 2.69-2.77\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 2.80-2.90\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}\right), 3.11-3.24\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NCH}_{2}\right), 3.32-3.44(\mathrm{~m}, 1 \mathrm{H}$; $\left.\mathrm{NCH}_{2}\right), 4.82-4.88\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.24\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{OCH}), 7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$, $7.11-7.49(\mathrm{~m}, 24 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$, $7.81\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 20.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.2 \mathrm{~Hz} ; \underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{CH}\right)$, $25.52\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.79\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 34.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 43.34\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=12.7 \mathrm{~Hz} ; \mathrm{NCH}_{2}\right), 55.60\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=24.7 \mathrm{~Hz} ; \underline{\mathrm{C}} \mathrm{HPh}$), $82.13\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=22.4 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.43\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.53(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.69\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 125.84(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.19(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.29(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.32$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.34 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $127.40(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.53$ (s; $\mathrm{CH}(\mathrm{Ph})), 127.64$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.78$ (s; $\mathrm{CH}(\mathrm{Ph})), 127.88(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.47(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.96(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.16(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.19 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.40 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.84 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 136.19 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 141.84 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})$), 142.49 (s ; $C(P h)), 143.71\left(d,{ }^{3} J_{C, P}=3.5 \mathrm{~Hz} ; C(P h)\right), 146.74\left(d,{ }^{3} J_{C, P}=1.3 \mathrm{~Hz} ; C(P h)\right), 147.19(s ; C(P h)) .{ }^{31} P\left\{{ }^{1} H\right\} N M R$

EXPERIMENTAL SECTION

(202.4 Hz, CDCl_{3}): $\delta 141.67$ (s). $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{NO}_{4}$ PS (751.29): calcd. C, 75.08; H, 6.17; N, 1.86; found C, 75.31; H, 6.10; N, 1.96.

${ }^{1} \mathrm{H}$ (left) and $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L4a.
(3aS,8aS)-6-[(S)-1-phenyl-N-(2-(phenylthio)ethyl)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L4b): White solid foam, yield 1.28 g (85%). ${ }^{1} \mathrm{H}$ NMR ($499.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.27\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$), $1.35\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$), $1.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$; $\mathrm{CH}_{3} \mathrm{CH}$), 2.65-2.81 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}$), 2.86-2.99 (m, $1 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{~S}$), 3.17-3.28 (m, $1 \mathrm{H} ; \mathrm{NCH}_{2}$), 3.28-3.40 (m, 1 H ; $\left.\mathrm{NCH}_{2}\right), 4.85-4.94\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NCH}_{2}\right), 4.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{OCH}), 7.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz} ; 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.09-7.41(\mathrm{~m}, 24 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right)$, $7.62\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta$ $20.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.0 \mathrm{~Hz} ; \underline{\mathrm{CH}}_{3} \mathrm{CH}\right.$), $25.49\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.81\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 34.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.4 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 43.29\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}\right.$ $=13.2 \mathrm{~Hz} ; \mathrm{NCH}_{2}$), $55.25\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=24.5 \mathrm{~Hz}\right.$; $\underline{C H P h}$), $82.02\left(\mathrm{~d},{ }^{2}{ }_{\mathrm{J}, \mathrm{P}}=9.5 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 82.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=22.0 \mathrm{~Hz}\right.$; $\mathrm{OCH}), 82.39\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.53\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.69\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 125.87(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.16(\mathrm{~s}$; $\mathrm{CH}(\mathrm{Ph}))$, 127.37 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$), 127.47 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, $127.49(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})$), 127.53 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.64 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.68 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $127.86(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, $127.93(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.20(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$), $128.37(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.97$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.15 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.19(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})$), $129.30(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 136.20(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 141.77(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})$), 142.46 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph})), 143.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 146.69\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.5 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 147.29(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph}))$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (202.4 Hz, CDCl 3): $\delta 142.09$ (s). $\mathrm{C}_{47} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{PS}$ (751.29): calcd. C, 75.08; H, 6.17; $\mathrm{N}, 1.86$; found C, 75.43; H, 6.29; N, 2.00.

${ }^{1} \mathrm{H}$ (left) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for $\mathbf{L} \mathbf{4 b}$.

EXPERIMENTAL SECTION

(3aR,8aR)-6-[(S)-2-((phenylthio)methyl)pyrrolidino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L5a): White powder, yield 1.35 g (98%). ${ }^{1} \mathrm{H}$ NMR (499.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.83-1.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.83-1.91\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.95-$ $2.04\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.88\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=9.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.23\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=4.3 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 3.27-3.33 (m, 1H; CH 2), 3.64-3.75 (m, 1H; CH2), 3.84-3.95 (m, $1 \mathrm{H} ; \mathrm{NCH}$), $4.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{OCH}), 5.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.10-7.31(\mathrm{~m}, 16 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.35-7.48(\mathrm{~m}, 5 \mathrm{H}$; $\mathrm{CH}(\mathrm{Ph})), 7.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125.7 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta$ $25.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.1 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 25.47\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.76\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 31.57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.7 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 40.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $5.9 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}$), $44.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.2 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 57.43\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=22.1 \mathrm{~Hz} ; \mathrm{NCH}\right), 81.60\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.9 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right)$, $82.07\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 82.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.8 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz} ; \mathrm{OCH}\right), 111.75\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 125.87$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.18 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.27 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.32 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.35 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.43 (s ; $\mathrm{CH}(\mathrm{Ph})), 127.56(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.65(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.81(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.03(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.26(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 128.98 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.00(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, $129.03(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.22$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.25 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 130.39$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $137.03(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.5 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 142.47\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{C}, \mathrm{P}}=1.5 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right.$), 146.74 (d, $\left.{ }^{3} \mathrm{C}_{\mathrm{C}, \mathrm{P}}=1.6 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 147.21(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202.4 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 138.90(\mathrm{~s}) . \mathrm{C}_{42} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{PS}$ (687.26): calcd. C, 73.34; H, 6.15; N, 2.04; found C, 73.60; H, 6.22; N, 1.93.

${ }^{1} \mathrm{H}$ (left) and $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L5a.
(3aS,8aS)-6-[(S)-2-((phenylthio)methyl)pyrrolidino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro$[1,3]$ dioxolo $[4,5-e][1,3,2]$ dioxaphosphepin (L5b): White powder, yield $0.93 \mathrm{~g}(68 \%) .{ }^{1} \mathrm{H}$ NMR (499.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.31\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.71-1.80\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.82-1.91\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.95-$ $2.04\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.76\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.6,{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=10.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right.$), 3.19 ($\mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.6,{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$; CH_{2}), 3.37-3.45 ($\mathrm{m}, 2 \mathrm{H} ; \mathrm{CH}_{2}$), 3.98-4.08 (m, $\left.1 \mathrm{H} ; \mathrm{NCH}\right), 4.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 5.14\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.4\right.$ $\left.\mathrm{Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OCH}\right), 7.11-7.30(\mathrm{~m}, 17 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $7.7,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})), 7.59\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.6,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right), 7.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5,2 \mathrm{H} ; \mathrm{CH}(\mathrm{Ph})\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125.7 \mathrm{~Hz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 25.04\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.5 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 25.67\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 27.68\left(\mathrm{~s} ; \mathrm{CCH}_{3}\right), 31.50\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.3 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 40.14$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz} ; \mathrm{CH}_{2} \mathrm{~S}\right), 45.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.9 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 57.03\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=19.1 \mathrm{~Hz} ; \mathrm{NCH}\right), 81.60\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.4 \mathrm{~Hz} ;\right.$

EXPERIMENTAL SECTION

$\left.\mathrm{CPh}_{2}\right), 82.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.7 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.39\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.5 \mathrm{~Hz} ; \mathrm{OCH}\right), 82.59\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 111.87\left(\mathrm{~s} ; \underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 125.76 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, 127.19 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph}))$, $127.24(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})$), $127.34(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$), 127.38 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 127.49$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.54 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.59 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.87 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.20 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.96 (s ; $\mathrm{CH}(\mathrm{Ph})), 129.14(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.17(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.24(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 136.75(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})), 142.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9\right.$ Hz; C(Ph)), 142.31 ($s ; C(P h)), 146.82\left(d,{ }^{3} J_{C, P}=1.9 \mathrm{~Hz} ; C(P h)\right), 146.13(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(202.4 \mathrm{~Hz}$, CDCl_{3}): $\delta 139.76$ (s). $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{NO}_{4} \mathrm{PS}$ (687.26): calcd. C, $73.34 ; \mathrm{H}, 6.15 ; \mathrm{N}, 2.04$; found C, $73.54 ; \mathrm{H}, 6.05 ; \mathrm{N}$, 2.14 .

