Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

TADDOLs-based group of *P,S*-bidentate phosphoramidite ligands in palladium-catalyzed

asymmetric allylic substitution

Konstantin N. Gavrilov,^{*a} Ilya V. Chuchelkin,^{*a} Ilya D. Firsin,^a Valeria M. Trunina,^a Vladislav K. Gavrilov,^a Sergey V. Zheglov,^a Denis A. Fedorov,^b Victor A. Tafeenko,^c Ilya A. Zamilatskov,^d Vladislav S. Zimarev^{a,c} and Nataliya S. Goulioukina^{a,c,d}

^a Department of Chemistry, Ryazan State University named for S. Yesenin, 46 Svoboda Street, 390000 Ryazan, Russian Federation. E-mail: <u>rsu.chem@gmail.com</u>, <u>chuchelkin1989@gmail.com</u>

^b Department of General Physics, Moscow Institute of Physics and Technology, Institutskii per. 9, 141700 Dolgoprudny, Moscow Region, Russian Federation

^c Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, 119991 Moscow, Russian Federation

^{*d}* A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospekt 31/4, 119071, Moscow, Russian Federation</sup>

TABLE OF CONTENTS

General	S2
Experimental section	S4
Catalytic results	S25
References	S38
NMR and mass spectra	S40
HPLC traces for the Pd-catalyzed allylic substitution	S108

GENERAL

³¹P{¹H}, ¹³C{¹H} and ¹H NMR spectra were recorded with Bruker Avance 600 (242.9 MHz for ³¹P{¹H}, 150.9 MHz for ¹³C{¹H} and 600.1 MHz for ¹H), Bruker Avance 400 (162.0 MHz for ³¹P{¹H}, 100.6 MHz for ¹³C{¹H} and 400.1 MHz for ¹H) and Varian Inova 500 (202.3 MHz for ³¹P{¹H}, 125.7 MHz for ¹³C{¹H} and 499.8 MHz for ¹H) instruments. ¹H and ¹³C{¹H} NMR signals were attributed using APT, DEPT, ¹H, ¹H – COSY and ¹³C, ¹H – HSQC techniques. The chemical shifts are referenced to residual CHCl₃ peaks (¹H, NMR), CDCl₃ or CD₂Cl₂ peaks (¹³C{¹H}) and H₃PO₄ 85% as external standard (³¹P{¹H} NMR). Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, m = multiplet), *J*, Hz. HPLC analyses were performed on a Stayer instrument using Kromasil 5-CelluCoat, Daicel Chiralcel OD-H and Daicel Chiralpak AD-H columns. Optical rotations were measured with an Atago AP-300 polarimeter. Elemental analyses were performed on a CHN-microanalyzer Carlo Erba EA1108 CHNS-O. HRMS spectra were recorded on a AB Sciex TripleTOF 5600+ mass spectrometer with Turbo Ion Spray ionization (ESI). The sample (0.2 μL) was injected into the 0.3 mL/min methanol stream without chromatographic separation directly into the ion source. The spectra were recorded in the positive ion mode.

X-ray data was collected by using STOE diffractometer Pilatus100K detector, focusing mirror collimation Cu Kα (1.54086 Å) radiation, rotation method mode. STOE X-AREA software was used for cells refinement and data reduction. Data collection and image processing was performed with X-Area 1.67 (STOE & Cie GmbH, Darmstadt, Germany, 2013). Intensity data were scaled with LANA (part of X-Area) in order to minimize differences of intensities of symmetry-equivalent reflections (multi-scan method). The structures were solved and refined with SHELX^[1] program. The non-hydrogen atoms were refined by using the anisotropic full matrix least-square procedure. Molecular geometry calculations were performed with the SHELX program, and the molecular graphics were prepared by using DIAMOND^[2] software. The crystal data one can see in the Table S1 and can be obtained, free of charge, from the Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

All reactions were carried out under a dry argon atmosphere in flame-dried glassware and in freshly dried and distilled solvents. Thin-layer chromatography was performed on E. Merck pre-coated silica gel 60 F254 and Macherey-Nagel Alugram Alox N/UV₂₅₄ plates. Column chromatography was performed using silica gel MN Kieselgel 60 (230 – 400 mesh) and MN-Aluminum oxide, basic, Brockmann Activity 1. For the preparation of analytically pure samples, the obtained compounds were additionally dried in high vacuum (10^{-3} Torr) for 16 h.

The following compounds were synthesized according to literature procedures: ((4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (1a) and ((4R,5R)-2-phenyl-1,3-dioxolane-4,5-diyl)bis(diphenylmethanol) (1b),^[3] ((4R,5R)-2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(bis(4-(*tert*-

S2

GENERAL

butyl)phenyl)methanol (1c),^[4] ((4*R*,5*S*)-5-(hydroxymethyl)-2,2-dimethyl-1,3-dioxolan-4yl)diphenylmethanol (1d),^[5] *N*-methyl-2-(methylthio)ethan-1-amine (2a),^[6] *N*-methylbutan-1-amine (5),^[7] (*S*)-*N*-methyl-1-phenyl-2-(phenylthio)ethan-1-amine (7),^[8] (*S*)-1-phenyl-*N*-(2-(phenylthio)ethyl)ethan-1-amine (8),^[9] (*S*)-2-((phenylthio)methyl)pyrrolidine (9),^[8] [Pd(allyl)Cl]₂ and (*E*)-1,3-diphenylallyl acetate (10a),^[10] (*E*)-1,3-diphenylallyl ethyl carbonate (10b),^[11] cinnamyl methyl carbonate (12b),^[12] ethyl 2-acetamido-3-oxobutanoate (15)^[13] and 2-(diethoxyphosphoryl)-1-phenylallyl acetate (19),^[14] ligands $L_{A,B}$.^[15]

Pd-catalyzed allylic alkylation of (*E*)-1,3-diphenylallyl acetate (**10a**) and (*E*)-1,3-diphenylallyl ethyl carbonate (**10b**) with dimethyl malonate, di-*tert*-butyl malonate and dibenzyl malonate, their amination with pyrrolidine, allylic alkylation of cinnamyl acetate (**12a**) and cinnamyl methyl carbonate (**12b**) with ethyl 2-oxocyclohexane-1-carboxylate (**13**) and ethyl 2-acetamido-3-oxobutanoate (**15**), allylic alkylation of cinnamyl methyl carbonate (**12b**) with ethyl 2-oxocyclohexane-1-carboxylate (**13**) and ethyl 2-acetamido-3-oxobutanoate (**15**), allylic alkylation of cinnamyl methyl carbonate (**12b**) with 2,5-dimethylpyrrole (**17**), allylic amination of 2-(diethoxyphosphoryl)-1-phenylallyl acetate (**19**) with aniline were performed according to the appropriate procedures.^[14,16]

Thiophenol, 2-chloroacetamide, 2-mercapto-*N*-phenylacetamide (**S3**), 3-(methylthio)propan-1amine (**S5**), 2-(*tert*-butylthio)-*N*-methylethan-1-amine (**2b**), 2-(methylthio)ethan-1-amine (**3a**), 2-(methylthio)ethan-1-ol (**6**), dimethyl malonate, di-*tert*-butyl malonate, dibenzyl malonate, BSA (*N*,*O*bis(trimethylsilyl)acetamide), cinnamyl acetate (**12a**), ethyl 2-oxocyclohexane-1-carboxylate (**13**) and 2,5-dimethylpyrrole (**17**) were purchased from Aldrich and Acros Organics.

Procedure for the Preparation of Thioether-amine 2c: 2-(Phenylthio)acetamide (**S1**). To a stirred solution of thiophenol (2.19 mL, 21.4 mmol) in methanol (25 mL) was added sodium methylate (1.16 g, 21.4 mmol) and 2-chloroacetamide (2 g, 21.4 mmol). Within 5 min, a precipitate of NaCl falls out. The reaction mixture was brought to a boil, cooled to 20 °C and H₂O (30 mL) was added. The resulting mixture was evaporated to half and extracted with CHCl₃ (3 x 30 mL). The combined organic phase was washed with 2 M NaOH, water and brine, dried over MgSO₄, filtered, and concentrated under vacuum (40 Torr). The product **S1** was obtained as white crystals, yield 3.19 g (89 %). The NMR spectra corresponds to the one described in the literature.^[17]

2-(Phenylthio)ethan-1-amine (**S2**). NaBH₄ (3.59 g, 95 mmol) was added to a vigorously stirred solution of **S1** (3.18 g, 19 mmol) in THF (60 mL) at 0 °C. Then, a solution of I₂ (11.17 g, 44 mmol) in THF (30 mL) was added within 30 min at 0 °C. The reaction mixture was stirred for 2 h at 20 °C and boiled for 24 h. Then the mixture was quenched with methanol (60 mL) at 0 °C and concentrated under vacuum (40 Torr). The resulting residue was refluxed with 5 M KOH (60 mL) for 6 h. The mixture was cooled to 20 °C and the product was extracted with CH₂Cl₂ (4 x 50 mL). The combined extract was washed with brine, dried over Na₂SO₄, filtered and concentrated under vacuum (40 Torr). The product was distilled in the vacuum. Colorless oil, yield 1.95 g, (67 %). Bp 64–65 °C (0.2 torr). The NMR spectra corresponds to the one described in the literature.^[18]

A solution of **S2** (1.95 g, 12.7 mmol) in ethyl formate (12 mL) was refluxed for 6 h and concentrated under reduced pressure (40 Torr). The *N*-formyl derivative of **S2** was obtained as beige powder, yield 2.28 g (99%).

N-Methyl-2-(phenylthio)ethan-1-amine (**2c**). To a vigorously stirred cold suspension of LiAlH₄ (0.38 g, 9.9 mmol) in THF (20 mL) the crude *N*-(2-(phenylthio)ethyl)formamide (1.2 g, 6.6 mmol) was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 6 h and quenched with 0.7 mL H₂O and 0.13 g KOH at 0 °C. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with THF (25 mL) and CH₂Cl₂ (2 × 15 mL), the combined filtrates were concentrated under reduced pressure (40 Torr). The product was distilled in the vacuum. Colorless oil, yield 0.92 g, (83 %). Bp 68–70 °C (0.2 Torr). The NMR spectra corresponds to the one described in the literature.^[19]

a) NaOMe, MeOH, ClCH₂C(O)NH₂; b) NaBH₄, I₂, THF; c) HCO₂Et, reflux; d) LiAlH₄, THF.

Procedure for the Preparation of Thioether-amine 3b: 2-(Methylthio)-*N*-phenylacetamide (S4). To a stirred solution of 2-mercapto-*N*-phenylacetamide (S3) (4.0 g, 24 mmol) in methanol (60 mL) was added NaOH (1.0 g, 25 mmol). The reaction mixture was stirred for 10 min and methyl iodide (1.57 mL, 25 mmol) was added at 0 °C. The resulting mixture was stirred overnight at 20 °C, concentrated under vacuum (40 Torr) and the obtained residue was dissolved in H₂O (50 mL). The product was extracted with ethyl acetate (3 x 40 mL), the combined organic phase was dried over Na₂SO₄, filtered and concentrated under vacuum (40 Torr). The compound S4 was obtained as beige powder, yield 4.0 g (92%). The NMR spectra corresponds to the one described in the literature.^[20]

N-(2-(methylthio)ethyl)aniline (**3b**). To a vigorously stirred cold suspension of LiAlH₄ (1.26 g, 33 mmol) in THF (60 mL) the compound **S4** (4.0 g, 22 mmol) was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 8 h and quenched with 2.38 mL H₂O and 0.43 g KOH at 0 °C. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with THF (40 mL) and CH₂Cl₂ (2 × 25 mL), the combined filtrates were concentrated under reduced pressure (40 Torr). The obtained residue was purified by column chromatography on SiO₂ (petroleum ether/ethyl acetate 10/1). The product was obtained as yellowish viscous oil, yield 2.8 g (76 %). The NMR spectra corresponds to the one described in the literature.^[21]

a) NaOH, CH₃I, MeOH; b) LiAlH₄, THF.

Procedure for the Preparation of Thioether-amine 4: A solution of 3-(methylthio)propan-1-amine **(S5)** (4.49 mL, 40 mmol) in ethyl formate (30 mL) was refluxed for 6 h and concentrated under reduced pressure (40 Torr). The residue was purified by bulb-to-bulb vacuum distillation (b. p. 156-157 °C, bath, 3 Torr) to give *N*-formyl derivative of **S5** as clear oil.

To a vigorously stirred cold suspension of LiAlH₄ (1.71 g, 45 mmol) in THF (50 mL) the crude *N*-(3-(methylthio)propyl)formamide (4.0 g, 30 mmol) was added portionwise. The resulting mixture was allowed to warm up to room temperature, refluxed for 6 h and quenched with 3.3 mL H₂O and 0.59 g KOH at 0 °C. The reaction mixture was then shortly heated up to boiling point, cooled down to room temperature and filtered. The filter cake was washed with THF (50 mL) and CH₂Cl₂ (2 × 30 mL), the combined filtrates were concentrated under reduced pressure (40 Torr) and the residue was purified by bulb-to-bulb vacuum distillation.

a) HCO₂Et, reflux; b) LiAlH₄, THF.

N-Methyl-3-(methylthio)propan-1-amine (**4**): Colorless oil, yield 3.08 g (86 %). Bp 162–163 °C (bath, 6 Torr). ¹H NMR (400.1 MHz, CDCl₃, 25 °C): δ 0.97 (br.s, 1H; NH), 1.77 (m, 2H; CH₂), 2.09 (s, 3H; CH₃), 2.42 (s, 3H; CH₃), 2.54 (t, ³*J*(H,H) = 7.3 Hz, 2H; CH₂), 2.66 (t, ³*J*(H,H) = 7.0 Hz, 2H; CH₂). C₅H₁₃NS (119.08): calcd. C, 50.37; H, 10.99; N, 11.75; found C, 50.51; H, 11.04; N, 11.70.

General Procedure for the Preparation of Ligands: A solution of the appropriate (*R*,*R*)- or (*S*,*S*)-diol **1a-d** (4.0 mmol) in THF (30 mL) was added dropwise at - 10 °C over 10 min to a vigorously stirred solution of PCl₃ (0.37 mL, 4.2 mmol) and Et₃N (1.17 mL, 8.4 mmol) in THF (12 mL). The reaction mixture was brought to 20°C and allowed to stir for 2 h. Solid Et₃N·HCl was filtered off, and the filtrate was concentrated in vacuum (40 Torr). The residue was triturated in pentane and dried in vacuum (10^{-3} Torr) for 8 h.

The relevant compound **2-9** (2 mmol) was added at 20 °C in one portion to a vigorously stirred solution of the appropriate phosphorylating reagent (2 mmol) and Et_3N (0.56 mL, 4 mmol) in toluene (15 mL). The reaction mixture was stirred during 24 h at 20°C and filtered through a short column with SiO_2/Al_2O_3 , the column was washed with toluene (2 x 20 mL), and the solvent was evaporated under reduced pressure (40 Torr). Products were additionally purified by flash chromatography on SiO_2 (toluene). The obtained ligands were dried in vacuum (10⁻³ Torr) for 8 h.

