Supplementary Information

Decarboxylative [3+2] Cycloaddition of Propargyl Cyclic Carbonates with C,Obis(nucleophile)s to access Dihydrofuro[3,2-c]coumarins and Dihydronaphtho[1,2-b]furans with Quaternary Center

Shravani Battula, ${ }^{\text {a,b }}$ Pranay Kothuri, ${ }^{\text {a }}$ Haripriya Bhumannagari ${ }^{\text {a }}$ and Kiranmai Nayani ${ }^{\text {a,b }}{ }^{\text {* }}$
${ }^{a}$ Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
${ }^{b}$ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
*E-mail: kiranmainayani@iict.res.in

Table of Contents

1. General Information S3
2. Synthesis and Experimental Characterization of Compounds S4-S28
2.1. General Procedure for Synthesis of Dihydrofuro[3,2-c]coumarins 3 S4
2.2. Experimental and Characterization of Dihydrofuro[3,2-c]coumarins 3a-w S4-S18
2.3. Optimization of $[3+2]$ Cycloaddition of α-Naphthol to Cyclic Carbonates S19
2.4. General Procedure for Dihydronaphtho[1,2-b]furan 5. S20
2.5. Experimental and Characterization of Dihydronaphtho[1,2-b]furan 5a-j. S20-S26
2.6. Gram Scale Synthesis of Compounds 3a and 5a. S26-S27
2.7. Product Derivatization S27-S28
3. References S28
4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19}$ F NMR Spectra of Compounds S29-S101
5. HPLC Chromatogram of Compounds S102-S149
5.1. HPLC Chromatogram of Compounds 3a-w S102-S144
5.2. HPLC Chromatogram of Compounds 5a S145
5.3. HPLC Chromatogram of Gram-scale Reaction Products S146-S147
5.4. HPLC Chromatogram of Compounds $\mathbf{6}$ and 7 S148-S149
6. X-ray Crystallographic Data of Compound 3b S150-S151

1. General Information

All chemicals have been purchased from commercial sources and were used without further purification unless otherwise noted. All solvents are reagent grade or HPLC grade. The synthetic transformations have been monitored by thin layer chromatography (TLC). TLC was performed on silica gel $60 \mathrm{~F}_{254}$ plates (glass plates). Concentration under reduced pressure was performed by rotary evaporation below $45^{\circ} \mathrm{C}$. Column chromatography was performed using silica gel (100-200 mesh) packed in glass columns. Yields refer to spectroscopically pure compounds after isolation. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded in CDCl_{3} and $\mathrm{MeOH}-d 4$ using 400 or $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right), 100$ or 125 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ and $376 \mathrm{MHz}\left({ }^{19} \mathrm{~F}\right)$. Chemical shifts (δ-values) are reported in ppm, spectra were calibrated related to solvents' residual proton chemical shifts $\left(\mathrm{CDCl}_{3}, \delta=7.26 \mathrm{ppm}\right.$ and $\left.\mathrm{MeOH}-d_{4}, \delta=3.31 \mathrm{ppm}\right)$ and solvents' residual carbon chemical shifts $\left(\mathrm{CDCl}_{3}, \delta=77.16 \mathrm{ppm}\right.$ and $\left.\mathrm{MeOH}-d_{4}, \delta=49.01 \mathrm{ppm}\right)$, multiplicity is reported as follows: $\mathrm{s}=$ singlet, brs = broad singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{t}=$ triplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{m}=$ multiplet or unresolved and coupling constant J in Hz. Melting points (mp) were determined in open capillaries and are uncorrected. Infrared spectra (IR) were recorded on a 0.1 mm KBr demountable cell. High-resolution mass spectra (HRMS) were obtained by electrospray ionization using a Q-TOF mass spectrometer in positive ion mode ($\mathrm{M}+\mathrm{H}$ or $\mathrm{M}+\mathrm{Na}$) as indicated.

2. Synthesis and Experimental Characterization of Compounds

2.1 General Procedure for Synthesis of Dihydrofuro[3,2-c]coumarins (3)

To a clean and dry round-bottom flask, under nitrogen atmosphere added dried $\mathrm{CuI}(1 \mathrm{~mol} \%)$ and $\mathbf{L} \mathbf{2}$ ($2 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ solvent and stirred at $70^{\circ} \mathrm{C}$ for 1 h and the resultant Copper-ligand complex was cooled to $-20^{\circ} \mathrm{C}$ and then added $\mathbf{1 a - 1 g}$ ($0.616 \mathrm{mmol}, 1.0$ equiv) followed by DABCO ($0.092 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and cyclic carbonate ${ }^{1} \mathbf{2 a - 2} \mathbf{j}$ ($0.616 \mathrm{mmol}, 1.0$ equiv) dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ (1 mL) was added slowly drop wise. The reaction was maintained and stirred at $-20^{\circ} \mathrm{C}$ for $4-8 \mathrm{~h}$. After completion of reaction, the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using $50 \% \mathrm{EtOAc} /$ hexanes as eluent to afford the pure dihydrofuro[3,2-c]coumarin scaffolds 3 .