${ }^{1} \mathrm{H}$ (left) and $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ (right) NMR Signal Assignment for L5b.

EXPERIMENTAL SECTION

General procedure for the preparation of $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L})] \mathrm{BF}_{4}$ complexes. A solution of the appropriate ligand (0.2 mmol) in THF (3 mL) was added dropwise over 30 min to a stirred solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{THF}(3 \mathrm{~mL})$ at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for a further 1 h at $20^{\circ} \mathrm{C}$. $\mathrm{AgBF}_{4}(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at $20^{\circ} \mathrm{C}$. The precipitate of AgCl formed was separated by centrifugation, solvent was removed in vacuum (40 Torr) and the crude product was dried in air and in vacuum (10^{-3} Torr). The product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ and reprecipitated from pentane (10 mL). The precipitate of the product was separated by centrifugation and dried in air and in vacuum ($10^{-3} \mathrm{Torr}$).
[Pd(allyl)(L1a)]BF ${ }_{4}$: White powder, yield 15.3 mg (92\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) L1a: $\delta 0.57$ (s, $3 \mathrm{H} ; \mathrm{CH}_{3}$), $0.60\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=6.9 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right.$), $2.65\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.60-2.63\left(\right.$ br.m, $\left.1 \mathrm{H} ; \mathrm{CH}_{2}\right)$, 2.87-2.90 (br.m, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.93-3.04 (m, 1H; CH2), 3.71-3.78 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}$), $5.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right.$), $5.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 7.11-7.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{Ph}))$ (major form), $0.57\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 0.60(\mathrm{~s}, 3 \mathrm{H}$; CH_{3}), $2.07\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=6.8 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.51-2.54\left(\mathrm{br} . \mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.90-3.01\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right)$, 2.95-2.98 (br.m, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 3.43-3.52 (m, 1H; CH2), $5.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right.$), $5.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{CH}$), 7.11-7.72 (m, 20H, $\mathrm{CH}(\mathrm{Ph})$) (minor form); $\boldsymbol{\eta}^{3}$-allylic ligand: $\delta 3.24$ ($\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=4.1$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), $3.40\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=14.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.48-4.51(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 4.28-4.36 (m, 1H;CH) (allyl) (major form), 1.41 (dd, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=12.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=4.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.79 $\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=14.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.28-4.32\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.50-4.53\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right)$, 5.67-5.75 (m, $\left.1 \mathrm{H} ; \mathrm{CH}\right)$ (minor form). $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) L1a: $\delta 24.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.0 \mathrm{~Hz} ; \mathrm{CH}_{3}\right.$), $26.86\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 26.88(\mathrm{~s}$; CH_{3}), $33.66\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.8 \mathrm{~Hz} ; \mathrm{CH}_{3}\right), 34.31\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 52.89\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=31.3 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 80.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz}\right.$; $\mathrm{CH}), 88.29\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 91.05\left(\mathrm{~d}^{2}{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 116.49\left(\mathrm{~s} ; \mathrm{CMe}_{2}\right)$, (major form), $25.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=4.8 \mathrm{~Hz}\right.$; CH_{3}), $26.80\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 26.88\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 33.42\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.6 \mathrm{~Hz} ; \mathrm{CH}_{3}\right), 34.91\left(\mathrm{~s} ; \mathrm{CH}_{2}\right), 52.71\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=31.9 \mathrm{~Hz}\right.$; CH_{2}), $80.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz} ; \mathrm{CH}\right), 80.93\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.9 \mathrm{~Hz} ; \mathrm{CH}\right), 88.01\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 91.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.2 \mathrm{~Hz}\right.$; CPh_{2}), 116.44 ($\mathrm{s} ; \mathrm{CMe}_{2}$), (minor form), 127.61 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.68 ($; ~ \mathrm{CH}(\mathrm{Ph})$), 127.93 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.95 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.98 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.06 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.08 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.40 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.48 (s ; $\mathrm{CH}(\mathrm{Ph}))$, $128.51(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.59(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.63(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.66(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.68(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.17 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.20 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.34 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.40 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.48 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.58 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.82(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.96(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 140,36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 140,57\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.2 \mathrm{~Hz}\right.$; $\mathrm{C}(\mathrm{Ph})), 140,92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.7 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 140,96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.7 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 143.97(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph}), 144.20(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph})$, 144.44 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph}), 145.29\left(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph}) ; \eta^{3}\right.$-allylic ligand: $63.72\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.5 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 79.21\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=42.1 \mathrm{~Hz}\right.$; CH_{2}), $123.83\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.6 \mathrm{~Hz} ; \mathrm{CH}\right)$ (major form), $62.94\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=8.1 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 80.54\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=42.0 \mathrm{~Hz}\right.$;

EXPERIMENTAL SECTION

CH_{2}), $123.87\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=10.8 \mathrm{~Hz} ; \mathrm{CH}\right.$) (minor form). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta 105.57$ (major form), 107.98 (minor form). $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{BF}_{4} \mathrm{NO}_{4} \mathrm{PPdS}$ (833.17): calcd. C 54.72, H 5.20, N 1.68; found C 54.94, H 5.28, N 1.62. M/z = 746.1699 (calcd. 746.1680) Da for $[P d(L 1 a)(a l l y l)]^{+}$.

54\%

46\%
${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (bottom) NMR signal assignment for the major (left) and minor (right) diastereomers of $\left[\operatorname{Pd}(\right.$ allyl)(L1a) $] \mathrm{BF}_{4}$.