(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (L1a): Yellowish powder, yield 0.66 g (55 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.29 (s, 3H; CH₃), 1.25 (s, 3H; CH₃), 2.04 (s, 3H; CH₃), 2.55-2.62 (ddd, ²*J*_{H,H} = 13.3 Hz, ³*J*_{H,H} = 8.8 Hz, ³*J*_{H,H} = 6.5 Hz, 1H; CH₂S), 2.63-2.69 (ddd, ²*J*_{H,H} = 13.3 Hz, ³*J*_{H,H} = 8.4 Hz, ³*J*_{H,H} = 6.7 Hz, 1H; CH₂S), 2.78 (d, ³*J*_{H,P} = 8.4 Hz, 3H; NCH₃), 3.22-3.29 (m, 2H; NCH₂), 4.82 (d, ³*J*_{H,H} = 8.5 Hz, 1H; OCH), 5.16 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,P} = 3.2 Hz, 1H; OCH), 7.15-7.35 (m, 12H; CH(Ph)), 7.40 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)), 7.46 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)), 7.59 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)), 7.73 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 15.64 (s; SCH₃), 25.62 (s; CCH₃), 27.65 (s; CCH₃), 32.24 (d, ²*J*_{C,P} = 14.1 Hz; NCH₃), 33.29 (d, ³*J*_{C,P} = 4.3 Hz; CH₂S), 48.87 (d, ²*J*_{C,P} = 27.3 Hz; NCH₂), 81.65 (d, ²*J*_{C,P} = 8.0 Hz; CPh₂), 82.38 (d, ³*J*_{C,P} = 20.1 Hz; OCH), 82.49 (d, ³*J*_{C,P} = 3.1 Hz; OCH), 82.50 (s; CPh₂), 111.93 (s; <u>C</u>(CH₃)₂), 127.22 (s; CH(Ph)), 127.24 (s; CH(Ph)), 127.31 (s; CH(Ph)), 127.40 (s; CH(Ph)), 127.41 (s; CH(Ph)), 127.54 (s; CH(Ph)), 127.60 (s; CH(Ph)), 127.84 (s; CH(Ph)), 128.19 (s; CH(Ph)), 146.73 (d, ³*J*_{C,P} = 1.9 Hz; C(Ph)), 146.73 (d, ³*J*_{C,P} = 1.9 Hz;

C(Ph)), 147.07 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 139.91 (s). C₃₅H₃₈NO₄PS (599.23): calcd. C, 70.10; H, 6.39; N, 2.34; found C, 70.35; H, 6.46; N, 2.26.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L1a.

(3aR,8aR)-6-[2-(tert-butylthio)-N-methylethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (L1b): White powder, yield 1.26 g (98 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.29 (s, 3H; CH₃), 1.27 (s, 3H; CH₃), 1.29 (s, 9H, C(CH₃)₃), 2.59-2.75 (m, 2H; CH₂S), 2.80 (d, ³*J*_{H,P} = 8.3 Hz, 3H; NCH₃), 3.23 (dt, ³*J*_{H,P} = 19.3 Hz, ³*J*_{H,H} = 7.8 Hz, 2H; NCH₂), 4.81 (d, ³*J*_{H,H} = 8.5 Hz, 1H; CH), 5.16 (dd, ³*J*_{H,H} = 8.4 Hz, ⁴*J*_{H,P} = 3.0 Hz, 1H; CH), 7.11-7.33 (m, 12H; CH(Ph)), 7.40 (d, ³*J*_{H,H} = 7.4 Hz, 2H; CH(Ph)), 7.46 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)), 7.59 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)), 7.74 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 25.45 (s; CCH₃), 27.52 (s; CCH₃), 27.92 (d, ³*J*_{C,P} = 4.5 Hz; CH₂S), 31.20 (s; C(<u>C</u>H₃)₃), 32.22 (d, ²*J*_{C,P} = 14.2 Hz; NCH₃), 42.02 (s; <u>C</u>(CH₃)₃), 49.82 (d, ²*J*_{C,P} = 27.4 Hz; NCH₂), 81.50 (d, ²*J*_{C,P} = 8.0 Hz; CPh₂), 82.22 (s; CPh₂), 82.26 (d, ³*J*_{C,P} = 19.9 Hz; OCH), 82.43 (d, ³*J*_{C,P} = 3.6 Hz; OCH), 111.73 (s; <u>C</u>(CH₃)₂), 127.20 (s; CH(Ph)), 127.26 (s; CH(Ph)), 127.33 (s; CH(Ph)), 127.40 (s; CH(Ph)), 127.42 (s; CH(Ph)), 127.57 (s; CH(Ph)), 127.59 (s; CH(Ph)), 127.85 (s; C(H)), 128.23 (s; CH(Ph)), 129.05 (s; CH(Ph)), 129.09 (s; CH(Ph)), 129.24 (s; CH(Ph)), 141.99 (s; C(Ph)), 142.43 (s; C(Ph)), 146.74 (s; C(Ph)), 147.12 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 139.85 (s) ppm. C₃₈H₄₄NO₄PS (641.27): calcd. C, 71.11; H, 6.91; N, 2.18; found C, 71.34; H, 7.01; N, 2.24.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L1b**.

(3aR,8aR)-6-[*N*-methyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L1c**): White powder, yield 1.03 g (78 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.29 (s, 3H; CH₃), 1.25 (s, 3H; CH₃), 2.79 (d, ³J_{H,P} = 8.4 Hz, 3H; NCH₃), 2.98-3.12 (m, 2H; CH₂S),

3.24-3.36 (m, 2H; NCH₂), 4.81 (d, ${}^{3}J_{H,H}$ = 8.5 Hz, 1H; CH), 5.15 (dd, ${}^{3}J_{H,H}$ = 8.5 Hz, ${}^{4}J_{H,P}$ = 3.2 Hz, 1H; CH), 7.15-7.35 (m, 17H; CH(Ph)), 7.36 (d, ${}^{3}J_{H,H}$ = 7.7 Hz, 2H; CH(Ph)), 7.45 (d, ${}^{3}J_{H,H}$ = 7.7 Hz, 2H; CH(Ph)), 7.58 (d, ${}^{3}J_{H,H}$ = 7.6 Hz, 2H; CH(Ph)), 7.72 (d, ${}^{3}J_{H,H}$ = 7.6 Hz, 2H; CH(Ph)). ${}^{13}C{}^{1}H$ } NMR (125.7 Hz, CDCl₃): δ 25.64 (s; CCH₃), 27.66 (s; CCH₃), 32.48 (d, ${}^{2}J_{C,P}$ = 14.7 Hz; NCH₃), 32.94 (d, ${}^{3}J_{C,P}$ = 4.4 Hz; CH₂S), 48.99 (d, ${}^{2}J_{C,P}$ = 27.0 Hz; NCH₂), 81.71 (d, ${}^{2}J_{C,P}$ = 8.0 Hz; CPh₂), 82.33 (d, ${}^{3}J_{C,P}$ = 20.0 Hz; OCH), 82.49 (d, ${}^{3}J_{C,P}$ = 3.6 Hz; OCH), 82.53 (s; CPh₂), 111.96 (s; <u>C</u>(CH₃)₂), 126.16 (s; CH(Ph)), 127.23 (s; CH(Ph)), 127.27 (s; CH(Ph)), 127.31 (s; CH(Ph)), 127.42 (s; CH(Ph)), 127.43 (s; CH(Ph)), 127.58 (s; CH(Ph)), 127.64 (s; CH(Ph)), 127.88 (s; CH(Ph)), 128.25 (s; CH(Ph)), 129.05 (s; CH(Ph)), 129.08 (s; CH(Ph)), 129.20 (s; CH(Ph)), 129.54 (s; CH(Ph)), 136.36 (s; C(Ph)), 141.91 (s; C(Ph)), 142.36 (d; ${}^{3}J_{C,P}$ = 1.9 Hz, C(Ph)), 146.72 (d; ${}^{3}J_{C,P}$ = 1.9 Hz, C(Ph)), 147.04 (s; C(Ph)). ${}^{31}P{}^{1}H$ NMR (202.4 Hz, CDCl₃): δ 140.03 (s). C₄₀H₄₀NO₄PS (661.24): calcd. C, 72.60; H, 6.09; N, 2.12; found C, 72.92; H, 6.00; N, 2.01.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L1c**.

(3aR,8aR)-6-[2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-

[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (L1d): White powder, yield 0.39 g (33 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.30 (s, 3H; CH₃), 1.24 (s, 3H; CH₃), 2.08 (s, 3H; CH₃), 2.64-2.70 (m, 2H; CH₂S), 3.15 (dt, ²J_{H,P} = 32.7 Hz, ²J_{H,H} = 6.7 Hz, 1H; NH), 3.28-3.48 (m, 2H; NCH₂), 4.85 (d, ³J_{H,H} = 8.5 Hz, 1H; OCH), 5.16 (dd, ³J_{H,H} = 8.4 Hz, ⁴J_{H,P} = 3.3 Hz, 1H; OCH), 7.16-7.36 (m, 12H; CH(Ph)), 7.40 (d, ³J_{H,H} = 7.7 Hz, 2H; CH(Ph)), 7.47 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.60 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.72 (d, ³J_{H,H} = 7.7 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 15.20 (s; SCH₃), 25.68 (s; CCH₃), 27.63 (s; CCH₃), 37.11 (d, ³J_{C,P} = 3.0 Hz; CH₂S), 38.06 (d, ²J_{C,P} = 4.4 Hz; NCH₂), 81.89 (d, ²J_{C,P} = 7.8 Hz; CPh₂), 82.29 (d, ³J_{C,P} = 3.5 Hz; OCH), 82.31 (d, ³J_{C,P} = 19.5 Hz; OCH), 82.77 (s; CPh₂), 112.05 (s; <u>C</u>(CH₃)₂), 127.26 (s; CH(Ph)), 127.31 (s; CH(Ph)), 127.36 (s; CH(Ph)), 127.42 (s; CH(Ph)), 127.51 (s; CH(Ph)), 127.55 (s; CH(Ph)), 127.67 (s; CH(Ph)), 127.90 (s; CH(Ph)), 128.27 (s; CH(Ph)), 129.08 (s; CH(Ph)), 129.12 (s; CH(Ph)), 129.18 (s; CH(Ph)), 146.90 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 136.06 (s). C₃₄H₃₆NO₄PS (585.21): calcd. C, 69.72; H, 6.20; N, 2.39; found C, 70.02; H, 6.29; N, 2.30.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L1d**.

(3aR,8aR)-6-[N-(2-(methylthio)ethyl)anilino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-

[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L1e**): White powder, yield 0.53 g (40 %). ¹H NMR (400.1 MHz, CDCl₃): δ 0.15 (s, 3H; CH₃), 1.21 (s, 3H; CH₃), 1.97 (s, 3H; CH₃), 2.51-2.69 (m; CH₂S), 3.73-3.96 (m, 2H; NCH₂), 4.70 (d, ³*J*_{H,H} = 8.5 Hz, 1H; OCH), 5.10 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,P} = 3.2 Hz, 1H; OCH), 6.94 (t, ³*J*_{H,H} = 7.2 Hz, 1H; CH(Ph)), 7.02 (t, ³*J*_{H,H} = 7.9 Hz, 2H; CH(Ph)), 7.07-7.22 (m, 16H; CH(Ph)), 7.26-7.31 (m, 2H; CH(Ph)), 7.50 (d, ³*J*_{H,H} = 7.2 Hz, 2H; CH(Ph)), 7.64 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (100.6 Hz, CDCl₃): δ 15.41 (s; SCH₃), 25.17 (s; CCH₃), 27.57 (s; CCH₃), 32.99 (s; CH₂S), 45.54 (d, ²*J*_{C,P} = 5.7 Hz; NCH₂), 82.11 (d, ²*J*_{C,P} = 8.6 Hz; CPh₂), 82.44 (d, ³*J*_{C,P} = 17.3 Hz; OCH), 82.54 (s; OCH), 82.73 (s; CPh₂), 111.77 (s; C(CH₃)₂), 123.27 (s; CH(Ph)), 123.40 (s; CH(Ph)), 127.14 (s; CH(Ph)), 127.21 (s; CH(Ph)), 127.46 (s; CH(Ph)), 127.60 (s; CH(Ph)), 127.73 (s; C(Ph)), 141.24 (s; C(Ph)), 141.78 (s; C(Ph)), 143.98 (d; ²*J*_{C,P} = 21.6 Hz; NC(Ph)), 146.01 (s; C(Ph)), 146.64 (s; C(Ph)). ³¹P{¹H} NMR (162.0 Hz, CDCl₃): δ 137.04 (s). C₄₀H₄₀NO₄PS (661.24): calcd. C, 72.60; H, 6.09; N, 2.12; found C, 72.74; H, 6.15; N, 2.18.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L1e**.

(3aR,8aR)-6-[*N*-methyl-3-(methylthio)propan-1-amino]-2,2-dimethyl-4,4,8,8tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L1f**): White powder, yield 1.2 g (98 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.30 (s, 3H; CH₃), 1.25 (s, 3H; CH₃), 2.03 (s, 3H; CH₃), 1.75-1.86 (m, 2H; CH₂), 2.39-2.49 (m, 2H; CH₂S), 2.76 (d, ³J_{H,P} = 7.8 Hz, 3H; NCH₃), 3.07-3.19 (m, 2H; NCH₂), 4.81 (d, ³J_{H,H} = 8.5 Hz, 1H; OCH), 5.17 (dd, ³J_{H,H} = 8.4 Hz, ⁴J_{H,P} = 3.1 Hz, 1H; OCH), 7.16-7.31 (m, 12H; CH(Ph)), 7.40 (d, ³J_{H,H} = 7.7 Hz, 2H; CH(Ph)), 7.45 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.58 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.73 (d,

³*J*_{H,H} = 7.8 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 15.75 (s; SCH₃), 25.60 (s; CCH₃), 27.69 (s; CCH₃), 28.31 (d, ³*J*_{C,P} = 5.1 Hz; CH₂), 31.72 (s; CH₂S), 31.81 (d, ²*J*_{C,P} = 14.2 Hz; NCH₃), 48.30 (d, ²*J*_{C,P} = 30.5 Hz; NCH₂), 81.53 (d, ²*J*_{C,P} = 8.1 Hz; CPh₂), 82.20 (s; CPh₂), 82.34 (d, ³*J*_{C,P} = 20.2 Hz; OCH), 82.57 (d, ³*J*_{C,P} = 3.6 Hz; OCH), 111.85 (s; <u>C</u>(CH₃)₂), 127.18 (s; CH(Ph)), 127.20 (s; CH(Ph)), 127.23 (s; CH(Ph)), 127.33 (s; CH(Ph)), 127.41 (s; CH(Ph)), 127.59 (s; CH(Ph)), 127.60 (s; CH(Ph)), 127.83 (s; CH(Ph)), 129.04 (s; CH(Ph)), 129.06 (s; CH(Ph)), 129.25 (s; CH(Ph)), 142.04 (d, ³*J*_{C,P} = 1.9 Hz; C(Ph)), 142.48 (d, ³*J*_{C,P} = 1.9 Hz; C(Ph)), 146.82 (d, ³*J*_{C,P} = 1.9 Hz; C(Ph)), 147.14 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 140.21(s). C₃₆H₄₀NO₄PS (613.24): calcd. C, 70.45; H, 6.57; N, 2.28; found C, 70.62; H, 6.61; N, 2.33.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L1f.