2.2. Experimental and Characterization of Dihydrofuro[3,2-c]coumarins (3a-w)

(R)-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3a)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0 \mathrm{equiv}$) and cyclic carbonate 2a ($116.06 \mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) using CuI $(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(3.28 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\operatorname{DABCO}(10.37 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 a}(185 \mathrm{mg}, 98 \%)$ as a off-white solid. HPLC purity: 99:1 er. $[\alpha]^{20}=-26\left(c=0.4, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 154-156{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}), 7.30(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.51(\mathrm{q}, 1 \mathrm{H})$, $4.18(\mathrm{dd}, J=11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.7$,
$164.5,160.0,155.2,139.5,133.2,129.0,127.8,126.8,124.54,123.0,117.2,111.4,107.7,91.7,67.4$, 58.2. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3430,3063,3017,2933,2880,1705,1679,1639,1605,1497,1400$, $1327,1212,1090,1072,979,905,850,750,697,666,635$. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{4}: 307.0970$, found 307.0984.
(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3b)

By following the general procedure, the reaction was performed with 6-methyl-4-hydroxycoumarin $\mathbf{1 b}$ ($100 \mathrm{mg}, 0.567 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}$ ($106.81 \mathrm{mg}, 0.567 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.08 \mathrm{mg}, 1 \mathrm{~mol} \%$), L2 ($3.02 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($9.55 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 b}$ ($171 \mathrm{mg}, 94 \%$) as an off white solid. HPLC purity: 95:5 er. $[\alpha]^{20}=-19\left(c=0.2, \mathrm{CHCl}_{3}\right)$. mp $136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.59(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 5.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{td}, J=11.2,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,164.5,160.3,153.5,134.5,134.4,129.0,127.8$, $126.8,122.5,117.0,111.1,107.7,91.6,67.5,58.1,21.0$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3426,3070,2932$, 2865, 1683, 1633, 1572, 1497, 1432, 1309, 1202, 1080, 999, 895, 821, 762, 693, 653, 618. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}: 321.1127$, found 321.1143.
(R)-8-Bromo-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4one (3c)

By following the general procedure, the reaction was performed with 6-bromo-4-hydroxycoumarin $\mathbf{1 c}(100 \mathrm{mg}, 0.414 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}$ ($78.07 \mathrm{mg}, 0.414 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(0.79 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(2.21 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(6.98 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column
chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 c}(136 \mathrm{mg}, 85 \%)$ as a pale-yellow semi solid. HPLC purity: $>99: 1 \mathrm{er} .[\alpha]^{20}=-20.6\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, J=5.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H})$, $7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dt}, J=7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17(\mathrm{dd}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5$, $163.8,159.1,153.9,139.1,136.0,129.0,127.9,126.8,125.5,118.9,117.3,113.0,108.6,92.1,67.1$, 58.4. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3468,3066,2924,2854,1813,1708,1639,1560,1489,1422,1381$, 1263, 1211, 1105, 1063, 980, 907, 823, 756, 696, 638. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br}: 385.0075$, found 385.0081 .
(\boldsymbol{R})-8-Fluoro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4one (3d)

By following the general procedure, the reaction was performed with 6-fluoro-4-hydroxycoumarin $\mathbf{1 d}(100 \mathrm{mg}, 0.555 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate 2a ($104.40 \mathrm{mg}, 0.555 \mathrm{mmol}, 1.0$ equiv) using $\operatorname{CuI}(1.05 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(2.95 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.34 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 d}(144 \mathrm{mg}, 80 \%)$ as a pale-yellow semi solid. HPLC purity: >99:1 er. $[\alpha]^{20}=-22.5\left(c=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48$ $-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{ddd}, J=9.6,5.3,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.28$ (ddd, $J=8.4$, $5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.2,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5$, $163.7,159.5$, (d, $\left.J_{\mathrm{C}-\mathrm{F}}=8.6 \mathrm{~Hz}\right), 157.9,151.4,139.2,129.0,127.9,126.8,120.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=24.7 \mathrm{~Hz}\right)$, $119.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 112.2,108.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=25.3 \mathrm{~Hz}\right), 92.1,67.2,58.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-115.88$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3446,3069,2926,2857,1724,1578,1500,1451,1392,1269$, 1189, 1072, 988, 906, 821, 765, 699, 664. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~F}$ 325.0876, found 325.0890 .