EXPERIMENTAL SECTION

[Pd(allyl)(L1f)]BF 4 : White powder, yield $14.9 \mathrm{mg}(88 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) L1f: $\delta 0.56(\mathrm{~s}$, $3 \mathrm{H} ; \mathrm{CH}_{3}$), $0.57\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.51\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=0.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.70-1.75(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.06-2.18 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.56-2.62 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.82-2.89 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 3.08-3.13 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), $3.81-3.90\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 5.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 5.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 7.22-7.63(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}(\mathrm{Ph})$) (major form), $0.56\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 0.60\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 2.54\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=\right.$
 $1 \mathrm{H} ; \mathrm{CH}_{2}$), 3.08-3.13 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 4.15-4.24 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), $5.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}\right), 5.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0\right.$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{CH}$), 7.22-7.63 (m, 20H, $\mathrm{CH}(\mathrm{Ph})$) (minor form); $\boldsymbol{\eta}^{3}$-allylic ligand: $\delta 1.83-1.84\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.59(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=14.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.45-4.47\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.59\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 5.72-5.81(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{CH}$) (allyl) (major form), 3.38-3.42 (m, $1 \mathrm{H} ; \mathrm{CH}_{2}$), $3.56\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}={ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=14.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 4.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $6.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 4.47-4.50 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 4.29-4.38 ($\mathrm{m}, 1 \mathrm{H} ; \mathrm{CH}$) (minor form). $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) L1f: $\delta 22.08\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.9 \mathrm{~Hz} ; \mathrm{CH}_{3}\right), 26.48\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 26.61\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 32.47\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.4 \mathrm{~Hz} ; \mathrm{CH}_{3}\right)$, 20.91 (s; CH2 $), 32.74$ (br.s; CH_{2}), $45.16\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=33.5 \mathrm{~Hz} ; \mathrm{CH}_{2}\right.$), $80.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.7 \mathrm{~Hz} ; \mathrm{CH}\right.$), $80.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=\right.$ $2.6 \mathrm{~Hz} ; \mathrm{CH}$), $87.33\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right), 91.13\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.9 \mathrm{~Hz} ; \mathrm{CPh}_{2}\right), 116.14\left(\mathrm{~s} ; \mathrm{CMe}_{2}\right)$, (major form), $21.84\left(\mathrm{~s} ; \mathrm{CH}_{3}\right)$, $26.56\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 26.62\left(\mathrm{~s} ; \mathrm{CH}_{3}\right), 32.69\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=7.7 \mathrm{~Hz} ; \mathrm{CH}_{3}\right), 21.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.5 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 32.74\left(\mathrm{br} . \mathrm{s} ; \mathrm{CH}_{2}\right)$, $44.57\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=33.0 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 80.38\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz} ; \mathrm{CH}\right), 80.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=3.1 \mathrm{~Hz} ; \mathrm{CH}\right), 87.58\left(\mathrm{~s} ; \mathrm{CPh}_{2}\right)$, 90.69 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=20.0 \mathrm{~Hz} ; \mathrm{CPh}_{2}$), 116.25 ($\mathrm{s} ; \mathrm{CMe}_{2}$), (minor form), 127.36 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 127.54 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), $127.64(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.65(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.71(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.75(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.83(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 127.90$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.10 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.22 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.29 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.29 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 128.36 (s ; $\mathrm{CH}(\mathrm{Ph})), 128.38(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 128.94$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 128.98(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph})), 129.01$ ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 129.11(\mathrm{~s} ; \mathrm{CH}(\mathrm{Ph}))$, 129.33 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.48 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.66 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})$), 129.86 ($\mathrm{s} ; \mathrm{CH}(\mathrm{Ph})), 140,36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.3 \mathrm{~Hz}\right.$; $C(P h)), 140,40\left(d,{ }^{3} J_{C, P}=6.6 \mathrm{~Hz} ; C(P h)\right), 140,73\left(d^{3} J_{C, P}=8.3 \mathrm{~Hz} ; C(P h)\right), 140,89\left({ }^{(}{ }^{3} J_{C, P}=8.5 \mathrm{~Hz} ; C(P h)\right)$, 143.72 ($\mathrm{s} ; \mathrm{C}(\mathrm{Ph}), 144.10\left(\mathrm{~s} ; \mathrm{C}(\mathrm{Ph}), 144.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.2 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right), 144.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=1.1 \mathrm{~Hz} ; \mathrm{C}(\mathrm{Ph})\right.\right.$); $\boldsymbol{\eta}^{3}-$ allylic ligand: $63.84\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.1 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 80.86\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=40.9 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 122.81\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.8 \mathrm{~Hz} ; \mathrm{CH}\right)$ (major form), $63.86\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=5.8 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 80.01\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=40.8 \mathrm{~Hz} ; \mathrm{CH}_{2}\right), 123.28\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.5 \mathrm{~Hz} ; \mathrm{CH}\right.$) (minor form). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($243 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 115.84$ (major form), 115.16 (minor form). $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{BF}_{4} \mathrm{NO}_{4} \mathrm{PPdS}$ (847.19): calcd. C $55.24, \mathrm{H} 5.35, \mathrm{~N} 1.65$; found $\mathrm{C} 55.50, \mathrm{H} 5.44, \mathrm{~N} 1.73 . \mathrm{M} / \mathrm{z}=$ 760.1853 (calcd. 760.1836) Da for [Pd(L1f)(allyl)] ${ }^{+}$.

EXPERIMENTAL SECTION

58\%

42\%
${ }^{1} \mathrm{H}$ (top) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ (bottom) NMR signal assignment for the major (left) and minor (right) diastereomers of $\left[\mathrm{Pd}(\right.$ allyl) $(\mathrm{L1f})] \mathrm{BF}_{4}$.

General procedure for the addition of the second equivalent of corresponding ligand to the solution of $[\mathbf{P d}(\operatorname{allyl})(\mathrm{L})] \mathrm{BF}_{4}$ complexes. A solution of L1a or $\mathbf{L 1 f}(0.025 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ was added to the appropriate $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L})] \mathrm{BF}_{4}$ complex sampled in a NMR tube (0.025 mmol). The resulting mixture was shacked and left overnight, then NMR-spectra were recorded.

Table S1. Crystal data and structure refinement for new compounds.

L1b

CCDC number
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.686^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$[\mathrm{Pd}($ allyl $)(\mathbf{L 1 f})] \mathrm{BF}_{4}$
CCDC number
Empirical formula
Formula weight
Temperature
Wavelength

2213985
$\mathrm{C}_{76} \mathrm{H}_{88} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{~S}_{2}$
1283.54

295(2) K
$1.54186 \AA$
Triclinic
P 1
$a=9.4004(2) \AA \quad \alpha=82.188(2)^{\circ}$.
$b=9.4572(2) \AA \quad \beta=80.662(2)^{\circ}$.
$\mathrm{c}=22.4551(4) \AA \quad \gamma=60.1160(10)^{\circ}$.
1704.38(6) \AA^{3}

1
$1.251 \mathrm{Mg} / \mathrm{m}^{3}$
$1.606 \mathrm{~mm}^{-1}$
684
1.998 to 67.943°.
$-11<=\mathrm{h}<=7,-11<=\mathrm{k}<=10,-26<=1<=26$
34079
$8542[\mathrm{R}(\mathrm{int})=0.0625]$
95.4 \%

Full-matrix least-squares on F^{2}
8542 / 3 / 824
1.020
$\mathrm{R} 1=0.0477, \mathrm{wR} 2=0.1187$
$\mathrm{R} 1=0.0551, \mathrm{wR} 2=0.1272$
-0.001(16)
0.0052(5)
0.460 and -0.345 e. \AA^{-3}

2308760
$\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{BF}_{4} \mathrm{NO}_{4} \mathrm{PPdS}$
848.00

295(2) K
$1.54186 \AA$

Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=55.802^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

Hexagonal
P 64
$\mathrm{a}=29.2000(10) \AA \quad \alpha=90^{\circ}$.
$b=29.2000(10) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=10.1029(4) \AA \quad \gamma=120^{\circ}$.
7460.1(6) \AA^{3}

6
$1.133 \mathrm{Mg} / \mathrm{m}^{3}$
$4.102 \mathrm{~mm}^{-1}$
2616
3.027 to 55.802°.
$-31<=\mathrm{h}<=25,-31<=\mathrm{k}<=31,-6<=1<=10$
32191
$5314[\mathrm{R}($ int $)=0.2007]$
99.4 \%

Full-matrix least-squares on F^{2}
5314/346/431
0.617
$\mathrm{R} 1=0.0544, \mathrm{wR} 2=0.1327$
$\mathrm{R} 1=0.2115, \mathrm{wR} 2=0.1613$
-0.05(2)
0.00139(10)
0.304 and -0.336 e. \AA^{-3}