(3aR,8aR)-6-[N-methylbutan-1-amino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-

[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L1g**): White powder, yield 1.14 g (98 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.27 (s, 3H; CH₃), 0.87 (t, ³J_{H,H} = 7.4 Hz, 3H; CH₃), 1.24-1.31 (m, 2H; CH₂), 1.42-1.56 (m, 2H; CH₂), 2.77 (d, ³J_{H,P} = 7.5 Hz, 3H; NCH₃), 2.95-3.09 (m, 2H; NCH₂), 4.78 (d, ³J_{H,H} = 8.5 Hz, 1H; OCH), 5.17 (dd, ³J_{H,H} = 8.5 Hz, ⁴J_{H,P} = 3.2 Hz, 1H; OCH), 7.14-7.32 (m, 12H; CH(Ph)), 7.41 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.47 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.59 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.75 (d, ³J_{H,H} = 7.8 Hz, 2H; CH(Ph)). ¹³C[¹H} NMR (125.7 Hz, CDCl₃): δ 14.05 (s; CH₃), 20.11 (s; CH₂), 25.61 (s; CCH₃), 27.72 (s; CCH₃), 30.98 (d, ³J_{C,P} = 5.0 Hz; CH₂), 31.52 (d, ²J_{C,P} = 9.3 Hz; NCH₃), 49.12 (d, ²J_{C,P} = 31.6 Hz; NCH₂), 81.43 (d, ²J_{C,P} = 8.0 Hz; CPh₂), 82.06 (s; CPh₂), 82.44 (d, ³J_{C,P} = 20.0 Hz; OCH), 82.70 (d, ³J_{C,P} = 3.5 Hz; OCH), 111.78 (s; <u>C</u>(CH₃)₂), 127.12 (s; CH(Ph)), 127.15 (s; CH(Ph)), 127.22 (s; CH(Ph)), 127.35 (s; CH(Ph)), 127.47 (s; CH(Ph)), 127.53 (s; CH(Ph)), 127.56 (s; CH(Ph)), 127.79 (s; CH(Ph)), 128.16 (s; CH(Ph)), 129.06 (s; CH(Ph)), 129.08 (s; CH(Ph)), 129.28 (s; CH(Ph)), 142.22 (s; C(Ph)), 142.63 (d, ³J_{C,P} = 1.9 Hz; C(Ph)), 146.96 (d, ³J_{C,P} = 1.9 Hz; C(Ph)), 147.27 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 139.80 (s). C₃₆H₄₀NO₄P (581.27): calcd. C, 74.33; H, 6.93; N, 2.41; found C, 74.55; H, 7.00; N, 2.34.

(3a*R*,8a*R*)-6-[2-(methylthio)ethoxy]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5*e*][1,3,2]dioxaphosphepin (L1h): White powder, yield 1.15 g (98 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.63 (s, 3H; CH₃), 0.82 (s, 3H; CH₃), 2.00 (s, 3H; CH₃), 2.36-2.46 (m, 2H; CH₂S), 3.36-3.90 (m, 2H; NCH₂), 5.03 (dd, ³*J*_{H,H} = 8.3 Hz, ⁴*J*_{H,P} = 1.4 Hz, 1H; OCH), 5.27 (d, ³*J*_{H,H} = 8.3 Hz; OCH), 7.13-7.36 (m, 12H; CH(Ph)), 7.39-7.58 (m, 8H; CH(Ph)). ¹³C[¹H} NMR (125.7 Hz, CDCl₃): δ 15.89 (s; SCH₃), 26.52 (s; CCH₃), 26.90 (s; CCH₃), 34.51 (d, ³*J*_{C,P} = 4.1 Hz; CH₂S), 62.11 (d, ²*J*_{C,P} = 5.1 Hz; NCH₂), 81.00 (d, ³*J*_{C,P} = 4.4 Hz; OCH), 82.39 (d, ³*J*_{C,P} = 14.8 Hz; OCH), 83.32 (s; CPh₂), 85.52 (d, ²*J*_{C,P} = 9.9 Hz; CPh₂), 112.91 (s; <u>C</u>(CH₃)₂), 127.24 (s; CH(Ph)), 127.35 (s; CH(Ph)), 127.38 (s; CH(Ph)), 127.48 (s; CH(Ph)), 127.52 (s; CH(Ph)), 127.82 (s; CH(Ph)), 128.09 (s; CH(Ph)), 128.28 (s; CH(Ph)), 128.88 (s; CH(Ph)), 129.26 (s; C(Ph)), 129.28 (s; CH(Ph)), 130.39 (s; CH(Ph)), 141.72 (d, ³*J*_{C,P} = 2.9 Hz; C(Ph)), 141.76 (s; C(Ph)), 146.28 (s; C(Ph)), 146.53 (s; C(Ph)). ³¹P[¹H} NMR (202.4 Hz, CDCl₃): δ 131.10 (s). C₃₄H₃₅O₅PS (586.19): calcd. C, 69.61; H, 6.01; found C, 69.86; H, 6.08.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L1h.

(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,4,4,8,8-pentaphenyltetrahydro-[1,3]dioxolo[4,5-*e* $][1,3,2]dioxaphosphepin (L2a): White powder, yield 1.26 g (97 %). ¹H NMR (600.1 MHz, CDCl₃): <math>\delta$ 2.00 (s, 3H; CH₃), 2.49-2.65 (m, 2H; CH₂S), 2.56 (d, ³J_{H,P} = 8.3, 3H; NCH₃), 3.07-3.22 (m, 2H; NCH₂), 5.18-5.24 (m, 2H; OCH) (major form), 2.08 (s, 3H; CH₃), 2.61-2.76 (m, 2H; CH₂S), 2.95 (d, ³J_{H,P} = 7.9, 3H; NCH₃), 3.31-3.39 (m, 2H; NCH₂), 4.80 (d, ³J_{H,H} = 7.5, 1H; OCH), 5.37-5.42 (m, 1H; OCH) (minor form), 6.75 (d, ³J_{H,H} = 7.4 Hz; CH(Ph)), 7.16 (t, ³J_{H,H} = 7.5 Hz; CH(Ph)), 7.39-7.19 (m; CH(Ph)), 7.42 (d, ³J_{H,H} = 3.4 Hz; CH(Ph)), 7.46 (d, ³J_{H,H} = 7.6 Hz; CH(Ph)), 7.56 (d, ³J_{H,H} = 7.6 Hz; CH(Ph)), 7.60 (d, ³J_{H,H} = 8.6 Hz;

CH(Ph)), 7.64 (t, ${}^{3}J_{H,H}$ = 8.3 Hz; CH(Ph)), 7.84 (d, ${}^{3}J_{H,H}$ = 7.2 Hz; CH(Ph)). ${}^{13}C{}^{1}H$ NMR (150.9 Hz, CDCl₃): δ 15.51 (s; SCH₃), 32.23 (d, ${}^{2}J_{C,P}$ = 14.0 Hz; NCH₂), 32.95 (d, ${}^{3}J_{C,P}$ = 4.1 Hz; CH₂S), 48.62 (d, ${}^{2}J_{C,P}$ = 28.1 Hz; NCH₂), 80.42 (d, ³J_{C,P} = 3.6 Hz; OCH), 80.89 (d, ²J_{C,P} = 7.5 Hz; CPh₂), 82.32 (d, ³J_{C,P} = 18.3 Hz; OCH), 85.86 (d, ${}^{3}J_{C,P}$ = 10.8 Hz; CPh₂), 106.89 (s; <u>C</u>HPh) (major form), 15.73 (s; SCH₃), 32.22 (d, ${}^{2}J_{C,P}$ = 11.3 Hz; NCH₂), 33.23 (d, ${}^{3}J_{C,P}$ = 4.6 Hz; CH₂S), 49.06 (d, ${}^{2}J_{C,P}$ = 29.1 Hz; NCH₂), 80.84 (d, ${}^{2}J_{C,P}$ = 8.0 Hz; CPh₂), 81.27 (s; CPh₂), 81.55 (d, ${}^{3}J_{CP}$ = 23.6 Hz; OCH), 84.67 (d, ${}^{3}J_{CP}$ = 3.7 Hz; OCH), 104.51 (s; CHPh) (minor form), 125.45 (s; CH(Ph)), 126.97 (s; CH(Ph)), 127.12 (s; CH(Ph)), 127.17 (s; CH(Ph)), 127.32 (s; CH(Ph)), 127.34 (s; CH(Ph)), 127.36 (s; CH(Ph)), 127.44 (s; CH(Ph)), 127.47 (s; CH(Ph)), 127.51 (s; CH(Ph)), 127.54 (s; CH(Ph)), 127.68 (s; CH(Ph)), 127.74 (s; CH(Ph)), 127.84 (s; CH(Ph)), 127.94 (s; CH(Ph)), 128.11 (s; CH(Ph)), 128.14 (s; CH(Ph)), 128.18 (s; CH(Ph)), 128.25 (s; CH(Ph)), 128.29 (s; CH(Ph)), 128.32 (s; CH(Ph)), 128.34 (s; CH(Ph)), 128.38 (s; CH(Ph)), 128.46 (s; CH(Ph)), 128.57 (s; CH(Ph)), 128.83 (s; CH(Ph)), 128.87 (s; CH(Ph)), 129.18 (s; CH(Ph)), 129.66 (s; CH(Ph)), 129.72 (s; CH(Ph)), 135.92 (s; C(Ph)), 136.48 (s; C(Ph)), 138.02 (s; C(Ph)), 140.78 (s; C(Ph)), 140.84 (s; C(Ph)), 141.86 (s; C(Ph)), 141.91 (d, ³J_{C.P} = 2.7 Hz; C(Ph)), 145.62 (d, ${}^{3}J_{C,P}$ = 1.3 Hz; C(Ph)), 145.80 (s; C(Ph)), 146.52 (s; C(Ph)), 146.57 (s; C(Ph)). ${}^{31}P{}^{1}H{}$ NMR (242.9 Hz, CDCl₃): δ 140.92 (s) (major form), 145.05 (s) (minor form). C₃₉H₃₈NO₄PS (647.23): calcd. C, 72.31; H, 5.91; N, 2.16; found C, 72.44; H, 5.85; N, 2.10.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L2a.

(3aR,8aR)-6-[N-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-tetra(4-(*tert*-

butyl)phenyl)tetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L2b): White powder, yield 1.47 g

(89 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.20 (s, 3H; CH₃), 1.25 (s, 9H; C(CH₃)), 1,28 (s, 9H; C(CH₃)), 1,29 (s, 18H; C(CH₃)), 1.33 (s, 3H; CH₃), 2.06 (s, 3H; CH₃), 2.57-2.71 (m, 2H; CH₂S), 2.82 (d, ³J_{H,P} = 8.5 Hz, 3H; NCH₃), 3.21-3.34 (m, 2H; NCH₂), 4.76 (d, ³J_{H,H} = 8.5 Hz; OCH), 5.13 (dd, ³J_{H,H} = 8.4 Hz, ⁴J_{H,P} = 3.1 Hz, 1H; OCH), 7.22-7.39 (m, 8H; CH(Ph)), 7.52 (d, ³J_{H,H} = 8.3 Hz, 2H; CH(Ph)), 7.67 (d, ³J_{H,H} = 8.4 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 15.69 (s; SCH₃), 25.30 (s; CCH₃), 27.73 (s; CCH₃), 31.46 (s, C(<u>C</u>H₃)₃), 31.50 (s, C(<u>C</u>H₃)₃), 31.55 (s, C(<u>C</u>H₃)₃), 32.38 (d, ²J_{C,P} = 14.6 Hz; NCH₃), 33.29 (d, ³J_{C,P} = 4.3 Hz; CH₂S), 34.52 (s, <u>C</u>(CH₃)₃), 34.57 (s, <u>C</u>(CH₃)₃), 34.61 (s, <u>C</u>(CH₃)₃), 49.00 (d, ²J_{C,P} = 26.4 Hz; NCH₂), 81.56 (d, ²J_{C,P} = 7.7 Hz; CPh₂), 81.87 (s; CPh₂), 82.59 (d, ³J_{C,P} = 20.1 Hz; OCH), 82.96 (d, ³J_{C,P} = 3.0 Hz; OCH), 111.62 (s; <u>C</u>(CH₃)₂), 124.06 (s; CH(Ph)), 124.26 (s; CH(Ph)), 124.49 (s; CH(Ph)), 124.66 (s; CH(Ph)), 125.03 (s; CH(Ph)), 125.25 (s; CH(Ph)), 128.07 (s; CH(Ph)), 128.52 (s; CH(Ph)), 128.64 (s; CH(Ph)), 128.91 (s; CH(Ph)), 128.52 (s; CH(Ph)), 128.64 (s; CH(Ph)), 128.91 (s; CH(Ph)), 139.32 (d; ³J_{C,P} = 7.0 Hz, CPL₃): δ 139.48 (s). C₅₁H₇₀NO₄PS (823.48): calcd. C, 74.33; H, 8.56; N, 1.70; found C, 74.66; H, 8.70; N, 1.60.

(3a*R*,8a*S*)-6-[*N*-methyl-2-(methylthio)ethan-1-amino]-2,2-dimethyl-4,4-diphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L2c**): White powder, yield 0.33 g (37 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.62 (s, 3H; CH₃), 1.42 (s, 3H; CH₃), 2.08 (s, 3H; CH₃), 2.56-2.70 (m, 2H; CH₂S), 2.79 (d, ³*J*_{H,P} = 8.3 Hz, 3H; NCH₃), 3.18-3.34 (m, 2H; NCH₂), 3.81-3.87 (m, 1H; CH₂O), 4.10-4.16 (m, 1H; OCH), 4.27 (ddd, ³*J*_{H,P} = 27.6 Hz, ³*J*_{H,H} = 11.1 Hz, ²*J*_{H,H} = 3.6 Hz, 1H; CH₂O), 4.89 (dd, ³*J*_{H,P} = 7.6 Hz, 2H; CH(Ph)). ⁴¹Cf¹H} NMR (125.7 Hz, CDCl₃): δ 15.69 (s; SCH₃), 25.75 (s; CCH₃), 27.63 (s; CCH₃), 31.97 (d, ²*J*_{C,P} = 13.4 Hz; NCH₃), 33.17 (d, ³*J*_{C,P} = 4.7 Hz; CH₂S), 48.72 (d, ²*J*_{C,P} = 26.0 Hz; NCH₂), 65.86 (d, ²*J*_{C,P} = 9.5 Hz; CH₂O), 75.56 (d, ³*J*_{C,P} = 3.8 Hz; OCH), 81.34 (d, ²*J*_{C,P} = 6.1 Hz; CPh₂), 86.44 (d, ³*J*_{C,P} = 18.5 Hz; OCH), 111.08 (s; <u>C</u>(CH₃)₂), 127.04 (s; CH(Ph)), 127.15 (s; CH(Ph)), 127.25 (s; CH(Ph)), 127.70 (s; CH(Ph)), 128.23 (s; CH(Ph)), 128.73 (s; CH(Ph)), 141.51 (s; C(Ph)), 146.84 (s; ³*J*_{H,H} = 7.8 Hz, C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 146.56 (s). C₂₃H₃₀NO₄PS (447.16): calcd. C, 61.73; H, 6.76; N, 3.13; found C, 62.03; H, 6.87; N, 3.00.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L2c.