(R)-8-Chloro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4one (3e)

By following the general procedure, the reaction was performed with 6-chloro-4-hydroxycoumarin $\mathbf{1 e}(100 \mathrm{mg}, 0.508 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}(95.72 \mathrm{mg}, 0.508 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(0.97 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L 2}(2.71 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(8.55 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel (50% EtOAc/hexanes) to afford $\mathbf{3 e}(142 \mathrm{mg}, 82 \%)$ as a pale-yellow semi solid. HPLC purity: $>99: 1 \mathrm{er} .[\alpha]^{20}=-24.6\left(c=0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=11.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}$, $J=11.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.4,163.3,159.2,153.5$, 139.1, 133.2, 130.1, 129.0, 128.0, 126.8, 122.4, 118.6, 112.5, 108.5, 92.1, 67.1, 58.4. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3440,3068,2926,2856,1723,1642,1565,1492,1426,1384,1263,1210,1111,1066,966$, 910, 825, 738, 698, 654. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}: 341.0581$, found 341.0593.
(R)-3-(hydroxymethyl)-2-methylene-3-(naphthalen-1-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3f)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($146.93 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L 2}(3.28 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($10.377 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by column chromatography on silica gel (50% EtOAc/hexanes) to afford $\mathbf{3 f}$ ($216 \mathrm{mg}, 98 \%$) as an off-white solid. HPLC purity: >99:1 er. $[\alpha]^{20}=-21.5\left(c=0.4, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 119-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 7.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,164.7,160.1$, $155.3,136.9,133.3,132.7,128.8,128.3,127.5,126.4,125.8,124.7,124.6,117.3,111.5,107.9,92.0$, 67.5, 58.2. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3417,3316,3198,2754,2635,2347,1683,1634,1497,1398$, 1276, 1212, 1061, 968, 902, 823, 750, 643. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{4}$: 357.1127, found 357.1135.
(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2$c]$ chromen-4-one (3g)

By following the general procedure, the reaction was performed with 6-methyl-4-hydroxycoumarin $\mathbf{1 b}$ ($100 \mathrm{mg}, 0.567 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($135.23 \mathrm{mg}, 0.567$ $\mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.08 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(3.02 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.55 \mathrm{mg}, 15$ $\mathrm{mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{3 g}$ ($202 \mathrm{mg}, 96 \%$) off white solid. HPLC purity: >99:1 er. $[\alpha]^{20}=-22.6\left(c=0.3, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~m}, J=8.8,4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.61(\mathrm{~m}$, $2 \mathrm{H}), 4.29(\mathrm{dd}, J=11.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=9.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,164.67160 .3,153.5,136.9,134.5,134.4,133.3,132.7,128.8,128.3,127.5,126.3$, $125.8,124.7,122.6,117.0,111.2,107.8,91.7,67.6,58.7,20.9$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3413,3307$, 3040, 2925, 2866, 2340, 1682, 1638, 1571, 1498, 1429, 1387, 1203, 1060, 974, 905, 814, 741, 647. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{4} 371.1283$, found 371.1297.
(R)-3-(Hydroxymethyl)-7-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3h)

By following the general procedure, the reaction was performed with 7-methyl-4-hydroxycoumarin $\mathbf{1 f}(100 \mathrm{mg}, 0.567 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($135.23 \mathrm{mg}, 0.567$ mmol, 1.0 equiv) using $\mathrm{CuI}(1.08 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L} 2(3.02 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.55 \mathrm{mg}, 15$ $\mathrm{mol} \%$) in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{3 h}(178 \mathrm{mg}, 98 \%)$ as a pale-yellow semi solid. HPLC purity: 98:2 er. $[\alpha]^{20}=-24.6\left(c=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.52(\mathrm{~m}, 2 \mathrm{H})$, $4.28(\mathrm{dd}, J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=9.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.0,165.0,160.5,155.5,145.0,137.1,133.4,132.8,128.9,128.4,127.6,126.4,126.0$, $126.0,124.9,122.8,120.7,117.5,109.0,107.0,91.8,67.7,58.1,22.2$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3421$, 3056, 3015, 2925, 2855, 1707, 1678, 1636, 1599, 1513, 1401, 1327, 1217, 1154, 1065, 1017, 945, 858, 816, 754, 665. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{4} 371.1283$, found 371.1293.
(R)-8-Bromo-3-(hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2$c]$ chromen-4-one (3i)