CATALYTIC RESULTS

Palladium-Catalyzed Asymmetric Allylic Alkylation of (E)-1,3-Diphenylallyl Acetate or (E)-1,3Diphenylallyl Ethyl Carbonate with Dimethyl Malonate, Di-tert-butyl Malonate and Dibenzyl Malonate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand $(0.005 \mathrm{mmol}$ or $0.01 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min . The appropriate malonate (0.44 mmol), BSA ($0.11 \mathrm{~mL}, 0.44 \mathrm{mmol}$) and KOAc (0.002 g) were added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10^{-3} Torr) affording a residue containing dimethyl (E)-2-(1,3-diphenylallyl)malonate (11a), di-tert-butyl (E)-2-(1,3-diphenylallyl)malonate (11b) or dibenzyl (E)-2-(1,3-diphenylallyl)malonate (11c). ${ }^{[22]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of (E)-1,3-Diphenylallyl Acetate or (E)-1,3Diphenylallyl Ethyl Carbonate with Pyrrolidine: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The appropriate substrate $(0.25 \mathrm{mmol})$ was added and the solution stirred for 15 min , then freshly distilled pyrrolidine (0.06 mL , 0.75 mmol) was added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing (E)-1-(1,3-diphenylallyl)pyrrolidine (11d). ${ }^{[23]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate or Cinnamyl Methyl Carbonate with Ethyl 2-Oxocyclohexane-1-Carboxylate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025$ mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min . β-Ketoether $13(0.06 \mathrm{~mL}, 0.375$ $\mathrm{mmol}), \mathrm{BSA}(0.125 \mathrm{~mL}, 0.5 \mathrm{mmol})$ and $\mathrm{Zn}(\mathrm{OAc})_{2}(0.005 \mathrm{~g})$ were added. The reaction mixture was stirred for 24 h , diluted with toluene (2 mL) and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing ethyl 1-cinnamyl-2-oxocyclohexane-1-carboxylate (14). ${ }^{[16 c, d]}$ In order to evaluate ee and conversion, the

CATALYTIC RESULTS

obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate or Cinnamyl Methyl Carbonate with Ethyl 2-Acetamido-3-Oxobutanoate: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene $(1.5 \mathrm{~mL})$. The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min . α-Acetamido- β-Ketoether 15 ($0.07 \mathrm{~g}, 0.375$ $\mathrm{mmol})$, BSA $(0.125 \mathrm{~mL}, 0.5 \mathrm{mmol})$ and KOAc $(0.003 \mathrm{~g})$ were added. The reaction mixture was stirred for 24 h , diluted with toluene (2 mL) and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing ethyl (E)-2-acetamido-2-acetyl-5-phenylpent-4-enoate (16). ${ }^{[16 e]}$ In order to evaluate ee and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Methyl Carbonate with 2,5Dimethylpyrrole: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex $(0.005 \mathrm{mmol})$ was dissolved in toluene (1.5 mL). Cinnamyl methyl carbonate ($0.05 \mathrm{~g}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min . Freshly distilled 2,5-dimethylpyrrole (17) ($0.02 \mathrm{~mL}, 0.2 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.065 \mathrm{~g}, 0.2 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h , precipitate was separated by centrifugation and solvent was removed in vacuum (40 Torr). The obtained residue was purified by flash chromatography on SiO_{2} : impurities were eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, then the product was eluted with ethyl acetate (10 mL). The solvent was evaporated at reduced pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording 2-cinnamyl-2,5-dimethylpyrrole (18). ${ }^{[16]}$ In order to evaluate ee, the obtained product was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of 2-(Diethoxyphosphoryl)-1-Phenylallyl Acetate with Aniline: A solution of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}(0.001 \mathrm{~g}, 0.0025 \mathrm{mmol})$ and the appropriate ligand (0.005 mmol or 0.01 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5 mL). 2-(Diethoxyphosphoryl)-1-phenylallyl acetate (19) (0.08 $\mathrm{g}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min , then freshly distilled aniline ($0.05 \mathrm{~mL}, 0.5$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.069 \mathrm{~g}, 0.5 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and filtered through a thin layer of SiO_{2}. The filtrate was evaporated at reduced

CATALYTIC RESULTS

pressure (40 Torr) and dried in vacuum ($10^{-3} \mathrm{Torr}$) affording a residue containing mixture of diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (20), (E)-diethyl (1-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (21) and (E)-2-(diethoxyphosphoryl)-3-phenylallyl acetate (22). ${ }^{[14]}$ Conversion of 19 and the ratio of $\mathbf{2 0} / \mathbf{2 1} / \mathbf{2 2}$ were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy in CHCl_{3}. In order to evaluate ee, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Table S2. Pd-catalyzed allylic alkylation of $\mathbf{1 0 a} \mathbf{a} \mathbf{b}$ with dialkyl malonates. ${ }^{[\mathrm{a}]}$

Entry	Substrate	Compound	L/Pd	Product	Conversion [\%]	$E e[\%]^{[b, c]}$
1	10a	L1a	1	11a	51	$98(R)$
2	10a	L1a	2	11a	35	$98(R)$
3	10a	L1a	1	11a	100	$97(R)^{[d]}$
4	10a	L1a	1	11b	73	$99(R)$
5	10a	L1a	2	11b	15	$99(R)$
6	10a	L1a	1	11b	100	$97(R)^{[d]}$
7	10a	L1a	1	11c	85	$96(R)$
8	10a	L1a	2	11c	27	$98(R)$
9	10a	L1a	1	11c	100	$95(R)^{[d]}$
10	10b	L1a	1	11a	75	$87(R)$
11	10b	L1a	2	11a	52	$97(R)$
12	10b	L1a	1	11b	74	$93(R)$
13	10b	L1a	2	11b	22	$98(R)$
14	10b	L1a	1	11c	100	89 (R)
15	10b	L1a	2	11c	59	$92(R)$
16	10a	[Pd(allyl)(L1a) BF_{4}	1	11a	76	$97(R)$
17	10b	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1a})] \mathrm{BF}_{4}$	1	11a	73	$92(R)$
18	10a	L1b	1	11a	74	76 (R)
19	10a	L1b	2	11a	24	87 (R)
20	10a	L1c	1	11a	100	$92(R)$
21	10a	L1c	2	11a	14	$87(R)$
22	10a	L1d	1	11a	81	90 (R)

CATALYTIC RESULTS

23	10a	L1d	2	11a	50	$92(R)$
24	10a	L1e	1	11a	95	$97(R)$
25	10a	L1e	2	11a	73	$98(R)$
26	10a	L1f	1	11a	92	$97(R)$
27	10a	L1f	2	11a	50	$98(R)$
28	10a	[Pd(allyl)(L1f)] BF_{4}	1	11a	97	$98(R)$
29	10a	L1g	1	11a	60	$88(S)$
30	10a	L1g	2	11a	41	86 (S)
31	10a	L1h	1	11a	90	63 (R)
32	10a	L1h	2	11a	79	63 (R)
33	10a	L2a	1	11a	100	$99(R)$
34	10a	L2a	2	11a	65	$99(R)$
35	10a	L2a	1	11b	83	$99(R)$
36	10a	L2a	2	11b	15	$99(R)$
37	10a	L2a	1	11c	100	$99(R)$
38	10a	L2a	2	11	28	$98(R)$
39	10a	L2b	1	11a	100	$78(R)$
40	10a	L2b	2	11a	60	$64(R)$
41	10a	L2c	1	11a	100	$96(R)$
42	10a	L2c	2	11a	100	$98(R)$
43	10a	L3a	1	11a	100	21 (S)
44	10a	L3a	2	11a	45	17 (S)
45	10a	L3b	1	11a	100	88 (S)
46	10a	L3b	2	11a	100	89 (S)
47	10a	14a	1	11a	100	21 (R)
48	10a	L4a	2	11a	98	$29(R)$
49	10a	L4b	1	11a	95	7 (S)
50	10a	L4b	2	11a	97	6 (S)
51	10a	L5a	1	11a	100	$44(R)$
52	10a	L5a	2	11a	34	37 (R)
53	10a	L5b	1	11a	100	95 (S)
54	10a	L5b	2	11a	100	$94(S)$
55	10a	L5b	1	11b	100	95 (S)
56	10a	L5b	2	11b	100	94 (S)
57	10a	L5b	1	11c	100	95 (S)