(3aR,8aR)-6-[(S)-N-methyl-1-phenyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (L3a): White powder, yield 1.33 g (90 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.28 (s, 3H; CH₃), 1.34 (s, 3H; CH₃), 2.69 (d, ³*J*_{H,P} = 4.7 Hz, 1H; NCH₃), 3.47 (dd, ²*J*_{H,H} = 13.1 Hz, ³*J*_{H,H} = 6.1 Hz, 1H; CH₂S), 3.56 (dd, ²*J*_{H,H} = 13.1 Hz, ³*J*_{H,H} = 9.1 Hz, 1H; CH₂S), 4.65-4.71 (m, 1H; CHPh), 4.77 (d, ³*J*_{H,H} = 8.5 Hz, 1H; OCH), 5.21 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,P} = 3.5 Hz, 1H; OCH), 7.13-7.33 (m, 22H; CH(Ph)), 7.37 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)), 7.53 (d, ³*J*_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.58 (d, ³*J*_{H,H} = 7.7 Hz, 2H; CH(Ph)), 7.89 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 25.64 (s; CCH₃), 26.66 (s; NCH₃), 27.77 (s; CCH₃), 36.96 (d, ³*J*_{C,P} = 8.8 Hz; CH₂), 61.25 (d, ²*J*_{C,P} = 41.5 Hz; CHPh), 81.64 (d, ²*J*_{C,P} = 8.2 Hz; CPh₂), 82.21 (d, ³*J*_{C,P} = 20.9 Hz; OCH), 82.23 (s; CPh₂), 82.62 (d, ³*J*_{C,P} = 3.1 Hz; OCH), 111.73 (s; <u>C</u>(CH₃)₂), 126.19 (s; CH(Ph)), 127.10 (s; CH(Ph)), 127.21 (s; CH(Ph)), 127.36 (s; CH(Ph)), 127.52 (s; CH(Ph)), 127.63 (s; CH(Ph)), 127.75 (s; CH(Ph)), 127.82 (s; CH(Ph)), 128.07 (s; CH(Ph)), 128.10 (s; CH(Ph)), 128.37 (s; CH(Ph)), 129.09 (s; CH(Ph)), 129.21 (s; CH(Ph)), 129.25 (s; CH(Ph)), 129.39 (s; CH(Ph)), 129.73 (s; CH(Ph)), 127.08 (s; C(Ph)), 147.17 (s; C(Ph)), 129.21 (s; CH(Ph)), 142.08 (s; C(Ph)), 142.52 (s; C(Ph)), 146.92 (d, ³*J*_{C,P} = 1.1 Hz; C(Ph)), 147.17 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 140.86 (s). C₄₆H₄₄NO₄PS (737.27): calcd. C, 74.88; H, 6.01; N, 1.90; found C, 74.80; H, 6.05; N, 1.98

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L3a.

(3aS,8aS)-6-[(S)-N-methyl-1-phenyl-2-(phenylthio)ethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L3b**): White powder, yield 1.03 g (70 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.32 (s, 3H; CH₃), 1.22 (s, 3H; CH₃), 2.56 (d, ³J_{H,P} = 5.2 Hz, 1H; NCH₃), 3.41 (dd, ²J_{H,H} = 12.7 Hz, ³J_{H,H} = 6.9 Hz, 1H; CH₂S), 3.51 (dd, ²J_{H,H} = 12.7 Hz, ³J_{H,H} = 8.5 Hz, 1H; CH₂S), 4.65-

4.75 (m, 1H; CHPh), 4.83 (d, ${}^{3}J_{H,H} = 8.4$ Hz, 1H; OCH), 5.23 (dd, ${}^{3}J_{H,H} = 8.4$ Hz, ${}^{4}J_{H,P} = 3.0$ Hz, 1H; OCH), 7.10-7.36 (m, 22H; CH(Ph)), 7.37-7.45 (m, 4H; CH(Ph)), 7.67-7.75 (m, 4H; CH(Ph)). ${}^{13}C{}^{1}H{}$ NMR (125.7 Hz, CDCl₃): δ 25.80 (s; CCH₃), 27.46 (d, ${}^{3}J_{C,P} = 2.8$ Hz; NCH₃), 27.65 (s; CCH₃), 37.14 (d, ${}^{3}J_{C,P} = 12.0$ Hz; CH₂), 61.04 (d, ${}^{2}J_{C,P} = 37.5$ Hz; CHPh), 82.01 (s; CPh₂), 82.03 (d, ${}^{3}J_{C,P} = 20.0$ Hz; OCH), 82.23 (d, ${}^{2}J_{C,P} = 3.1$ Hz; CPh₂), 82.89 (s; CPh₂), 112.04 (s; <u>C</u>(CH₃)₂), 126.17 (s; CH(Ph)), 127.10 (s; CH(Ph)), 127.22 (s; CH(Ph)), 127.34 (s; CH(Ph)), 127.52 (s; CH(Ph)), 127.68 (s; CH(Ph)), 127.80 (s; CH(Ph)), 127.88 (s; CH(Ph)), 128.07 (s; CH(Ph)), 128.22 (s; CH(Ph)), 128.44 (s; CH(Ph)), 129.03 (s; CH(Ph)), 129.17 (s; CH(Ph)), 129.21 (s; CH(Ph)), 129.36 (s; CH(Ph)), 129.84 (s; CH(Ph)), 136.85 (s; C(Ph)), 140.36 (s; C(Ph)), 142.06 (s; C(Ph)), 142.63 (s; C(Ph)), 146.82 (s; C(Ph)). ${}^{31}P{}^{1}H{}$ NMR (202.4 Hz, CDCl₃): δ 139.02 (s). C₄₆H₄₄NO₄PS (737.27): calcd. C, 74.88; H, 6.01; N, 1.90; found C, 75.02; H, 6.08; N, 1.95.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L3b.

(3aR,8aR)-6-[(S)-1-phenyl-N-(2-(phenylthio)ethyl)ethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L4a**): Yellowish powder, yield 1.23 g (82 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.28 (s, 3H; CH₃), 1.33 (s, 3H; CH₃), 1.51 (d, ³*J*_{H,H} = 7.0 Hz, 3H; C<u>H</u>₃CH), 2.69-2.77 (m, 1H; CH₂S), 2.80-2.90 (m, 1H; CH₂S), 3.11-3.24 (m, 1H; NCH₂), 3.32-3.44 (m, 1H; NCH₂), 4.82-4.88 (m, 1H; NCH₂), 4.81 (d, ³*J*_{H,H} = 8.6 Hz, 1H; OCH), 5.24 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,P} = 3.8 Hz, 1H; OCH), 7.02 (d, ³*J*_{H,H} = 7.7 Hz, 2H; CH(Ph)), 7.11-7.49 (m, 24H; CH(Ph)), 7.62 (d, ³*J*_{H,H} = 7.8 Hz, 2H; CH(Ph)), 7.81 (d, ³*J*_{H,H} = 7.8 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 20.48 (d, ³*J*_{C,P} = 11.2 Hz; <u>C</u>H₃CH), 25.52 (s; CCH₃), 27.79 (s; CCH₃), 34.15 (d, ³*J*_{C,P} = 3.3 Hz; CH₂), 43.34 (d, ²*J*_{C,P} = 12.7 Hz; NCH₂), 55.60 (d, ²*J*_{C,P} = 24.7 Hz; <u>C</u>HPh), 82.13 (d, ²*J*_{C,P} = 10.0 Hz; CPh₂), 82.16 (d, ³*J*_{C,P} = 22.4 Hz; OCH), 82.43 (s; CPh₂), 82.53 (d, ³*J*_{C,P} = 3.3 Hz; OCH), 111.69 (s; <u>C</u>(CH₃)₂), 125.84 (s; CH(Ph)), 127.19 (s; CH(Ph)), 127.29 (s; CH(Ph)), 127.32 (s; CH(Ph)), 127.34 (s; CH(Ph)), 127.40 (s; CH(Ph)), 127.53 (s; CH(Ph)), 127.64 (s; CH(Ph)), 127.78 (s; CH(Ph)), 127.88 (s; CH(Ph)), 128.20 (s; CH(Ph)), 128.47 (s; CH(Ph)), 128.96 (s; CH(Ph)), 129.16 (s; CH(Ph)), 129.19 (s; C(Ph)), 143.71 (d, ³*J*_{C,P} = 3.5 Hz; C(Ph)), 146.74 (d, ³*J*_{C,P} = 1.3 Hz; C(Ph)), 147.19 (s; C(Ph)), 1³¹P{¹H</sup> NMR

(202.4 Hz, CDCl₃): δ 141.67 (s). C₄₇H₄₆NO₄PS (751.29): calcd. C, 75.08; H, 6.17; N, 1.86; found C, 75.31; H, 6.10; N, 1.96.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for L4a.

(3aS,8aS)-6-[(S)-1-phenyl-N-(2-(phenylthio)ethyl)ethan-1-amino]-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L4b**): White solid foam, yield 1.28 g (85 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.27 (s, 3H; CH₃), 1.35 (s, 3H; CH₃), 1.57 (d, ³*J*_{H,H} = 7.0 Hz, 3H; CH₃CH), 2.65-2.81 (m, 1H; CH₂S), 2.86-2.99 (m, 1H; CH₂S), 3.17-3.28 (m, 1H; NCH₂), 3.28-3.40 (m, 1H; NCH₂), 4.85-4.94 (m, 1H; NCH₂), 4.80 (d, ³*J*_{H,H} = 8.6 Hz, 1H; OCH), 5.21 (dd, ³*J*_{H,H} = 8.5 Hz, ⁴*J*_{H,P} = 3.6 Hz, 1H; OCH), 7.04 (d, ³*J*_{H,H} = 7.5 Hz; 2H; CH(Ph)), 7.09-7.41 (m, 24H; CH(Ph)), 7.44 (d, ³*J*_{H,H} = 7.7 Hz, 2H; CH(Ph)), 7.62 (d, ³*J*_{H,H} = 7.6 Hz, 2H; CH(Ph)), 7.78 (d, ³*J*_{H,H} = 7.5 Hz, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 20.38 (d, ³*J*_{C,P} = 9.0 Hz; <u>C</u>H₃CH), 25.49 (s; CCH₃), 27.81 (s; CCH₃), 34.44 (d, ³*J*_{C,P} = 3.4 Hz; CH₂), 43.29 (d, ²*J*_{C,P} = 13.2 Hz; NCH₂), 55.25 (d, ²*J*_{C,P} = 24.5 Hz; <u>C</u>HPh), 82.02 (d, ²*J*_{C,P} = 9.5 Hz; CPh₂), 82.32 (d, ³*J*_{C,P} = 22.0 Hz; OCH), 82.39 (s; CPh₂), 82.53 (d, ³*J*_{C,P} = 3.3 Hz; OCH), 111.69 (s; <u>C</u>(CH₃)₂), 125.87 (s; CH(Ph)), 127.16 (s; CH(Ph)), 127.37 (s; CH(Ph)), 127.47 (s; CH(Ph)), 127.49 (s; CH(Ph)), 127.53 (s; CH(Ph)), 127.64 (s; CH(Ph)), 127.86 (s; CH(Ph)), 127.93 (s; CH(Ph)), 128.20 (s; CH(Ph)), 128.37 (s; CH(Ph)), 128.97 (s; CH(Ph)), 129.19 (s; CH(Ph)), 129.30 (s; CH(Ph)), 136.20 (s; C(Ph)), 141.77 (s; C(Ph)), 142.46 (s; C(Ph)), 143.40 (d, ³*J*_{C,P} = 4.0 Hz; C(Ph)), 146.69 (d, ³*J*_{C,P} = 1.5 Hz; C(Ph)), 147.29 (s; C(Ph)). ³¹P{¹H} NMR (202.4 Hz, CDCl₃): δ 142.09 (s). C₄₇H₄₆NO₄PS (751.29): calcd. C, 75.08; H, 6.17; N, 1.86; found C, 75.43; H, 6.29; N, 2.00.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L4b**.

(3aR,8aR)-6-[(S)-2-((phenylthio)methyl)pyrrolidino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin (L5a): White powder, yield 1.35 g (98 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.25 (s, 3H; CH₃), 1.32 (s, 3H; CH₃), 1.83-1.90 (m, 2H; CH₂), 1.83-1.91 (m, 1H; CH₂), 1.95-2.04 (m, 1H; CH₂), 2.88 (dd, ${}^{2}J_{H,H}$ = 12.5 Hz, ${}^{3}J_{H,H}$ = 9.5 Hz, 1H; CH₂), 3.23 (dd, ${}^{2}J_{H,H}$ = 12.7 Hz, ${}^{3}J_{H,H}$ = 4.3 Hz, 1H; CH₂), 3.27-3.33 (m, 1H; CH₂), 3.64-3.75 (m, 1H; CH₂), 3.84-3.95 (m, 1H; NCH), 4.76 (d, ³J_{H,H} = 8.5 Hz, 1H; OCH), 5.21 (dd, ³J_{H,H} = 8.4 Hz, ⁴J_{H,P} = 3.1 Hz, 1H; OCH), 7.10-7.31 (m, 16H; CH(Ph)), 7.35-7.48 (m, 5H; CH(Ph)), 7.56 (d, ${}^{3}J_{H,H}$ = 7.8, 2H; CH(Ph)), 7.78 (d, ${}^{3}J_{H,H}$ = 7.8, 2H; CH(Ph)). ${}^{13}C{}^{1}H$ NMR (125.7 Hz, CDCl₃): δ 25.18 (d, ${}^{3}J_{C,P}$ = 2.1 Hz; CH₂), 25.47 (s; CCH₃), 27.76 (s; CCH₃), 31.57 (d, ${}^{3}J_{C,P}$ = 3.7 Hz; CH₂), 40.83 (d, ${}^{3}J_{C,P}$ = 5.9 Hz; CH₂S), 44.86 (d, ³J_{C,P} = 6.2 Hz; CH₂), 57.43 (d, ²J_{C,P} = 22.1 Hz; NCH), 81.60 (d, ²J_{C,P} = 7.9 Hz; CPh₂), 82.07 (s; CPh₂), 82.56 (d, ${}^{3}J_{C,P}$ = 20.8 Hz; OCH), 82.97 (d, ${}^{3}J_{C,P}$ = 3.3 Hz; OCH), 111.75 (s; <u>C(CH₃)₂)</u>, 125.87 (s; CH(Ph)), 127.18 (s; CH(Ph)), 127.27 (s; CH(Ph)), 127.32 (s; CH(Ph)), 127.35 (s; CH(Ph)), 127.43 (s; CH(Ph)), 127.56 (s; CH(Ph)), 127.65 (s; CH(Ph)), 127.81 (s; CH(Ph)), 128.03 (s; CH(Ph)), 128.26 (s; CH(Ph)), 128.98 (s; CH(Ph)), 129.00 (s; CH(Ph)), 129.03 (s; CH(Ph)), 129.22 (s; CH(Ph)), 129.25 (s; CH(Ph)), 130.39 (s; CH(Ph)), 137.03 (s; C(Ph)), 142.07 (d, ${}^{3}J_{C,P}$ = 1.5 Hz; C(Ph)), 142.47 (d, ${}^{3}J_{C,P}$ = 1.5 Hz; C(Ph)), 146.74 (d, ${}^{3}J_{C,P}$ = 1.6 Hz; C(Ph)), 147.21 (s; C(Ph)). ${}^{31}P{}^{1}H{}$ NMR (202.4 Hz, CDCl₃): δ 138.90 (s). C₄₂H₄₂NO₄PS (687.26): calcd. C, 73.34; H, 6.15; N, 2.04; found C, 73.60; H, 6.22; N, 1.93.