By following the general procedure, the reaction was performed with 6-bromo-4-hydroxycoumarin $\mathbf{1 c}(100 \mathrm{mg}, 0.414 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($98.83 \mathrm{mg}, 0.414$ mmol, 1.0 equiv) using $\mathrm{CuI}(0.790 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(2.21 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($6.98 \mathrm{mg}, 15$ $\mathrm{mol} \%)$ in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{3 i}(159 \mathrm{mg}, 88 \%)$ as a pale-yellow semi solid. HPLC purity: 99:1 er. $[\alpha]^{20}=-24.5\left(c=0.4, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=8.5,4.8 \mathrm{~Hz}, 4 \mathrm{H})$, 7.73 (dd, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.62(\mathrm{~m}, 3 \mathrm{H}), 4.29(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=8.9$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,163.3,159.2,154.0,136.5,136.1,133.3,132.73$, $128.9,128.3,127.5,126.5,125.8,125.5,124.6,11.0,117.3,113.1,108.7,92.3,67.2,58.4$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3363,3190,3029,2925,2790,2313,1713,1637,1557,1487,1378,1263,1209$,

1103, 1059, 965, 906, 817, 757, 662. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{23} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Br}: 435.0232$, found 435.0234.
(R)-3-(hydroxymethyl)-7-methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3j)

By following the general procedure, the reaction was performed with 7-methoxy-4-hydroxycoumarin $\mathbf{1 g}$ ($100 \mathrm{mg}, 0.521 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($124.06 \mathrm{mg}, 0.521$ mmol, 1.0 equiv) using $\mathrm{CuI}(0.99 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L} 2(2.78 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(8.76 \mathrm{mg}, 15$ $\mathrm{mol} \%$) in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{3 j}$ ($197 \mathrm{mg}, 98 \%$) as a off white solid. HPLC purity: >99:1. $[\alpha]^{20}=-22.66\left(c=0.4, \mathrm{CHCl}_{3}\right)$. mp 134-137 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{ddd}, J=9.4,6.6,4.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ $-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=10.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, J=9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,165.1,164.1,160.5,157.4,137.2,133.3,132.7,128.8,128.3,127.5$, $126.3,125.7,124.8,124.0,113.3,104.8,104.6,101.0,91.6,67.7,67.6,58.0,55.9$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3432,3063,2939,2885,1717,1625,1607,1435,1389,1343,1255,1098,1084,975,905$, 879, 795, 737, 695. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{5}: 387.1233$, found 387.1226.

(R)-3-(hydroxymethyl)-9-methoxy-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-

 4-one (3k)

By following the general procedure, the reaction was performed with 5-methoxy-4-hydroxycoumarin $\mathbf{1 h}(100 \mathrm{mg}, 0.521 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}(98 \mathrm{mg}, 0.521 \mathrm{mmol}, 1.0$ equiv) using CuI ($0.99 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L 2}(2.78 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(8.76 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2
mL) at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 k}$ ($175 \mathrm{mg}, 98 \%$) as an off white solid. HPLC purity: >99:1 er. $[\alpha]^{20}=-24\left(c=0.5, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 140-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=11.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=$ $11.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1$, $164.9,160.1,156.8,156.7,139.9,133.7,128.9,127.7,126.9,109.9,107.4,106.2,102.8,91.7,67.7$, 57.0, 56.6. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3430,3061,2937,2883,1715,1623,1604,1473,1386,1343$, 1277, 1093, 1074, 971, 902, 851, 792, 737, 698. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5}$: 337.1076, found 337.1060.

(R)-3-([1,1'-Biphenyl]-4-yl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-

 $c]$ chromen-4-one (31)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and biphenyl substituted cyclic carbonate $2 \mathrm{c}(162.99 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L 2}$ ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel (50% EtOAc/hexanes) to afford $\mathbf{3 1}(231 \mathrm{mg}, 98 \%)$ as an off white solid. HPLC purity: 98:2 er. $[\alpha]^{20}=-22.6\left(c=0.4, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 119-120{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.8,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}$, $6 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\operatorname{td}, J=11.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=9.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,164.6,160.1,155.2,140.7,140.5,138.5,133.3,128.8,127.7,127.4$, $127.2,127.1,124.6,123.0,111.5,107.7,106.9,91.8,67.5,58.0$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3464,3344$, 3230, 3034, 2935, 2867, 1687, 1635, 1492, 1399, 1325, 1278, 1208, 1147, 1061, 952, 901, 843, 755, 695, 647. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{4}: 383.1283$, found 383.1301.