CATALYTIC RESULTS

58	10a	L5b	2	11c	100	$94(S)$
59	10a	$\mathrm{L}_{\text {A }}$	1	11a	40	$81(S)$
60	10a	L_{A}	2	11a	19	76 (S)
61	10a	L_{B}	1	11a	68	$82(R)$
62	10a	L_{B}	2	11a	7	77 (R)
63	10a	(S)- L_{C}	1	11a	100	$87(S)^{[e]}$
64	10a	(S)-L L_{c}	2	11a	100	$79(S)^{[\mathrm{e}]}$
65	10a	$(R)-L_{c}$	1	11a	27	$2(S)^{[\text {e] }}$
66	10a	(R)- L_{c}	2	11a	15	$12(S)^{[\mathrm{e}]}$

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrates 10a,b and enantiomeric excess of 11a were determined by HPLC (Kromasil 5-CelluCoat, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=99 / 1,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=19.6 \mathrm{~min}, t(S)=21.0 \mathrm{~min}$); 11b - (Daicel Chiralpak AD-H, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=9.2 \mathrm{~min}, t(S)=12.8 \mathrm{~min}\right) ; 11 \mathrm{c}-($ Daicel Chiralpak AD-H, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=4 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=16.0 \mathrm{~min}, t(S)=19.8 \mathrm{~min}\right)$ [c] The absolute configurations were assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[16 a, b, 24]}$ [d] At $40{ }^{\circ} \mathrm{C}$ for 12 h . [e] Ref. ${ }^{\text {[25] }}$

Table S3. Pd-catalyzed allylic amination of 10a,b with pyrrolidine. ${ }^{[a]}$

Entry	Substrate	Compound	L/Pd	Conversion [\%]	$E e[\%]^{[b, c]}$
1	10a	L1a	1	21	56 (S)
2	10a	L1a	2	74	85 (S)
3	10b	L1a	1	77	75 (S)
4	10b	L1a	2	100	96 (S)
5	10a	$\left[\mathrm{Pd}(\right.$ allyl) $(\mathrm{L1a})] \mathrm{BF}_{4}$	1	24	$58(S)$
6	10b	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	72	82 (S)
7	10a	L1b	1	17	60 (S)
8	10a	L1b	2	18	67 (S)
9	10b	L1b	1	100	16 (S)
10	10b	L1b	2	100	42 (S)
11	10a	L1c	1	15	43 (S)
12	10a	L1c	2	27	47 (S)
13	10a	L1d	1	49	74 (S)
14	10a	L1d	2	100	80 (S)
15	10a	L1e	1	14	65(S)

CATALYTIC RESULTS

16	10a	L1e	2	20	$91(S)$
17	10b	L1e	1	100	23 (S)
18	10b	L1e	2	100	$52(S)$
19	10a	L1f	1	12	93 (S)
20	10a	L1f	2	34	96 (S)
21	10a	[Pd(allyl)(L1f)] BF_{4}	1	12	86 (S)
22	10a	L1g	1	17	22 (S)
23	10a	L1g	2	18	21 (S)
24	10a	L1h	1	58	65 (S)
25	10a	L1h	2	100	67 (S)
26	10a	L2a	1	100	96 (S)
27	10a	L2a	2	100	97 (S)
28	10a	L2b	1	14	46 (S)
29	10a	L2b	2	15	61 (S)
30	10b	L2b	1	100	48 (S)
31	10b	L2b	2	100	6 (S)
32	10a	L2c	1	86	76 (S)
33	10a	L2c	2	100	86 (S)
34	10a	L3a	1	22	41 (S)
35	10a	L3a	2	17	$38(S)$
36	10a	L3b	1	20	$27(R)$
37	10a	L3b	2	21	$34(R)$
38	10a	L4a	1	3	19 (S)
39	10a	L4a	2	5	$30(S)$
40	10a	L4b	1	4	$9(R)$
41	10a	L4b	2	6	$12(R)$
42	10a	L5a	1	6	$40(R)$
43	10a	L5a	2	18	$28(R)$
44	10a	L5b	1	39	96 (R)
45	10a	L5b	2	100	$97(R)$
46	10b	L5b	1	100	$77(R)$
47	10b	L5b	2	100	$85(R)$
48	10a	$\mathrm{L}_{\text {A }}$	1	6	$17(R)$
49	10a	$\mathrm{L}_{\text {A }}$	2	6	$14(R)$
50	10a	L_{B}	1	6	$12(R)$

CATALYTIC RESULTS

51	$10 a$	L_{B}	2	7	$6(R)$
52	$10 a$	$(S)-L_{c}$	1	28	$28(R)^{[d]}$
53	$10 a$	$(S)-L_{c}$	1	45	$30(R)^{[d]}$
54	$10 a$	L_{c}	2	12	$10(S)^{[d]}$
55	$10 a$	$(R)-L_{c}$	13	$10(S)^{[d]}$	

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ at room temperature for 24 h . [b] The conversion of substrates $\mathbf{1 0 a}, \mathrm{b}$ and enantiomeric excess of 11d were determined by HPLC (Daicel Chiralcel OD-H, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{iPrOH}=$ $95 / 5,0.4 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=9.0 \mathrm{~min}, t(S)=9.6 \mathrm{~min}$). [c] The absolute configurations was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[16 a, b, 23 b, 26]}$ [d] Ref. ${ }^{[25]}$

Table S4. Pd-catalyzed allylic alkylation of 12a,b with 13. ${ }^{\text {[a] }}$

$\begin{aligned} & \mathrm{OC}(0) \mathrm{X} \\ & \mathrm{X}=\mathrm{Me}(\mathrm{a}), \mathrm{OMe}(\mathrm{~b}) \end{aligned}$					
Entry	Substrate	Compound	L/Pd	Conversion [\%]	$E e[\%]^{[b, c]}$
1	12a	L1a	1	23	81 (R)
2	12a	L1a	2	19	80 (R)
3	12a	L1a	1	46	$65(R)^{[d]}$
4	12b	L1a	1	32	75 (R)
5	12b	L1a	2	48	75 (R)
6	12a	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	16	$81(R)$
7	12a	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	35	$64(R)^{[d]}$
8	12b	[Pd(allyl)(L1a)] BF_{4}	1	40	76 (R)
9	12a	L1b	1	38	56 (R)
10	12a	L1b	2	36	55 (R)
11	12a	L1c	1	72	$78(R)$
12	12a	L1c	2	44	$77(R)$
13	12a	L1d	1	13	70 (R)
14	12a	L1d	2	0	-
15	12a	L1e	1	100	80 (R)
16	12a	L1e	2	76	79 (R)
17	12a	L1f	1	74	$37(R)$
18	12a	L1f	2	38	41 (R)
19	12a	[Pd(allyl)(L1f) BF_{4}	1	97	23 (R)
20	12a	L1g	1	0	-
21	12a	L1g	2	0	-

CATALYTIC RESULTS

22	12a	L1h	1	95	26 (R)
23	12a	L1h	2	80	22 (R)
24	12a	L2a	1	46	$64(R)$
25	12a	L2a	2	36	67 (R)
26	12a	L2b	1	12	87 (R)
27	12a	L2b	2	21	91 (R)
28	12b	L2b	1	34	$92(R)$
29	12b	L2b	2	38	$94(R)$
30	12a	L2c	1	14	3 (S)
31	12a	L2c	2	23	$2(S)$
32	12a	L3a	1	36	31 (R)
33	12a	L3a	2	30	$28(R)$
34	12a	L3b	1	29	47 (S)
35	12a	L3b	2	38	53 (S)
36	12a	L4a	1	35	$72(R)$
37	12a	L4a	2	49	$74(R)$
38	12a	L4b	1	32	65 (S)
39	12a	L4b	2	77	66 (S)
40	12a	L5a	1	47	$82(R)$
41	12a	L5a	2	32	80 (R)
42	12a	L5b	1	95	87 (S)
43	12a	L5b	2	99	87 (S)
44	12b	L5b	1	100	90 (S)
45	12b	L5b	2	100	$88(S)$
46	12a	$\mathrm{L}_{\text {A }}$	1	0	-
47	12a	$L_{\text {A }}$	2	0	-
48	12a	L_{B}	1	4	$61(R)$
49	12a	L_{B}	2	0	-
50	12a	$(S)-L_{c}$	1	0	- [e]
51	12a	$(S)-L_{c}$	2	0	- [e]
52	12a	$(R)-\mathrm{L}_{\mathrm{c}}$	1	0	- ${ }^{\text {e] }}$
53	12a	$(R)-L_{c}$	2	0	- [e]