¹H (left) and ¹³C{¹H} (right) NMR Signal Assignment for **L5a**.

(3a*S*,8a*S*)-6-[(*S*)-2-((phenylthio)methyl)pyrrolidino]-2,2-dimethyl-4,4,8,8-tetraphenyltetrahydro-[1,3]dioxolo[4,5-*e*][1,3,2]dioxaphosphepin (**L5b**): White powder, yield 0.93 g (68 %). ¹H NMR (499.9 MHz, CDCl₃): δ 0.31 (s, 3H; CH₃), 1.25 (s, 3H; CH₃), 1.71-1.80 (m, 1H; CH₂), 1.82-1.91 (m, 2H; CH₂), 1.95-2.04 (m, 1H; CH₂), 2.76 (dd, ²*J*_{H,H} = 12.6, ³*J*_{H,H} = 10.2 Hz, 1H; CH₂), 3.19 (dd, ²*J*_{H,H} = 12.6, ³*J*_{H,H} = 3.0 Hz, 1H; CH₂), 3.37-3.45 (m, 2H; CH₂), 3.98-4.08 (m, 1H; NCH), 4.82 (d, ³*J*_{H,H} = 8.5 Hz, 1H; OCH), 5.14 (dd, ³*J*_{H,H} = 8.4 Hz, ⁴*J*_{H,P} = 3.5 Hz, 1H; OCH), 7.11-7.30 (m, 17H; CH(Ph)), 7.35 (d, ³*J*_{H,H} = 7.5, 2H; CH(Ph)), 7.45 (d, ³*J*_{H,H} = 7.7, 2H; CH(Ph)), 7.59 (d, ³*J*_{H,H} = 7.6, 2H; CH(Ph)), 7.72 (d, ³*J*_{H,H} = 7.5, 2H; CH(Ph)). ¹³C{¹H} NMR (125.7 Hz, CDCl₃): δ 25.04 (d, ³*J*_{C,P} = 2.5 Hz; CH₂), 25.67 (s; CCH₃), 27.68 (s; CCH₃), 31.50 (d, ³*J*_{C,P} = 3.3 Hz; CH₂), 40.14 (d, ³*J*_{C,P} = 5.8 Hz; CH₂S), 45.13 (d, ³*J*_{C,P} = 9.9 Hz; CH₂), 57.03 (d, ²*J*_{C,P} = 19.1 Hz; NCH), 81.60 (d, ²*J*_{C,P} = 8.4 Hz;

CPh₂), 82.36 (d, ${}^{3}J_{C,P}$ = 20.7 Hz; OCH), 82.39 (d, ${}^{3}J_{C,P}$ = 3.5 Hz; OCH), 82.59 (s; CPh₂), 111.87 (s; <u>C</u>(CH₃)₂), 125.76 (s; CH(Ph)), 127.19 (s; CH(Ph)), 127.24 (s; CH(Ph)), 127.34 (s; CH(Ph)), 127.38 (s; CH(Ph)), 127.49 (s; CH(Ph)), 127.54 (s; CH(Ph)), 127.59 (s; CH(Ph)), 127.87 (s; CH(Ph)), 128.20 (s; CH(Ph)), 128.96 (s; CH(Ph)), 129.14 (s; CH(Ph)), 129.17 (s; CH(Ph)), 129.24 (s; CH(Ph)), 136.75 (s; C(Ph)), 142.01 (d, ${}^{3}J_{C,P}$ = 1.9 Hz; C(Ph)), 142.31 (s; C(Ph)), 146.82 (d, ${}^{3}J_{C,P}$ = 1.9 Hz; C(Ph)), 146.13 (s; C(Ph)). ${}^{31}P{}^{1}H{}$ NMR (202.4 Hz, CDCl₃): δ 139.76 (s). C₄₂H₄₂NO₄PS (687.26): calcd. C, 73.34; H, 6.15; N, 2.04; found C, 73.54; H, 6.05; N, 2.14.

General procedure for the preparation of $[Pd(allyl)(L)]BF_4$ complexes. A solution of the appropriate ligand (0.2 mmol) in THF (3 mL) was added dropwise over 30 min to a stirred solution of $[Pd(allyl)Cl]_2$ (37 mg, 0.1 mmol) in THF (3 mL) at 20 °C. The reaction mixture was stirred for a further 1 h at 20 °C. AgBF₄ (39 mg, 0.2 mmol) was added to the resulting solution, and the reaction mixture was stirred for 1.5 h at 20 °C. The precipitate of AgCl formed was separated by centrifugation, solvent was removed in vacuum (40 Torr) and the crude product was dried in air and in vacuum (10⁻³ Torr). The product was dissolved in CH₂Cl₂ (0.3 mL) and reprecipitated from pentane (10 mL). The precipitate of the product was separated by centrifugation and dried in air and in vacuum (10⁻³ Torr).

[Pd(allyl)(L1a)]BF₄: White powder, yield 15.3 mg (92%). ¹H NMR (500 MHz, CD₂Cl₂) L1a: δ 0.57 (s, 3H; CH₃), 0.60 (s, 3H; CH₃), 2.11 (d, ${}^{3}J_{H,P}$ = 6.9 Hz, 3H; CH₃), 2.65 (s, 3H; CH₃), 2.60-2.63 (br.m, 1H; CH₂), 2.87-2.90 (br.m, 1H; CH₂), 2.93-3.04 (m, 1H; CH₂), 3.71-3.78 (m, 1H; CH₂), 5.36 (d, ³J_{H,H} = 7.9 Hz, 1H; CH), 5.44 (d, ${}^{3}J_{H,H}$ = 7.9 Hz, 1H; CH), 7.11-7.72 (m, 20H, CH(Ph)) (major form), 0.57 (s, 3H; CH₃), 0.60 (s, 3H; CH₃), 2.07 (d, ${}^{3}J_{H,P}$ = 6.8 Hz, 3H; CH₃), 2.66 (s, 3H; CH₃), 2.51-2.54 (br.m, 1H; CH₂), 2.90-3.01 (m, 1H; CH₂), 2.95-2.98 (br.m, 1H; CH₂), 3.43-3.52 (m, 1H; CH₂), 5.45 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H; CH), 5.36 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H; CH), 7.11-7.72 (m, 20H, CH(Ph)) (minor form); η^3 -allylic ligand: δ 3.24 (dd, ${}^{3}J_{H,H}$ = 12.6 Hz, ${}^{3}J_{H,P}$ = 4.1 Hz, 1H; CH₂), 3.40 (t, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 14.4$ Hz, 1H; CH₂), 3.97 (d, ${}^{3}J_{H,H} = 6.8$ Hz, 1H; CH₂), 4.48-4.51 (m, 1H;CH₂), 4.28-4.36 (m, 1H;CH) (allyl) (major form), 1.41 (dd, ${}^{3}J_{H,H}$ = 12.4 Hz, ${}^{3}J_{H,P}$ = 4.1 Hz, 1H; CH₂), 2.79 (t, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 14.5$ Hz, 1H; CH₂), 4.28-4.32 (m, 1H; CH₂), 4.50-4.53 (m, 1H; CH₂), 5.67-5.75 (m, 1H; CH) (minor form). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CD₂Cl₂) L1a: δ 24.96 (d, ${}^{3}J_{C,P}$ = 4.0 Hz; CH₃), 26.86 (s; CH₃), 26.88 (s; CH₃), 33.66 (d, ${}^{2}J_{C,P}$ = 7.8 Hz; CH₃), 34.31 (s; CH₂), 52.89 (d, ${}^{2}J_{C,P}$ = 31.3 Hz; CH₂), 80.78 (d, ${}^{3}J_{C,P}$ = 2.9 Hz; CH), 88.29 (s;CPh₂), 91.05 (d, ${}^{2}J_{C,P}$ = 20.0 Hz; CPh₂), 116.49 (s; CMe₂), (major form), 25.72 (d, ${}^{3}J_{C,P}$ = 4.8 Hz; CH₃), 26.80 (s; CH₃), 26.88 (s; CH₃), 33.42 (d, ²J_{C,P} = 7.6 Hz; CH₃), 34.91 (s; CH₂), 52.71 (d, ²J_{C,P} = 31.9 Hz; CH₂), 80.78 (d, ${}^{3}J_{C,P}$ = 2.9 Hz; CH), 80.93 (d, ${}^{3}J_{C,P}$ = 2.9 Hz; CH), 88.01 (s;CPh₂), 91.52 (d, ${}^{2}J_{C,P}$ = 20.2 Hz; CPh₂), 116.44 (s; CMe₂), (minor form), 127.61 (s; CH(Ph)), 127.68 (s; CH(Ph)), 127.93 (s; CH(Ph)), 127.95 (s; CH(Ph)), 127.98 (s; CH(Ph)), 128.06 (s; CH(Ph)), 128.08 (s; CH(Ph)), 128.40 (s; CH(Ph)), 128.48 (s; CH(Ph)), 128.51 (s; CH(Ph)), 128.59 (s; CH(Ph)), 128.63 (s; CH(Ph)), 128.66 (s; CH(Ph)), 128.68 (s; CH(Ph)), 129.17 (s; CH(Ph)), 129.20 (s; CH(Ph)), 129.34 (s; CH(Ph)), 129.40 (s; CH(Ph)), 129.48 (s; CH(Ph)), 129.58 (s; CH(Ph)), 129.82 (s; CH(Ph)), 129.96 (s; CH(Ph)), 140,36 (d, ${}^{3}J_{C,P} = 6.0$ Hz; C(Ph)), 140,57 (d, ${}^{3}J_{C,P} = 6.2$ Hz; C(Ph)), 140,92 (d, ${}^{3}J_{CP}$ = 8.7 Hz; C(Ph)), 140,96 (d, ${}^{3}J_{CP}$ = 8.7 Hz; C(Ph)), 143.97 (s; C(Ph), 144.20 (s; C(Ph), 144.44 (s; C(Ph), 145.29 (s; C(Ph); η^3 -allylic ligand: 63.72 (d, ${}^2J_{C,P}$ = 8.5 Hz; CH₂), 79.21 (d, ${}^2J_{C,P}$ = 42.1 Hz; CH₂), 123.83 (d, ${}^{2}J_{C,P}$ = 10.6 Hz; CH) (major form), 62.94 (d, ${}^{2}J_{C,P}$ = 8.1 Hz; CH₂), 80.54 (d, ${}^{2}J_{C,P}$ = 42.0 Hz;

CH₂), 123.87 (d, ${}^{2}J_{C,P}$ = 10.8 Hz; CH) (minor form). ${}^{31}P{}^{1}H{}$ NMR (202 MHz, CD₂Cl₂): δ 105.57 (major form), 107.98 (minor form). C₃₈H₄₃BF₄NO₄PPdS (833.17): calcd. C 54.72, H 5.20, N 1.68; found C 54.94, H 5.28, N 1.62. M/z = 746.1699 (calcd. 746.1680) Da for [Pd(L1a)(allyl)]⁺.

¹H (top) and ¹³C{¹H} (bottom) NMR signal assignment for the major (left) and minor (right) diastereomers of [Pd(allyl)(L1a)]BF₄.

[Pd(allyl)(L1f)]BF₄: White powder, yield 14.9 mg (88 %).¹H NMR (600 MHz, CD₂Cl₂) L1f: δ 0.56 (s, 3H; CH₃), 0.57 (s, 3H; CH₃), 1.98 (d, ${}^{3}J_{H,P}$ = 7.1 Hz, 3H; CH₃), 2.51 (d, ${}^{4}J_{H,P}$ = 0.5 Hz, 3H; CH₃), 1.70-1.75 (m, 1H; CH₂), 2.06-2.18 (m, 1H; CH₂), 2.56-2.62 (m, 1H; CH₂), 2.82-2.89 (m, 1H; CH₂), 3.08-3.13 (m, 1H; CH₂), 3.81-3.90 (m, 1H; CH₂), 5.43 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 1H; CH), 5.45 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 1H; CH), 7.22-7.63 (m, 20H, CH(Ph)) (major form), 0.56 (s, 3H; CH₃), 0.60 (s, 3H; CH₃), 2.02 (d, ${}^{3}J_{H,P}$ = 7.4 Hz, 3H; CH₃), 2.54 (d, ${}^{4}J_{H,P}$ = 0.6 Hz, 3H; CH₃), 1.80-1.85 (m, 1H; CH₂), 2.06-2.18 (m, 1H; CH₂), 2.59-2.68 (m, 1H; CH₂), 2.82-2.89 (m, 1H; CH₂), 3.08-3.13 (m, 1H; CH₂), 4.15-4.24 (m, 1H; CH₂), 5.34 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H; CH), 5.45 (d, ${}^{3}J_{H,H}$ = 8.0 Hz, 1H; CH), 7.22-7.63 (m, 20H, CH(Ph)) (minor form); η³-allylic ligand: δ 1.83-1.84 (m, 1H; CH₂), 2.59 (t, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 14.3 \text{ Hz}, 1\text{H}; \text{CH}_{2}$, 4.45-4.47 (m, 1H; CH₂), 4.59 (t, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 7.6 \text{ Hz}, 1\text{H}; \text{CH}_{2}$), 5.72-5.81 (m, 1H;CH) (allyl) (major form), 3.38-3.42 (m, 1H; CH₂), 3.56 (t, ${}^{3}J_{H,H} = {}^{3}J_{H,P} = 14.1$ Hz, 1H; CH₂), 4.08 (d, ${}^{3}J_{H,H} =$ 6.7 Hz, 1H; CH₂), 4.47-4.50 (m, 1H;CH₂), 4.29-4.38 (m, 1H;CH) (minor form). ¹³C{¹H} NMR (151 MHz, CD₂Cl₂) L1f: δ 22.08 (d, ³J_{C,P} = 1.9 Hz; CH₃), 26.48 (s; CH₃), 26.61 (s; CH₃), 32.47 (d, ²J_{C,P} = 7.4 Hz; CH₃), 20.91 (s; CH₂), 32.74 (br.s; CH₂), 45.16 (d, ${}^{2}J_{C,P}$ = 33.5 Hz; CH₂), 80.25 (d, ${}^{3}J_{C,P}$ = 2.7 Hz; CH), 80.30 (d, ${}^{3}J_{C,P}$ = 2.6 Hz; CH), 87.33 (s;CPh₂), 91.13 (d, ²J_{C.P} = 20.9 Hz; CPh₂), 116.14 (s; CMe₂), (major form), 21.84 (s; CH₃), 26.56 (s; CH₃), 26.62 (s; CH₃), 32.69 (d, ²J_{C,P} = 7.7 Hz; CH₃), 21.34 (d, ³J_{C,P} = 2.5 Hz; CH₂), 32.74 (br.s; CH₂), 44.57 (d, ${}^{2}J_{C,P}$ = 33.0 Hz; CH₂), 80.38 (d, ${}^{3}J_{C,P}$ = 3.1 Hz; CH), 80.40 (d, ${}^{3}J_{C,P}$ = 3.1 Hz; CH), 87.58 (s;CPh₂), 90.69 (d, ²J_{C.P} = 20.0 Hz; CPh₂), 116.25 (s; CMe₂), (minor form), 127.36 (s; CH(Ph)), 127.54 (s; CH(Ph)), 127.64 (s; CH(Ph)), 127.65 (s; CH(Ph)), 127.71 (s; CH(Ph)), 127.75 (s; CH(Ph)), 127.83 (s; CH(Ph)), 127.90 (s; CH(Ph)), 128.10 (s; CH(Ph)), 128.22 (s; CH(Ph)), 128.29 (s; CH(Ph)), 128.29 (s; CH(Ph)), 128.36 (s; CH(Ph)), 128.38 (s; CH(Ph)), 128.94 (s; CH(Ph)), 128.98 (s; CH(Ph)), 129.01 (s; CH(Ph)), 129.11 (s; CH(Ph)), 129.33 (s; CH(Ph)), 129.48 (s; CH(Ph)), 129.66 (s; CH(Ph)), 129.86 (s; CH(Ph)), 140,36 (d, ³J_{C,P} = 6.3 Hz; C(Ph)), 140,40 (d, ${}^{3}J_{C,P}$ = 6.6 Hz; C(Ph)), 140,73 (d, ${}^{3}J_{C,P}$ = 8.3 Hz; C(Ph)), 140,89 (d, ${}^{3}J_{C,P}$ = 8.5 Hz; C(Ph)), 143.72 (s; C(Ph), 144.10 (s; C(Ph), 144.14 (d, ${}^{3}J_{C,P}$ = 1.2 Hz; C(Ph)), 144.75 (d, ${}^{3}J_{C,P}$ = 1.1 Hz; C(Ph)); η^{3} allylic ligand: 63.84 (d, ${}^{2}J_{C,P}$ = 6.1 Hz; CH₂), 80.86 (d, ${}^{2}J_{C,P}$ = 40.9 Hz; CH₂), 122.81 (d, ${}^{2}J_{C,P}$ = 9.8 Hz; CH) (major form), 63.86 (d, ${}^{2}J_{C,P}$ = 5.8 Hz; CH₂), 80.01 (d, ${}^{2}J_{C,P}$ = 40.8 Hz; CH₂), 123.28 (d, ${}^{2}J_{C,P}$ = 9.5 Hz; CH) (minor form). ³¹P{¹H} NMR (243 MHz, CD₂Cl₂): δ 115.84 (major form), 115.16 (minor form). C₃₉H₄₅BF₄NO₄PPdS (847.19): calcd. C 55.24, H 5.35, N 1.65; found C 55.50, H 5.44, N 1.73. M/z = 760.1853 (calcd. 760.1836) Da for [Pd(L1f)(allyl)]⁺.

¹H (top) and ¹³C{¹H} (bottom) NMR signal assignment for the major (left) and minor (right) diastereomers of $[Pd(allyl)(L1f)]BF_4$.

General procedure for the addition of the second equivalent of corresponding ligand to the solution of $[Pd(allyl)(L)]BF_4$ complexes. A solution of L1a or L1f (0.025 mmol) in CD_2Cl_2 (0.6 mL) was added to the appropriate $[Pd(allyl)(L)]BF_4$ complex sampled in a NMR tube (0.025 mmol). The resulting mixture was shacked and left overnight, then NMR-spectra were recorded.

Table S1. Crystal data and structure refinement for new compounds.

L1b			
CCDC number	C number 2213985		
Empirical formula	$C_{76}H_{88}N_2O_8P_2S_2$		
Formula weight	1283.54		
Temperature	295(2) K		
Wavelength	1.54186 Å		
Crystal system	Triclinic		
Space group	P 1		
Unit cell dimensions	a = 9.4004(2) Å	α= 82.188(2)°.	
	b = 9.4572(2) Å	β= 80.662(2)°.	
	c = 22.4551(4) Å	$\gamma = 60.1160(10)^{\circ}.$	
Volume	1704.38(6) Å ³		
Z	1		
Density (calculated)	1.251 Mg/m ³		
Absorption coefficient	1.606 mm ⁻¹		
F(000)	684		
Theta range for data collection	1.998 to 67.943°.		
Index ranges	-11<=h<=7, -11<=k<=10, -26<	<=l<=26	
Reflections collected	34079		
Independent reflections	8542 [R(int) = 0.0625]		
Completeness to theta = 67.686°	95.4 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8542 / 3 / 824		
Goodness-of-fit on F ²	1.020		
Final R indices [I>2sigma(I)]	R1 = 0.0477, $wR2 = 0.1187$		
R indices (all data)	R1 = 0.0551, $wR2 = 0.1272$		
Absolute structure parameter	-0.001(16)		
Extinction coefficient	0.0052(5)		
Largest diff. peak and hole	0.460 and -0.345 e. Å -3		

$[Pd(allyl)(L1f)]BF_4$	
CCDC number	2308760
Empirical formula	$C_{39}H_{45}BF_4NO_4PPdS$
Formula weight	848.00
Temperature	295(2) K
Wavelength	1.54186 Å

Crystal system	Hexagonal		
Space group	P 64		
Unit cell dimensions	$a = 29.2000(10) \text{ Å}$ $\alpha = 90^{\circ}$		
	b = 29.2000(10) Å	β=90°.	
	c = 10.1029(4) Å	$\gamma = 120^{\circ}.$	
Volume	7460.1(6) Å ³		
Z	6		
Density (calculated)	1.133 Mg/m ³		
Absorption coefficient	4.102 mm ⁻¹		
F(000)	2616		
Theta range for data collection	3.027 to 55.802°.		
Index ranges	-31<=h<=25, -31<=k<=31, -6<	<=l<=10	
Reflections collected	32191		
Independent reflections	5314 [R(int) = 0.2007]		
Completeness to theta = 55.802°	99.4 %		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	5314 / 346 / 431		
Goodness-of-fit on F ²	0.617		
Final R indices [I>2sigma(I)]	R1 = 0.0544, wR2 = 0.1327		
R indices (all data)	R1 = 0.2115, wR2 = 0.1613		
Absolute structure parameter	-0.05(2)		
Extinction coefficient	0.00139(10)		
Largest diff. peak and hole	0.304 and -0.336 e. Å ⁻³		

Palladium-Catalyzed Asymmetric Allylic Alkylation of (*E*)-1,3-Diphenylallyl Acetate or (*E*)-1,3-Diphenylallyl Ethyl Carbonate with Dimethyl Malonate, Di-*tert*-butyl Malonate and Dibenzyl Malonate: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in CH₂Cl₂ (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in CH₂Cl₂ (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min. The appropriate malonate (0.44 mmol), BSA (0.11 mL, 0.44 mmol) and KOAc (0.002 g) were added. The reaction mixture was stirred for 24 h, diluted with CH₂Cl₂ (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10⁻³ Torr) affording a residue containing dimethyl (*E*)-2-(1,3-diphenylallyl)malonate (**11a**), di-*tert*-butyl (*E*)-2-(1,3-diphenylallyl)malonate (**11b**) or dibenzyl (*E*)-2-(1,3-diphenylallyl)malonate (**11c**).^[22] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of (*E*)-1,3-Diphenylallyl Acetate or (*E*)-1,3-Diphenylallyl Ethyl Carbonate with Pyrrolidine: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in CH_2Cl_2 (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in CH_2Cl_2 (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min, then freshly distilled pyrrolidine (0.06 mL, 0.75 mmol) was added. The reaction mixture was stirred for 24 h, diluted with CH_2Cl_2 (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10⁻³ Torr) affording a residue containing (*E*)-1-(1,3-diphenylallyl)pyrrolidine (**11d**).^[23] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate or Cinnamyl Methyl Carbonate with Ethyl 2-Oxocyclohexane-1-Carboxylate: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min. β -Ketoether **13** (0.06 mL, 0.375 mmol), BSA (0.125 mL, 0.5 mmol) and Zn(OAc)₂ (0.005 g) were added. The reaction mixture was stirred for 24 h, diluted with toluene (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10⁻³ Torr) affording a residue containing ethyl 1-cinnamyl-2-oxocyclohexane-1-carboxylate (**14**).^[16c,d] In order to evaluate *ee* and conversion, the

obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Acetate or Cinnamyl Methyl Carbonate with Ethyl 2-Acetamido-3-Oxobutanoate: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). The appropriate substrate (0.25 mmol) was added and the solution stirred for 15 min. α -Acetamido- β -Ketoether **15** (0.07 g, 0.375 mmol), BSA (0.125 mL, 0.5 mmol) and KOAc (0.003 g) were added. The reaction mixture was stirred for 24 h, diluted with toluene (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced pressure (40 Torr) and dried in vacuum (10⁻³ Torr) affording a residue containing ethyl (*E*)-2-acetamido-2-acetyl-5-phenylpent-4-enoate (**16**).^[16e] In order to evaluate *ee* and conversion, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Alkylation of Cinnamyl Methyl Carbonate with 2,5-Dimethylpyrrole: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in toluene (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in toluene (1.5 mL). Cinnamyl methyl carbonate (0.05 g, 0.25 mmol) was added and the solution stirred for 15 min. Freshly distilled 2,5-dimethylpyrrole (**17**) (0.02 mL, 0.2 mmol) and Cs₂CO₃ (0.065 g, 0.2 mmol) were added. The reaction mixture was stirred for 24 h, precipitate was separated by centrifugation and solvent was removed in vacuum (40 Torr). The obtained residue was purified by flash chromatography on SiO₂: impurities were eluted with CH_2Cl_2 (5 mL), then the product was eluted with ethyl acetate (10 mL). The solvent was evaporated at reduced pressure (40 Torr) and dried in vacuum (10⁻³ Torr) affording 2-cinnamyl-2,5-dimethylpyrrole (**18**).^[16f] In order to evaluate *ee*, the obtained product was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

Palladium-Catalyzed Asymmetric Allylic Amination of 2-(Diethoxyphosphoryl)-1-Phenylallyl Acetate with Aniline: A solution of $[Pd(allyl)Cl]_2$ (0.001 g, 0.0025 mmol) and the appropriate ligand (0.005 mmol or 0.01 mmol) in CH₂Cl₂ (1.5 mL) was stirred for 40 min or the appropriate cationic complex (0.005 mmol) was dissolved in CH₂Cl₂ (1.5 mL). 2-(Diethoxyphosphoryl)-1-phenylallyl acetate (**19**) (0.08 g, 0.25 mmol) was added and the solution stirred for 15 min, then freshly distilled aniline (0.05 mL, 0.5 mmol) and K₂CO₃ (0.069 g, 0.5 mmol) were added. The reaction mixture was stirred for 24 h, diluted with CH₂Cl₂ (2 mL) and filtered through a thin layer of SiO₂. The filtrate was evaporated at reduced

pressure (40 Torr) and dried in vacuum (10^{-3} Torr) affording a residue containing mixture of diethyl (3-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (**20**), (*E*)-diethyl (1-phenyl-3-(phenylamino)prop-1-en-2-yl)phosphonate (**21**) and (*E*)-2-(diethoxyphosphoryl)-3-phenylallyl acetate (**22**).^[14] Conversion of **19** and the ratio of **20/21/22** were determined by ³¹P NMR spectroscopy in CHCl₃. In order to evaluate *ee*, the obtained residue was dissolved in an appropriate eluent mixture (8 mL) and a sample was taken for HPLC analysis.

0	C(O)X CH ₂ BSA	$(CO_2R)_2$, $RO_2C CO_2R$				
Ph 10a,b	Ph P	ld-cat → Ph ★ Ph → + Ph → + 11a-c				
X = Me (a),	OEt (b)	R = Me (a), Bu ^t (b), Bn	(c)			
Entry	Substrate	Compound	L/Pd	Product	Conversion [%]	<i>Ee</i> [%] ^[b,c]
1	10a	L1a	1	11a	51	98 (<i>R</i>)
2	10a	L1a	2	11a	35	98 (<i>R</i>)
3	10a	L1a	1	11a	100	97 (<i>R</i>) ^[d]
4	10a	L1a	1	11b	73	99 (<i>R</i>)
5	10a	L1a	2	11b	15	99 (<i>R</i>)
6	10a	L1a	1	11b	100	97 (<i>R</i>) ^[d]
7	10a	L1a	1	11c	85	96 (<i>R</i>)
8	10a	L1a	2	11c	27	98 (<i>R</i>)
9	10a	L1a	1	11c	100	95 (<i>R</i>) ^[d]
10	10b	L1a	1	11a	75	87 (<i>R</i>)
11	10b	L1a	2	11a	52	97 (<i>R</i>)
12	10b	L1a	1	11b	74	93 (<i>R</i>)
13	10b	L1a	2	11b	22	98 (<i>R</i>)
14	10b	L1a	1	11c	100	89 (<i>R</i>)
15	10b	L1a	2	11c	59	92 (<i>R</i>)
16	10a	[Pd(allyl)(L1a)]BF ₄	1	11a	76	97 (<i>R</i>)
17	10b	[Pd(allyl)(L1a)]BF ₄	1	11a	73	92 (<i>R</i>)
18	10a	L1b	1	11a	74	76 (<i>R</i>)
19	10a	L1b	2	11a	24	87 (<i>R</i>)
20	10a	L1c	1	11a	100	92 (<i>R</i>)
21	10a	L1c	2	11a	14	87 (<i>R</i>)
22	10a	L1d	1	11a	81	90 (<i>R</i>)

Table S2. Pd-catalyzed allylic alkylation of 10a,b with dialkyl malonates.^[a]

23	10a	L1d	2	11a	50	92 (<i>R</i>)
24	10a	L1e	1	11a	95	97 (<i>R</i>)
25	10a	L1e	2	11a	73	98 (<i>R</i>)
26	10a	L1f	1	11a	92	97 (<i>R</i>)
27	10a	L1f	2	11a	50	98 (<i>R</i>)
28	10a	[Pd(allyl)(L1f)]BF ₄	1	11a	97	98 (<i>R</i>)
29	10a	L1g	1	11a	60	88 (<i>S</i>)
30	10a	L1g	2	11a	41	86 (<i>S</i>)
31	10a	L1h	1	11a	90	63 (<i>R</i>)
32	10a	L1h	2	11a	79	63 (<i>R</i>)
33	10a	L2a	1	11a	100	99 (<i>R</i>)
34	10a	L2a	2	11a	65	99 (<i>R</i>)
35	10a	L2a	1	11b	83	99 (<i>R</i>)
36	10a	L2a	2	11b	15	99 (<i>R</i>)
37	10a	L2a	1	11c	100	99 (<i>R</i>)
38	10a	L2a	2	11	28	98 (<i>R</i>)
39	10a	L2b	1	11a	100	78 (<i>R</i>)
40	10a	L2b	2	11a	60	64 (<i>R</i>)
41	10a	L2c	1	11a	100	96 (<i>R</i>)
42	10a	L2c	2	11a	100	98 (<i>R</i>)
43	10a	L3a	1	11a	100	21 (<i>S</i>)
44	10a	L3a	2	11a	45	17 (<i>S</i>)
45	10a	L3b	1	11a	100	88 (<i>S</i>)
46	10a	L3b	2	11a	100	89 (<i>S</i>)
47	10a	L4a	1	11a	100	21 (<i>R</i>)
48	10a	L4a	2	11a	98	29 (<i>R</i>)
49	10a	L4b	1	11a	95	7 (<i>S</i>)
50	10a	L4b	2	11a	97	6 (<i>S</i>)
51	10a	L5a	1	11 a	100	44 (<i>R</i>)
52	10a	L5a	2	11a	34	37 (<i>R</i>)
53	10a	L5b	1	11a	100	95 (<i>S</i>)
54	10a	L5b	2	11a	100	94 (S)
55	10a	L5b	1	11b	100	95 (<i>S</i>)
56	10a	L5b	2	11b	100	94 (<i>S</i>)
57	10a	L5b	1	11c	100	95 (<i>S</i>)