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\text { allyl }) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, $\mathrm{Zn}(\mathrm{OAc})_{2}$). [b] The conversion of substrates $12 \mathrm{a}, \mathrm{b}$ and enantiomeric excess of 14 were determined by HPLC (Kromasil 5-CelluCoat, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PPrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(R)=10.1 \mathrm{~min}, t(S)=14.9 \mathrm{~min}$). [c] The absolute

CATALYTIC RESULTS

configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[16 a-d]}$ [d] At $55^{\circ} \mathrm{C}$ for 12 h . [e] Ref. ${ }^{[25]}$

Table S5. Pd-catalyzed allylic alkylation of 12a,b with 15. ${ }^{[\text {a] }}$

Entry	Substrate	Compound	L/Pd	Conversion [\%]	$E e[\%]^{[b, c]}$
1	12a	L1a	1	98	74 (S)
2	12a	L1a	2	20	66 (S)
3	12a	L1a	1	100	$64(S)^{[d]}$
4	12a	L1a	2	100	$65(S)^{[d]}$
5	12b	L1a	1	100	67 (S)
6	12b	L1a	2	78	67 (S)
7	12a	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	100	67 (S)
8	12b	[Pd(allyl)(L1a)]BF ${ }_{4}$	1	100	66 (S)
9	12a	L1b	1	100	63 (S)
10	12a	L1b	2	70	63 (S)
11	12a	L1c	1	100	74 (S)
12	12a	L1c	2	92	73 (S)
13	12a	L1d	1	84	56 (S)
14	12a	L1d	2	100	55 (S)
15	12a	L1e	1	100	64 (S)
16	12a	L1e	2	100	71 (S)
17	12a	L1f	1	100	20 (S)
18	12a	L1f	2	33	20(S)
19	12a	$\left[\operatorname{Pd}\left(\right.\right.$ allyl) $($ L1f) $] \mathrm{BF}_{4}$	1	100	23 (S)
20	12a	L1g	1	0	-
21	12a	L1g	2	0	-
22	12a	L1h	1	100	49 (S)
23	12a	L1h	2	88	48 (S)
24	12a	L2a	1	100	66 (S)
25	12a	L2a	2	32	69 (S)
26	12a	L2b	1	100	75 (S)
27	12a	L2b	2	100	76 (S)

CATALYTIC RESULTS

28	12a	L2c	1	100	18 (S)
29	12a	L2c	2	76	17 (S)
30	12a	L3a	1	52	8 (S)
31	12a	L3a	2	62	$9(S)$
32	12a	L3b	1	84	50 (R)
33	12a	L3b	2	77	$50(R)$
34	12a	L4a	1	96	36 (S)
35	12a	L4a	2	97	38 (S)
36	12a	L4b	1	100	17 (R)
37	12a	L4b	2	100	$20(R)$
38	12a	L5a	1	100	27 (S)
39	12a	L5a	2	40	30 (S)
40	12a	L5b	1	100	66 (R)
41	12a	L5b	2	100	$68(R)$
42	12a	$L_{\text {A }}$	1	0	-
43	12a	$L_{\text {A }}$	2	0	-
44	12a	L_{B}	1	11	47 (S)
45	12a	L_{B}	2	0	-

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrates $12 \mathrm{a}, \mathrm{b}$ and enantiomeric excess of 16 were determined by HPLC (Daicel Chiralcel OD-H, $\left.\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=85 / 15,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(S)=9.7 \mathrm{~min}, t(R)=10.6 \mathrm{~min}\right)$. [c] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[27]}[d] \ln \mathrm{C}_{6} \mathrm{H}_{6}$.

Table S6. Pd-catalyzed allylic alkylation of 12b with 17. ${ }^{\text {[a] }}$

Entry	Compound	L/Pd	Yield [\%]	$E e^{[\%]}{ }^{[b, c]}$
1	L1a	L1a	1	47
2	$\left[P d(\right.$ allyl $(\mathrm{L1a})] \mathrm{BF}_{4}$	2	52	$53(S)$
3	L1b	1	32	$55(S)$
4	L1b	1	38	$40(S)$
5	L1c	2	45	$76(S)$
6	L1c	1	36	$77(S)$
7	L1d	2	44	$76(S)$
8	1	0	-	

CATALYTIC RESULTS

9	L1d	2	0	-
10	L1e	1	62	82 (S)
11	L1e	2	73	73 (S)
12	L1f	1	41	65 (S)
13	L1f	2	37	22 (S)
14	[Pd(allyl)(L1f) BF_{4}	1	30	47 (S)
15	L1g	1	0	-
16	L1g	2	0	-
17	L1h	1	0	-
18	L1h	2	0	-
19	L2a	1	25	50 (S)
20	L2a	2	30	$51(S)$
21	L2b	1	0	-
22	L2b	2	0	-
23	L2c	1	0	-
24	L2c	2	0	-
25	L3a	1	0	-
26	L3a	2	0	-
27	L3b	1	0	-
28	L3b	2	0	-
29	L4a	1	53	$52(S)$
30	L4a	2	55	56 (S)
31	L4b	1	0	-
32	L4b	2	0	-
33	L5a	1	48	$55(S)$
34	L5a	2	50	60 (S)
35	L5b	1	45	$71(R)$
36	L5b	2	57	$91(R)$
37	L5b	2	73	$89(R)^{[d]}$
38	$L_{\text {A }}$	1	0	-
39	$\mathrm{L}_{\text {A }}$	2	0	-
40	L_{B}	1	9	$13(S)$
41	L_{B}	2	0	-

[a] All reactions were carried out with 1 mol\% of $[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}]_{2}$ in toluene at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrate $\mathbf{1 2 b}$ and enantiomeric excess of 18 were determined by HPLC (Daicel Chiralpak $\left.\mathrm{AD}-\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{iPrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, t(S)=13.0 \mathrm{~min}, t(R)=16.8 \mathrm{~min}\right)$. [c] The absolute

CATALYTIC RESULTS

configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[167]}$ [d] At $55^{\circ} \mathrm{C}$ for 12 h .

Table S7. Pd-catalyzed allylic amination of 19 with aniline. ${ }^{[\text {a] }}$

Entry	Compound	L/Pd	Conversion [\%]	20/21/22 ${ }^{[6]}$	$E e[\%]^{[c, d]}$
1	L1a	1	100	92/8/0	58 (R)
2	L1a	2	100	89/11/0	52 (R)
3	$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1a})] \mathrm{BF}_{4}$	1	100	100/0/0	$59(R)$
4	L1b	1	95	84/16/0	76 (R)
5	L1b	2	95	78/22/0	75 (R)
6	L1c	1	100	74/26/0	37 (R)
7	L1c	2	100	90/10/0	$17(R)$
8	L1d	1	62	62/27/11	50 (R)
9	L1d	2	0	-	-
10	L1e	1	100	100/0/0	29 (R)
11	L1e	2	100	97/3/0	24 (R)
12	L1f	1	100	95/5/0	73 (R)
13	L1f	2	100	97/3/0	73 (R)
14	[Pd(allyl)(L1f) BF_{4}	1	100	26/74/0	16 (R)
15	L1g	1	0	-	-
16	L1g	2	0	-	-
17	L1h	1	100	72/18/10	19 (R)
18	L1h	2	100	85/15/0	20 (R)
19	L2a	1	0	-	-
20	L2a	2	100	82/18/0	52 (R)
21	L2b	1	100	63/37/0	0
22	L2b	2	100	21/79/0	0
23	L2c	1	100	45/55/0	11 (R)
24	L2c	2	100	63/37/0	12 (R)
25	L3a	1	100	100/0/0	92 (S)
26	L3a	2	100	100/0/0	92 (S)
27	L3b	1	100	80/20/0	71 (S)
28	L3b	2	100	86/14/0	64 (S)
29	L4a	1	100	100/0/0	$84(S)$
30	L4a	2	100	99/1/0	83 (S)