58	10a	L5b	2	11c	100	94 (<i>S</i>)
59	10a	L _A	1	11a	40	81 (<i>S</i>)
60	10a	L _A	2	11a	19	76 (<i>S</i>)
61	10a	L _B	1	11a	68	82 (<i>R</i>)
62	10a	L _B	2	11a	7	77 (<i>R</i>)
63	10a	(<i>S</i>)-L _c	1	11a	100	87 (<i>S</i>) ^[e]
64	10a	(<i>S</i>)-L _c	2	11a	100	79 (<i>S</i>) ^[e]
65	10a	(<i>R</i>)-L _c	1	11a	27	2 (S) ^[e]
66	10a	(<i>R</i>)-L _C	2	11a	15	12 (<i>S</i>) ^[e]

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrates **10a,b** and enantiomeric excess of **11a** were determined by HPLC (Kromasil 5-CelluCoat, C₆H₁₄/*i*PrOH = 99/1, 0.6 mL/min, 254 nm, t(R) = 19.6 min, t(S) = 21.0 min); **11b** – (Daicel Chiralpak AD-H, C₆H₁₄/*i*PrOH = 95/5, 1.0 mL/min, 254 nm, t(R) = 9.2 min, t(S) = 12.8 min); **11c** – (Daicel Chiralpak AD-H, C₆H₁₄/*i*PrOH = 4/1, 1.0 mL/min, 254 nm, t(R) = 16.0 min, t(S) = 19.8 min) [c] The absolute configurations were assigned by comparison of the HPLC retention times reported in the literature.^[16a,b,24] [d] At 40 °C for 12 h. [e] Ref.^[25]

Table S3. Pd-catalyzed allylic amination of 10a,b with pyrrolidine.^[a]

OC(O)X	pyrrolidine, Pd-cat	
10a,b	CH ₂ Cl ₂	Ph * Ph
X = Me (a), OEt (b)		11d

Entry	Substrate	Compound	L/Pd	Conversion [%]	<i>Ee</i> [%] ^[b,c]
1	10a	L1a	1	21	56 (<i>S</i>)
2	10a	L1a	2	74	85 (<i>S</i>)
3	10b	L1a	1	77	75 (<i>S</i>)
4	10b	L1a	2	100	96 (<i>S</i>)
5	10a	[Pd(allyl)(L1a)]BF ₄	1	24	58 (<i>S</i>)
6	10b	[Pd(allyl)(L1a)]BF ₄	1	72	82 (<i>S</i>)
7	10a	L1b	1	17	60 (<i>S</i>)
8	10a	L1b	2	18	67 (<i>S</i>)
9	10b	L1b	1	100	16 (<i>S</i>)
10	10b	L1b	2	100	42 (S)
11	10a	L1c	1	15	43 (<i>S</i>)
12	10a	L1c	2	27	47 (S)
13	10a	L1d	1	49	74 (<i>S</i>)
14	10a	L1d	2	100	80 (<i>S</i>)
15	10a	L1e	1	14	65(<i>S</i>)

16	10a	L1e	2	20	91 (<i>S</i>)
17	10b	L1e	1	100	23 (<i>S</i>)
18	10b	L1e	2	100	52 (<i>S</i>)
19	10a	L1f	1	12	93 (<i>S</i>)
20	10a	L1f	2	34	96 (<i>S</i>)
21	10 a	[Pd(allyl)(L1f)]BF ₄	1	12	86 (<i>S</i>)
22	10a	L1g	1	17	22 (<i>S</i>)
23	10 a	L1g	2	18	21 (5)
24	10a	L1h	1	58	65 (<i>S</i>)
25	10 a	L1h	2	100	67 (<i>S</i>)
26	10a	L2a	1	100	96 (<i>S</i>)
27	10 a	L2a	2	100	97 (<i>S</i>)
28	10a	L2b	1	14	46 (<i>S</i>)
29	10 a	L2b	2	15	61 (<i>S</i>)
30	10b	L2b	1	100	48 (<i>S</i>)
31	10b	L2b	2	100	6 (<i>S</i>)
32	10a	L2c	1	86	76 (<i>S</i>)
33	10 a	L2c	2	100	86 (<i>S</i>)
34	10a	L3a	1	22	41 (<i>S</i>)
35	10 a	L3a	2	17	38 (<i>S</i>)
36	10a	L3b	1	20	27 (<i>R</i>)
37	10 a	L3b	2	21	34 (<i>R</i>)
38	10a	L4a	1	3	19 (<i>S</i>)
39	10a	L4a	2	5	30 (<i>S</i>)
40	10a	L4b	1	4	9 (<i>R</i>)
41	10a	L4b	2	6	12 (<i>R</i>)
42	10a	L5a	1	6	40 (<i>R</i>)
43	10a	L5a	2	18	28 (<i>R</i>)
44	10a	L5b	1	39	96 (<i>R</i>)
45	10a	L5b	2	100	97 (<i>R</i>)
46	10b	L5b	1	100	77 (<i>R</i>)
47	10b	L5b	2	100	85 (<i>R</i>)
48	10a	L _A	1	6	17 (<i>R</i>)
49	10a	L _A	2	6	14 (<i>R</i>)
50	10a	L _B	1	6	12 (R)

51	10a	L _B	2	7	6 (<i>R</i>)
52	10a	(<i>S</i>)- L _C	1	28	28 (<i>R</i>) ^[d]
53	10a	(<i>S</i>)- L _C	2	45	30 (<i>R</i>) ^[d]
54	10a	(<i>R</i>)-L _c	1	12	10 (<i>S</i>) ^[d]
55	10a	(<i>R</i>)-L _c	2	13	10 (<i>S</i>) ^[d]

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ at room temperature for 24 h. [b] The conversion of substrates **10a,b** and enantiomeric excess of **11d** were determined by HPLC (Daicel Chiralcel OD-H, $C_6H_{14}/iPrOH =$ 95/5, 0.4 mL/min, 254 nm, t(R) = 9.0 min, t(S) = 9.6 min). [c] The absolute configurations was assigned by comparison of the HPLC retention times reported in the literature.^[16a,b,23b,26] [d] Ref.^[25]

Table S4. Pd-catalyzed allylic alkylation of 12a,b with 13.

Ph OC(O)X 12a,b + X = Me (a), OMe (b)	EtO ₂ C	BSA, Zn(OAc) ₂ , Pd-cat → Ph [∽] PhMe	CO ₂ Et		
Entry	Substrate	Compound	L/Pd	Conversion [%]	<i>Ee</i> [%] ^[b,c]
1	12a	L1a	1	23	81 (<i>R</i>)
2	12a	L1a	2	19	80 (<i>R</i>)
3	12a	L1a	1	46	65 (<i>R</i>) ^[d]
4	12b	L1a	1	32	75 (<i>R</i>)
5	12b	L1a	2	48	75 (<i>R</i>)
6	1 2 a	[Pd(allyl)(L1a)]BF ₄	1	16	81 (<i>R</i>)
7	12a	[Pd(allyl)(L1a)]BF ₄	1	35	64 (R) ^[d]
8	12b	[Pd(allyl)(L1a)]BF ₄	1	40	76 (<i>R</i>)
9	12a	L1b	1	38	56 (<i>R</i>)
10	1 2 a	L1b	2	36	55 (<i>R</i>)
11	12a	L1c	1	72	78 (R)
12	12a	L1c	2	44	77 (R)
13	12a	L1d	1	13	70 (<i>R</i>)
14	12a	L1d	2	0	-
15	12a	L1e	1	100	80 (<i>R</i>)
16	12a	L1e	2	76	79 (<i>R</i>)
17	12a	L1f	1	74	37 (<i>R</i>)
18	12a	L1f	2	38	41 (<i>R</i>)
19	12a	[Pd(allyl)(L1f)]BF ₄	1	97	23 (<i>R</i>)
20	12a	L1g	1	0	-
21	12a	L1g	2	0	-

22	12a	L1h	1	95	26 (<i>R</i>)
23	12a	L1h	2	80	22 (R)
24	12a	L2a	1	46	64 (<i>R</i>)
25	12a	L2a	2	36	67 (<i>R</i>)
26	12a	L2b	1	12	87 (<i>R</i>)
27	12a	L2b	2	21	91 (<i>R</i>)
28	12b	L2b	1	34	92 (<i>R</i>)
29	12b	L2b	2	38	94 (<i>R</i>)
30	12a	L2c	1	14	3 (S)
31	12a	L2c	2	23	2 (S)
32	12a	L3a	1	36	31 (<i>R</i>)
33	12a	L3a	2	30	28 (R)
34	12a	L3b	1	29	47 (S)
35	12a	L3b	2	38	53 (<i>S</i>)
36	12a	L4a	1	35	72 (<i>R</i>)
37	12a	L4a	2	49	74 (<i>R</i>)
38	12a	L4b	1	32	65 (<i>S</i>)
39	12a	L4b	2	77	66 (<i>S</i>)
40	12a	L5a	1	47	82 (<i>R</i>)
41	12a	L5a	2	32	80 (<i>R</i>)
42	12a	L5b	1	95	87 (<i>S</i>)
43	12a	L5b	2	99	87 (<i>S</i>)
44	12b	L5b	1	100	90 (<i>S</i>)
45	12b	L5b	2	100	88 (<i>S</i>)
46	12a	L _A	1	0	-
47	12a	L _A	2	0	-
48	12a	L _B	1	4	61 (<i>R</i>)
49	12a	L _B	2	0	-
50	12a	(S)-L _c	1	0	_ [e]
51	12a	(S)-L _c	2	0	- ^[e]
52	12a	(<i>R</i>)-L _c	1	0	_ [e]
53	12a	(<i>R</i>)-L _C	2	0	_ [e]

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ in toluene at room temperature for 24 h (BSA, Zn(OAc)_2). [b] The conversion of substrates **12a,b** and enantiomeric excess of **14** were determined by HPLC (Kromasil 5-CelluCoat, C₆H₁₄/*i*PrOH = 99/1, 1.0 mL/min, 254 nm, t(R) = 10.1 min, t(S) = 14.9 min). [c] The absolute

configuration was assigned by comparison of the HPLC retention times reported in the literature.^[16a-d] [d] At 55 °C for 12 h. [e] Ref.^[25]

Ph OC(O)X 12a,b X = Me (a), OMe (b)	EtO ₂ CO + AcHN Me 15	BSA, KOAc, Pd-cat PhMe EtO ₂ C NHAc 16			
Entry	Substrate	Compound	L/Pd	Conversion [%]	<i>Ee</i> [%] ^[b,c]
1	12a	L1a	1	98	74 (<i>S</i>)
2	12a	L1a	2	20	66 (S)
3	12a	L1a	1	100	64 (<i>S</i>) ^[d]
4	12a	L1a	2	100	65 (<i>S</i>) ^[d]
5	12b	L1a	1	100	67 (<i>S</i>)
6	12b	L1a	2	78	67 (S)
7	12a	[Pd(allyl)(L1a)]BF ₄	1	100	67 (<i>S</i>)
8	12b	[Pd(allyl)(L1a)]BF ₄	1	100	66 (<i>S</i>)
9	12a	L1b	1	100	63 (<i>S</i>)
10	12a	L1b	2	70	63 (<i>S</i>)
11	12a	L1c	1	100	74 (<i>S</i>)
12	12a	L1c	2	92	73 (<i>S</i>)
13	12a	L1d	1	84	56 (<i>S</i>)
14	12a	L1d	2	100	55 (<i>S</i>)
15	12a	L1e	1	100	64 (<i>S</i>)
16	12a	L1e	2	100	71 (<i>S</i>)
17	12a	L1f	1	100	20 (<i>S</i>)
18	12a	L1f	2	33	20(<i>S</i>)
19	12a	[Pd(allyl)(L1f)]BF ₄	1	100	23 (<i>S</i>)
20	12a	L1g	1	0	-
21	12a	L1g	2	0	-
22	12a	L1h	1	100	49 (<i>S</i>)
23	12a	L1h	2	88	48 (<i>S</i>)
24	12a	L2a	1	100	66 (<i>S</i>)
25	12a	L2a	2	32	69 (<i>S</i>)
26	12a	L2b	1	100	75 (<i>S</i>)
27	12a	L2b	2	100	76 (<i>S</i>)

 Table S5. Pd-catalyzed allylic alkylation of 12a,b with 15.

28	12a	L2c	1	100	18 (<i>S</i>)
29	12a	L2c	2	76	17 (<i>S</i>)
30	12a	L3a	1	52	8 (<i>S</i>)
31	1 2 a	L3a	2	62	9 (<i>S</i>)
32	12a	L3b	1	84	50 (<i>R</i>)
33	12a	L3b	2	77	50 (<i>R</i>)
34	12a	L4a	1	96	36 (<i>S</i>)
35	12a	L4a	2	97	38 (<i>S</i>)
36	12a	L4b	1	100	17 (<i>R</i>)
37	12a	L4b	2	100	20 (<i>R</i>)
38	12a	L5a	1	100	27 (<i>S</i>)
39	12a	L5a	2	40	30 (<i>S</i>)
40	12a	L5b	1	100	66 (<i>R</i>)
41	12a	L5b	2	100	68 (<i>R</i>)
42	12a	L _A	1	0	-
43	12a	L _A	2	0	-
44	12a	L _B	1	11	47 (S)
45	1 2 a	L _B	2	0	-

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ in toluene at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrates **12a,b** and enantiomeric excess of **16** were determined by HPLC (Daicel Chiralcel OD-H, C₆H₁₄/*i*PrOH = 85/15, 0.8 mL/min, 254 nm, t(S) = 9.7 min, t(R) = 10.6 min). [c] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature.^[27] [d] In C₆H₆.