CATALYTIC RESULTS

31	L4b	1	100	$100 / 0 / 0$	$87(R)$
32	L4b	2	100	$100 / 0 / 0$	$88(R)$
33	L5a	1	100	$100 / 0 / 0$	$67(S)$
34	L5a	2	100	$100 / 0 / 0$	$67(S)$
35	L5b	1	100	$100 / 0 / 0$	$70(S)$
36	L5b	2	100	$100 / 0 / 0$	$69(S)$
37	$\mathbf{L}_{\mathbf{A}}$	1	90	$37 / 58 / 5$	$13(S)$
38	B $_{\mathbf{B}}$	1	100	$71 / 29 / 0$	$83(S)$

[a] All reactions were carried out with $1 \mathrm{~mol} \%$ of $\left[\mathrm{Pd}(\mathrm{allyl}) \mathrm{Cl}_{2}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for $24 \mathrm{~h}\left(\mathrm{~K}_{2} \mathrm{CO}_{3}\right)$. [b] The conversion of substrate 19 and the ratio of $\mathbf{2 0 / 2 1 / 2 2}$ was determined by ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. [c] The enantiomeric excess of $\mathbf{2 0}$ was determined by HPLC (Daicel Chiralcel OD-H, $\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{PrOH}=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}, t(S)=5.9 \mathrm{~min}, t(R)=7.0 \mathrm{~min})$. [d] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature. ${ }^{[14]}$

REFERENCES

1. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.
2. K. Brandenburg, DIAMOND, Release 2.1d; Crystal Impact GbR: Bonn, Germany, 2000.
3. D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, A. Wonnacott, Helv. Chim. Acta, 1987, 70, 954974.
4. C. Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc., 2014, 136, 6534-6537.
5. D. Seebach, E. Devaquet, A. Emst, M. Hayakawa, F. N. M. Kiihnle, W. B. Schweizer, B. Weher, Helv. Chim. Acta, 1995, 78, 1636-1650.
6. K. N. Gavrilov, I. V. Chuchelkin, S. V. Zheglov, I. D. Firsin, V. M. Trunina, V. K. Gavrilov, N. E. Borisova, V.
S. Zimarev, A. A. Denesh, N. S. Goulioukina, Mendeleev Commun., 2021, 31, 651-653.
7. J. J. Lucier, A. D. Harris, P. S. Korosec, Org. Synth., 1964, 44, 72-74.
8. G. A. Cran, C. L. Gibson, S. Handa, Tetrahedron: Asymmetry, 1995, 6, 1553-1556.
9. T. Shinohara, A. Takeda, J. Toda, T. Sano, Chem. Pharm. Bull., 1998, 46, 430-433.
10. P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2033-2046.
11. T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura, K. Yanagi, J. Am. Chem. Soc., 1989, 111, 63016311.
12. P. G. M. Wuts, S. W. Ashford, A. M. Anderson, J. R. Atkins, Org. Lett., 2003, 5, 1483-1485.
13. H. J. Seo, E.-J. Park, M. J. Kim, S. Y. Kang, S. H. Lee, H. J. Kim, K. N. Lee, M. E. Jung, M. W. Lee, M.-S. Kim, E.-J. Son, W.-K. Park, J. Kim, J. Lee, J. Med. Chem., 2011, 54, 6305-6318.
14. X. Wang, X. Wang, Z. Han, Z. Wang, K. Ding, Org. Chem. Front., 2017, 4, 271-276.
15. a) A. Mandoli, L. A. Arnold, A. H. M. de Vries, P. Salvadori, B. L. Feringa, Tetrahedron: Asymmetry, 2001, 12, 1929-1937; b) R. Imbos, A. J. Minnaard, B. L. Feringa, Dalton Trans., 2003, 2017-2023.
16. a) K. N. Gavrilov, I. S. Mikhel, S. V. Zheglov, V. K. Gavrilov, I. V. Chuchelkin, I. D. Firsin, K. P. Birin, I. S. Pytskii, K. A. Paseshnichenko, V. A. Tafeenko, V. V. Chernyshev, A. A. Shiryaev, Org. Chem. Front., 2019, 6, 1637-1648; b) I. V. Chuchelkin, K. N. Gavrilov, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, A. M. Perepukhov, A. V. Maximychev, N. E. Borisova, I. A. Zamilatskov, V. S. Tyurin, C. Dejoie, V. V. Chernyshev, V. S. Zimarev, N. S. Goulioukina, Organometallics, 2021, 40, 3645-3658; c) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, J. Am. Chem. Soc., 2004, 126, 3690-3691; d) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, J. Org. Chem., 2005, 70, 7172-7178; e) T. Nemoto, T. Harada, T. Matsumoto, Y. Hamada, Tetrahedron Lett., 2007, 48, 6304-6307; f) C.-X. Zhuo, Y. Zhou, S.-L. You, J. Am. Chem. Soc., 2014, 136, 6590-6593.
17. F. Tinnis, H. Lundberg, H. Adolfsson, Adv. Synth. Catal., 2012, 354, 2531-2536.
18. B. Soliman, N. Wang, G. Zagotto, S. Pockes., Arch. Pharm. Chem. Life Sci., 2019, 352, 1900107.
19. H. Ishibashi, M. Uegaki, M. Sakai, Y. Takeda, Tetrahedron, 2001, 57, 2115-2120.

REFERENCES

20. S. R. Yong, A. T. Ung, S. G. Pyne, B. W. Skelton, A. H. White, Tetrahedron, 2007, 63, 1191-1199.
21. J. Barluenga, F. J. Fananas, J. Villamana, M. Yus, J. Org. Chem., 1982, 47, 8, 1560-1564.
22. a) S. Breeden, M. Wills, J. Org. Chem., 1999, 64, 9735-9738; b) L.-Y. Mei, Z.-L. Yuan, M. Shi, Organometallics, 2011, 30, 6466-6475; (c) D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagne, J. Am. Chem. Soc., 2000, 122, 7905-7920; (d) H. Y. Cheung, W.-Y. Yu, T. T. L. Au-Yeung, Z. Zhou, A. S. C. Chan, Adv. Synth. Catal., 2009, 351, 1412-1422.
23. a) D. Smyth, H. Tye, C. Eldred, N. W. Alcock, M. Wills, J. Chem. Soc., Perkin Trans. 1, 2001, 2840-2849; b) J. Chen, F. Lang, D. Li, L. Cun, J. Zhu, J. Deng, J. Liao, Tetrahedron: Asymmetry, 2009, 20, 1953-1956.
24. a) E. B. Benetskiy, C. Bolm, Tetrahedron:Asymmetry, 2011, 22, 373-378; b) K. E. Thiesen, K. Maitra, M. M. Olmstead, S. Attar, Organometallics, 2010, 29, 6334-6342; c) M. Ramillien, N. Vanthuyne, M. Jean, D. Gherase, M. Giorgi, J.-V. Naubron, P. Piras, C. Roussel, J. Chromatogr. A, 2012, 1269, 82-93; d) Y. Naganawa, H. Abea, H. Nishiyama, Chem. Commun., 2018, 54, 2674-2677; e) J. Liu, G. Chen, J. Xing, J. Liao, Tetrahedron: Asymmetry, 2011, 22, 575-579.
25. K. N. Gavrilov, S. V. Zheglov, I. V. Chuchelkin, M. G. Maksimova, I. D. Firsin, A. N. Fitch, V. V. Chernyshev, A. V. Maximychev, A. M. Perepukhov, Tetrahedron: Asymmetry, 2017, 28, 1633-1643.
26. a) M. Majdecki, J. Jurczak, T. Bauer, ChemCatChem, 2015, 7, 799-807.
27. M. Ogasawara, H. L. Ngo, T. Sakamoto, T. Takahashi, W. Lin, Org. Lett., 2005, 7, 2881-2884.