Table S6. Pd-catalyzed allylic alkylation of 12b with 17. [a]

Ph OCO 12b	$_{2}Me + NH H PhMe$ 17 Cs ₂ CO ₃ , Pd-cat PhMe	Ph N 18		
Entry	Compound	L/Pd	Yield [%]	<i>Ee</i> [%] ^[b,c]
1	L1a	1	47	53 (<i>S</i>)
2	L1a	2	52	55 (<i>S</i>)
3	[Pd(allyl)(L1a)]BF ₄	1	32	40 (<i>S</i>)
4	L1b	1	38	76 (<i>S</i>)
5	L1b	2	45	77 (<i>S</i>)
6	L1c	1	36	76 (<i>S</i>)
7	L1c	2	44	76 (<i>S</i>)
8	L1d	1	0	-

9	L1d	2	0	-
10	L1e	1	62	82 (S)
11	L1e	2	73	73 (<i>S</i>)
12	L1f	1	41	65 (<i>S</i>)
13	L1f	2	37	22 (<i>S</i>)
14	[Pd(allyl)(L1f)]BF ₄	1	30	47 (S)
15	L1g	1	0	-
16	L1g	2	0	-
17	L1h	1	0	-
18	L1h	2	0	-
19	L2a	1	25	50 (<i>S</i>)
20	L2a	2	30	51 (<i>S</i>)
21	L2b	1	0	-
22	L2b	2	0	-
23	L2c	1	0	-
24	L2c	2	0	-
25	L3a	1	0	-
26	L3a	2	0	-
27	L3b	1	0	-
28	L3b	2	0	-
29	L4a	1	53	52 (<i>S</i>)
30	L4a	2	55	56 (<i>S</i>)
31	L4b	1	0	-
32	L4b	2	0	-
33	L5a	1	48	55 (<i>S</i>)
34	L5a	2	50	60 (<i>S</i>)
35	L5b	1	45	71 (<i>R</i>)
36	L5b	2	57	91 (<i>R</i>)
37	L5b	2	73	89 (<i>R</i>) ^[d]
38	L _A	1	0	-
39	L _A	2	0	-
40	L _B	1	9	13 (<i>S</i>)
41	L _B	2	0	-

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ in toluene at room temperature for 24 h (BSA, KOAc). [b] The conversion of substrate **12b** and enantiomeric excess of **18** were determined by HPLC (Daicel Chiralpak AD-H, $C_6H_{14}/iPrOH = 99/1$, 1.0 mL/min, 254 nm, t(S) = 13.0 min, t(R) = 16.8 min). [c] The absolute

configuration was assigned by comparison of the HPLC retention times reported in the literature.^[16f] [d] At 55 $^{\circ}$ C for 12 h.

aniline, NHPh OAc P(O)(OEt)₂ P(O)(OEt)₂ Pd-cat Ph Ph P(O)(OEt)₂ + P(O)(OEt)₂ Ph CH₂Cl₂ NHPh OAc 19 21 22 20 20/21/22^[b] *Ee* [%] ^[c,d] Entry Compound L/Pd Conversion [%] 1 L1a 1 100 92/8/0 58 (R) L1a 100 89/11/0 52 (R) 2 2 [Pd(allyl)(L1a)]BF₄ 1 100/0/0 3 100 59 (R) L1b 84/16/0 4 95 76 (R) 1 L1b 2 95 78/22/0 75 (R) 5 74/26/0 37 (R) 6 L1c 100 1 L1c 7 2 100 90/10/0 17 (R) 8 L1d 62 62/27/11 50 (R) 1 9 L1d 2 0 -100/0/0 10 L1e 1 100 29 (R) 2 L1e 100 97/3/0 24 (R) 11 12 L1f 100 95/5/0 73 (R) 1 L1f 13 2 100 97/3/0 73 (R) [Pd(allyl)(L1f)]BF₄ 26/74/0 14 100 16 (R) 1 0 -15 L1g 1 -16 L1g 2 0 --17 L1h 1 100 72/18/10 19 (R) L1h 2 100 18 85/15/0 20 (R) 0 -19 L2a 1 -100 82/18/0 20 L2a 2 52 (R) 21 L2b 100 63/37/0 1 0 22 L2b 2 100 21/79/0 0 L2c 100 45/55/0 23 1 11 (R) 2 100 63/37/0 24 L2c 12 (R) 25 L3a 1 100 100/0/0 92 (S) L3a 2 100 100/0/0 92 (S) 26 27 L3b 1 100 80/20/0 71 (S) L3b 100 86/14/0 64 (S) 28 2 29 L4a 1 100 100/0/0 84 (S) 2 30 L4a 100 99/1/0 83 (S)

Table S7. Pd-catalyzed allylic amination of **19** with aniline.
 [a]
CATALYTIC RESULTS

31	L4b	1	100	100/0/0	87 (R)
32	L4b	2	100	100/0/0	88 (<i>R</i>)
33	L5a	1	100	100/0/0	67 (<i>S</i>)
34	L5a	2	100	100/0/0	67 (<i>S</i>)
35	L5b	1	100	100/0/0	70 (<i>S</i>)
36	L5b	2	100	100/0/0	69 (<i>S</i>)
37	L _A	1	90	37/58/5	13 (<i>S</i>)
38	L _B	1	100	71/29/0	83 (<i>S</i>)

[a] All reactions were carried out with 1 mol% of $[Pd(allyl)Cl]_2$ in CH_2Cl_2 at room temperature for 24 h (K₂CO₃). [b] The conversion of substrate **19** and the ratio of **20/21/22** was determined by ³¹P{¹H} NMR spectroscopy. [c] The enantiomeric excess of **20** was determined by HPLC (Daicel Chiralcel OD-H, C₆H₁₄/*i*PrOH = 9/1, 1.0 mL/min, 254 nm, t(S) = 5.9 min, t(R) = 7.0 min). [d] The absolute configuration was assigned by comparison of the HPLC retention times reported in the literature.^[14]

REFERENCES

1. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.

2. K. Brandenburg, DIAMOND, Release 2.1d; Crystal Impact GbR: Bonn, Germany, 2000.

3. D. Seebach, A. K. Beck, R. Imwinkelried, S. Roggo, A. Wonnacott, *Helv. Chim. Acta*, 1987, **70**, 954–974.

4. C. Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc., 2014, 136, 6534–6537.

5. D. Seebach, E. Devaquet, A. Emst, M. Hayakawa, F. N. M. Kiihnle, W. B. Schweizer, B. Weher, *Helv. Chim. Acta*, 1995, **78**, 1636–1650.

6. K. N. Gavrilov, I. V. Chuchelkin, S. V. Zheglov, I. D. Firsin, V. M. Trunina, V. K. Gavrilov, N. E. Borisova, V.
S. Zimarev, A. A. Denesh, N. S. Goulioukina, *Mendeleev Commun.*, 2021, **31**, 651–653.

7. J. J. Lucier, A. D. Harris, P. S. Korosec, Org. Synth., 1964, 44, 72–74.

8. G. A. Cran, C. L. Gibson, S. Handa, Tetrahedron: Asymmetry, 1995, 6, 1553–1556.

9. T. Shinohara, A. Takeda, J. Toda, T. Sano, Chem. Pharm. Bull., 1998, 46, 430–433.

10. P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc., 1985, 107, 2033–2046.

11. T. Hayashi, A. Yamamoto, Y. Ito, E. Nishioka, H. Miura, K. Yanagi, *J. Am. Chem. Soc.*, 1989, **111**, 6301–6311.

12. P. G. M. Wuts, S. W. Ashford, A. M. Anderson, J. R. Atkins, Org. Lett., 2003, 5, 1483–1485.

13. H. J. Seo, E.-J. Park, M. J. Kim, S. Y. Kang, S. H. Lee, H. J. Kim, K. N. Lee, M. E. Jung, M. W. Lee, M.-S. Kim, E.-J. Son, W.-K. Park, J. Kim, J. Lee, *J. Med. Chem.*, 2011, **54**, 6305–6318.

14. X. Wang, X. Wang, Z. Han, Z. Wang, K. Ding, Org. Chem. Front., 2017, 4, 271–276.

15. a) A. Mandoli, L. A. Arnold, A. H. M. de Vries, P. Salvadori, B. L. Feringa, *Tetrahedron: Asymmetry*, 2001, **12**, 1929–1937; b) R. Imbos, A. J. Minnaard, B. L. Feringa, *Dalton Trans.*, 2003, 2017–2023.

16. a) K. N. Gavrilov, I. S. Mikhel, S. V. Zheglov, V. K. Gavrilov, I. V. Chuchelkin, I. D. Firsin, K. P. Birin, I. S. Pytskii, K. A. Paseshnichenko, V. A. Tafeenko, V. V. Chernyshev, A. A. Shiryaev, *Org. Chem. Front.*, 2019, 6, 1637–1648; b) I. V. Chuchelkin, K. N. Gavrilov, V. K. Gavrilov, S. V. Zheglov, I. D. Firsin, A. M. Perepukhov, A. V. Maximychev, N. E. Borisova, I. A. Zamilatskov, V. S. Tyurin, C. Dejoie, V. V. Chernyshev, V. S. Zimarev, N. S. Goulioukina, *Organometallics*, 2021, 40, 3645–3658; c) T. Nemoto, T. Matsumoto, T. Masuda, T. Hitomi, K. Hatano, Y. Hamada, J. Am. Chem. Soc., 2004, 126, 3690–3691; d) T. Nemoto, T. Masuda, T. Matsumoto, Y. Hamada, *J. Org. Chem.*, 2005, 70, 7172–7178; e) T. Nemoto, T. Harada, T. Matsumoto, Y. Hamada, *Tetrahedron Lett.*, 2007, 48, 6304–6307; f) C.-X. Zhuo, Y. Zhou, S.-L. You, *J. Am. Chem. Soc.*, 2014, 136, 6590–6593.

17. F. Tinnis, H. Lundberg, H. Adolfsson, Adv. Synth. Catal., 2012, 354, 2531–2536.

18. B. Soliman, N. Wang, G. Zagotto, S. Pockes., Arch. Pharm. Chem. Life Sci., 2019, **352**, 1900107.

19. H. Ishibashi, M. Uegaki, M. Sakai, Y. Takeda, *Tetrahedron*, 2001, **57**, 2115–2120.

REFERENCES

20. S. R. Yong, A. T. Ung, S. G. Pyne, B. W. Skelton, A. H. White, *Tetrahedron*, 2007, 63, 1191–1199.

21. J. Barluenga, F. J. Fananas, J. Villamana, M. Yus, J. Org. Chem., 1982, 47, 8, 1560–1564.

22. a) S. Breeden, M. Wills, J. Org. Chem., 1999, 64, 9735–9738; b) L.-Y. Mei, Z.-L. Yuan, M. Shi, Organometallics, 2011, 30, 6466–6475; (c) D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagne, J. Am. Chem. Soc., 2000, 122, 7905–7920; (d) H. Y. Cheung, W.-Y. Yu, T. T. L. Au-Yeung, Z. Zhou, A. S. C. Chan, Adv. Synth. Catal., 2009, 351, 1412–1422.

23. a) D. Smyth, H. Tye, C. Eldred, N. W. Alcock, M. Wills, *J. Chem. Soc., Perkin Trans.* 1, 2001, 2840–2849; b) J. Chen, F. Lang, D. Li, L. Cun, J. Zhu, J. Deng, J. Liao, *Tetrahedron: Asymmetry*, 2009, **20**, 1953–1956.

24. a) E. B. Benetskiy, C. Bolm, *Tetrahedron:Asymmetry*, 2011, 22, 373–378; b) K. E. Thiesen, K. Maitra, M. M. Olmstead, S. Attar, *Organometallics*, 2010, 29, 6334–6342; c) M. Ramillien, N. Vanthuyne, M. Jean, D. Gherase, M. Giorgi, J.-V. Naubron, P. Piras, C. Roussel, *J. Chromatogr. A*, 2012, 1269, 82–93; d)
Y. Naganawa, H. Abea, H. Nishiyama, *Chem. Commun.*, 2018, 54, 2674–2677; e) J. Liu, G. Chen, J. Xing, J. Liao, *Tetrahedron: Asymmetry*, 2011, 22, 575–579.

25. K. N. Gavrilov, S. V. Zheglov, I. V. Chuchelkin, M. G. Maksimova, I. D. Firsin, A. N. Fitch, V. V. Chernyshev, A. V. Maximychev, A. M. Perepukhov, *Tetrahedron: Asymmetry*, 2017, 28, 1633–1643.
26. a) M. Majdecki, J. Jurczak, T. Bauer, *ChemCatChem*, 2015, 7, 799–807.

27. M. Ogasawara, H. L. Ngo, T. Sakamoto, T. Takahashi, W. Lin, Org. Lett., 2005, 7, 2881–2884.

L1a, ¹³C{¹H} APT spectrum.

L1a, ¹H-¹³C HSQC spectrum.

L1b, ³¹P{¹H} spectrum.

L1b, ¹H-¹H COSY spectrum.

S46

L1c, ¹H-¹³C HMBC spectrum.

36.06

200 180 160 140 120 100 80 -120 -150 -180 60 40 20 0 -10 -30 -50 -70 -90 **L1e**, ³¹P{¹H} spectrum.

L1e, ¹H-¹H COSY spectrum.

NMR AND MASS SPECTRA

S56

140.21

L1f, ¹H-¹³C HSQC spectrum.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **L1g**, ³¹P{¹H} spectrum.

L1g, ¹H-¹³C HSQC spectrum.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **L1h**, ³¹P{¹H} spectrum.

L1h, ¹³C{¹H} spectrum.

L1h, ¹H-¹H COSY spectrum.

L1h, ¹H-¹³C HMBC spectrum.

L2a, ¹H spectrum.

L2a, ¹³C{¹H} APT spectrum.

L2a, ¹H-¹H COSY spectrum.

L2b, ¹³C{¹H} APT spectrum.

L2b, ¹H-¹³C HSQC spectrum.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **L2c**, ³¹P{¹H} spectrum.

L2c, ¹H-¹H COSY spectrum.

L2c, ¹H-¹³C HMBC spectrum.

L3a, ¹H spectrum.

L3a, ¹³C{¹H} APT spectrum.

^{240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40} L3b, ³¹P{¹H} spectrum.

L3b, ¹H-¹H COSY spectrum.

L3b, ¹H-¹³C HMBC spectrum.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 -10 -20 -30 -40 L4a, ³¹P{¹H} spectrum.

L4a, ¹³C{¹H} APT spectrum.

L4a, ¹H-¹³C HSQC spectrum.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **L4b**, ³¹P{¹H} spectrum.

S88

L4b, ¹H-¹H COSY spectrum.

L4b, ¹H-¹³C HMBC spectrum.

L5a, ¹³C{¹H} APT spectrum.

L5a, ¹H-¹³C HSQC spectrum.

8.0

7.5

7.0

6.5

6.0

5.5 5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5 1.0

0.5 0.0

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 **L5b**, ³¹P{¹H} spectrum.

L5b, ¹H-¹H COSY spectrum.

L5b, ¹H-¹³C HMBC spectrum.

[Pd(allyl)(L1a)]BF₄, ¹³C{¹H} APT spectrum.

[Pd(allyl)(L1a)]BF₄, ¹H-¹³C HSQC spectrum.

[Pd(allyl)(L1a)]BF₄, HRMS-spectrum (general view of the spectrum).

[Pd(allyl)(L1a)]⁺, experimental (top) and calculated (bottom) peaks.

 $[Pd(allyl)(L1f)]BF_4$, ³¹P{¹H} spectrum.

[Pd(allyl)(L1f)]BF₄, ¹³C{¹H} spectrum.

[Pd(allyl)(L1f)]BF₄, ¹H-¹H COSY spectrum.

[Pd(allyl)(L1f)]BF₄, HRMS-spectrum (general view of the spectrum).

Mixture of L1a and [Pd(allyl)(L1a)]BF₄, ³¹P{¹H} spectrum

HPLC TRACES

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **10a** with dimethyl malonate (entry 33 in Table S2) and for a racemic mixture of **11a** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **10a** with di-*tert*-butyl malonate (entry 35 in Table S2) and for a racemic mixture of **11b** (in the frame).

* starting substrate 10a

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **10a** with dibenzyl malonate (entry 37 in Table S2) and for a racemic mixture of **11c** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of **10a** with pyrrolidine (entry 27 in Table S3) and for a racemic mixture of **11d** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **12b** with ethyl 2-oxocyclohexane-1-carboxylate (entry 29 in Table S4) and for a racemic mixture of **14** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **12a** with ethyl 2-acetamido-3-oxobutanoate (entry 27 in Table S5) and for a racemic mixture of **16** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic alkylation of **12b** with 2,5-dimethylpyrrole (entry 36 in Table S6) and for a racemic mixture of **18** (in the frame).

Chiral HPLC trace for the Pd-catalyzed asymmetric allylic amination of **19** with aniline (entry 25 in Table S7) and for a racemic mixture of **20** (in the frame).