L1a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1a, ${ }^{1} \mathrm{H}$ spectrum.

L1a, $\left.{ }^{13} \mathrm{C}^{1} \mathrm{H}\right\}$ spectrum.

L1a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L1a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L1a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1a, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum.

$$
\begin{aligned}
& \stackrel{n}{\infty} \\
& \stackrel{\omega}{m} \\
& \stackrel{m}{\mid}
\end{aligned}
$$

 L1b, ${ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1b, ${ }^{1} \mathrm{H}$ spectrum.

L1b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

NMR AND MASS SPECTRA

L1b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L1b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L1b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L1c, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1c, ${ }^{1} \mathrm{H}$ spectrum.

L1c, $\left.{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}$ spectrum.

L1c, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L1c, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC spectrum.

L1c, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum.

NMR AND MASS SPECTRA

L1d, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1d, ${ }^{1} \mathrm{H}$ spectrum.

L1d, ${ }^{13}$ C $\left.{ }^{1} \mathrm{H}\right\}$ spectrum.

[^1]

L1d, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L1d, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1d, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum.
䓂

L1e, ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1e, ${ }^{1} \mathrm{H}$ spectrum.

L1e, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1e, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

[^2]

L1e, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1e, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L1f, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1f, ${ }^{1} \mathrm{H}$ spectrum.

L1f, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

Lif, ${ }^{13}$ C $\left\{^{1} \mathrm{H}\right\}$ APT spectrum.

L1f, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L1f, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1f, ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HMBC spectrum.
$\begin{array}{lllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100\end{array}$
$\mathbf{L 1 g},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1g, ${ }^{1} \mathrm{H}$ spectrum.

$\mathbf{L 1 g},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L1g, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L1g, ${ }^{1}{ }^{-13}$ C HSQC spectrum.

L1g, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L1h, ${ }^{1} \mathrm{H}$ spectrum.

[^3]

L1h, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L1h, ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum.

L1h, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L1h, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.
 L2a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

NMR AND MASS SPECTRA

L2a, ${ }^{1} \mathrm{H}$ spectrum.

L2a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L2a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L2a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L2a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

$\begin{array}{lllllllllllllllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & \end{array}$
L2b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L2b, ${ }^{1} \mathrm{H}$ spectrum.

L2b, ${ }^{13}$ C $\left.{ }^{1} \mathrm{H}\right\}$ spectrum.

L2b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L2b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L2b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

NMR AND MASS SPECTRA

L2b, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum.

 $\mathbf{L 2 c},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

NMR AND MASS SPECTRA

L2c, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L2c, ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY spectrum.

L2c, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L2c, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L3a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

NMR AND MASS SPECTRA

L3a, ${ }^{1} \mathrm{H}$ spectrum.

L3a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L3a, ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L3a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L3a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L3a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

NMR AND MASS SPECTRA

L3b, ${ }^{1} \mathrm{H}$ spectrum.

L3b, ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L3b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L3b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L3b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L3b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L4a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L4a, ${ }^{1} \mathrm{H}$ spectrum.

L4a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

[^4]

L4a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L4a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L4a, ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HMBC spectrum.
$\begin{array}{lllllllllllllllllll}240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60\end{array}$
L4b, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L4b, ${ }^{1} \mathrm{H}$ spectrum.

[^5]

L4b, ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L4b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L4b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L4b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

L5a, ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L5a, ${ }^{1} \mathrm{H}$ spectrum.

L5a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

[^6]

L5a, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L5a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L5a, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

NMR AND MASS SPECTRA

L5b, ${ }^{1} \mathrm{H}$ spectrum.

L5b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

L5b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

L5b, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

L5b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

L5b, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC spectrum.

NMR AND MASS SPECTRA

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

$[\operatorname{Pd}($ allyl $)(L 1 a)] \mathrm{BF}_{4},{ }^{1} \mathrm{H}$ spectrum.

$[\mathrm{Pd}($ allyl) $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

$[\mathrm{Pd}($ allyl) $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

$[\operatorname{Pd}($ allyl $)(L 1 a)] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

$[\mathrm{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.

$[\mathrm{Pd}($ allyl $)(\mathrm{L} 1 \mathrm{a})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} \mathrm{HMBC}$ spectrum.

BG9 \#26-333 RT: 0.11-1.46 AV: 308 NL: 2.51E8 T: FTMS + p ESI Full ms [150.0000-2000.0000]

$[\operatorname{Pd}($ allyl $)(\mathrm{L} 1 a)] \mathrm{BF}_{4}, \mathrm{HRMS}$-spectrum (general view of the spectrum).

NMR AND MASS SPECTRA

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1a})]^{+}$, experimental (top) and calculated (bottom) peaks.

$\left[P d(\right.$ allyl $)($ L1f) $] B F F F_{4},{ }^{31}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

$[\operatorname{Pd}($ allyl $)(\operatorname{L1f})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}$ spectrum.

$[P d($ allyl $)($ L1f $\left.)] B F_{4},{ }^{13}{ }^{1}{ }^{1} \mathrm{H}\right\}$ spectrum.
 $[\operatorname{Pd}(\mathrm{allyl})(\mathrm{L1f})] \mathrm{BF}_{4},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ DEPT spectrum.

$[\operatorname{Pd}($ allyl) $)(\mathbf{L 1 f})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum.

NMR AND MASS SPECTRA

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{LIf})] \mathrm{BF}_{4},{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC spectrum.
BG7 \#25-336 RT: 0.11-1.47 AV: $312 \mathrm{NL}: 1.96 \mathrm{E} 8$
T: FTMS + p ESI Full ms [150.0000-2000.0000]
760.1853

$[\mathrm{Pd}($ allyl $)(\mathrm{L1f})] \mathrm{BF}_{4}$, HRMS-spectrum (general view of the spectrum).

NMR AND MASS SPECTRA

$[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1f})]^{+}$, experimental (top) and calculated (bottom) peaks.

Mixture of L1a and $[\mathrm{Pd}(\mathrm{allyl})(\mathrm{L1a})] \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum

[^7]
HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of 10a with dimethyl malonate (entry 33 in Table S2) and for a racemic mixture of 11a (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of 10a with di-tert-butyl malonate (entry 35 in Table S2) and for a racemic mixture of 11b (in the frame).

* starting substrate 10a

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of 10a with dibenzyl malonate (entry 37 in Table S2) and for a racemic mixture of 11c (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of 10a with pyrrolidine (entry 27 in Table S3) and for a racemic mixture of 11d (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of $\mathbf{1 2 b}$ with ethyl 2-oxocyclohexane-1-carboxylate (entry 29 in Table S4) and for a racemic mixture of 14 (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of 12a with ethyl 2-acetamido-3-oxobutanoate (entry 27 in Table S5) and for a racemic mixture of 16 (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of $\mathbf{1 2 b}$ with 2,5-dimethylpyrrole (entry $\mathbf{3 6}$ in Table S6) and for a racemic mixture of $\mathbf{1 8}$ (in the frame).

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of 19 with aniline (entry 25 in Table S7) and for a racemic mixture of 20 (in the frame).

[^0]: a) $\mathrm{NaOMe}, \mathrm{MeOH}, \mathrm{ClCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$; b) $\mathrm{NaBH}_{4}, \mathrm{I}_{2}$, THF; c) $\mathrm{HCO}_{2} \mathrm{Et}$, reflux; d) LiAlH_{4}, THF.

[^1]: L1d, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

[^2]: L1e, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum.

[^3]: L1h, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

[^4]: L4a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

[^5]: L4b, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

[^6]: L5a, ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ APT spectrum.

[^7]: Mixture of $\mathbf{L 1 f}$ and $[\operatorname{Pd}($ allyl $)(\mathbf{L 1 f})] \mathrm{BF}_{4},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum.