(R)-3-(hydroxymethyl)-3-(2-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-

c]chromen-4-one (3m)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 2-methoxy substituted cyclic carbonate $\mathbf{2 d}(134.58 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L 2}$ ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 m}(201 \mathrm{mg}, 97 \%)$ as an off white solid. HPLC purity: >99:1 er. $[\alpha]^{20}=-25.6\left(c=0.5, \mathrm{CHCl}_{3}\right)$. mp 134-136 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27$ $(\mathrm{m}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (dd, $J=10.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.01$ $(\mathrm{dd}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,164.8,160.0,157.9,155.1,132.8$, $129.2,127.9,127.8,124.4,122.8,120.9,117.2,112.4,111.7,107.5,88.4,68.1,55.6,55.1$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3433,3068,2926,2853,1720,1642,1604,1569,1496,1460,1403,1281,1251$, 1137, 1091, 1027, 952, 908, 755, 638. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5} 337.1076$, found 337.1056.

(R)-3-(Hydroxymethyl)-3-(3-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-

 $c]$ chromen-4-one (3n)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 3-methoxy substituted cyclic carbonate $2 \mathrm{e}(134.58 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} 2(3.28 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 n}$ ($203 \mathrm{mg}, 98 \%$) as a off white solid. HPLC purity: 91:9 er. $[\alpha]^{20}=-19.6\left(c=0.7, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.08(\mathrm{t}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}$, $J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=10.5,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,164.5$, $160.0,155.2,141.0,133.2,130.0,124.5,123.0,119.0,117.2,113.4,112.6,111.5,107.6,91.82,67.4$, 58.2, 55.3. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3451,3044,2920,2855,2339,2119,1705,1637,1602,1494$, 1397, 1285, 1250, 1209, 1149, 1085, 1058, 962, 903, 852, 752, 695, 630. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5}$ 337.1076, found 337.1083.
(R)-3-(Hydroxymethyl)-2-methylene-3-(p-tolyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3o)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 4-methyl substituted cyclic carbonate $\mathbf{2 f}(124.71 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L 2}(3.28 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(10.37 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by column chromatography on silica gel (50% EtOAc/hexanes) to afford $\mathbf{3 o}$ ($188 \mathrm{mg}, 95 \%$) as a off white solid. HPLC purity: 85:15 er. $[\alpha]^{20}=-18\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 117-119{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.79(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{ddt}, J=8.9,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}$, $J=10.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.9,164.4,160.0,155.2,137.5,136.5,133.2,129.6,126.6,124.5,122.9,117.2$, 111.5, 107.9, 91.5, 67.4, 57.9, 21.0. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3471,3074,2964,2923,1693,1636$, 1566, 1496, 1399, 1147, 1066, 985, 902, 833, 750, 661, 630. HRMS (ESI): m / z calculated for $[M+H]^{+}$ $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4} 321.1127$, found 321.1143.

(R)-3-(4-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-

4-one (3p)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 4 -chloro substituted cyclic carbonate $\mathbf{2 g}(137.30 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%)$, L2 ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 p}$ ($208 \mathrm{mg}, 99 \%$) as a paleyellow semi solid. HPLC purity: $84: 16$ er. $[\alpha]^{20}=-18.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.80(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.1,9.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{dd}, J=11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.3,164.6,159.9,155.2,138.0,133.8,133.4,129.0,128.4,124.6,123.0,117.3,111.3,107.5,92.0$, 67.4, 57.7. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3428,3016,2929,2879,1707,1679,1639,1568,1495,1403$, 1328, 1212, 1148, 1094, 982, 906, 834, 755, 636. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl} 341.0581$, found 341.0592 .
(R)-3-(4-Bromophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-

4-one (3q)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 4-bromo substituted cyclic carbonate $\mathbf{2 h}(164.72 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L 2}$ ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel (50% EtOAc/hexanes) to afford $\mathbf{3 q}(235 \mathrm{mg}, 99 \%)$ as a paleyellow semi solid. HPLC purity: 87:13 er. $[\alpha]^{20}=-17.5\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.80(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{tt}, J=7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}$,
$4 \mathrm{H}), 5.25(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=11.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=$ $11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=8.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,164.7,160.0$, 155.2, 138.6, 133.4, 132.0, 128.7, 124.6, 123.0, 122.0, 117.3, 111.3, 107.4, 92.1, 67.3, 57.7. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3428,3015,2928,2880,1706,1679,1638,1567,1493,1400,1328,1281,1212$, $1148,1069,982,903,749,660,634$. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br} 385.0075$, found 385.0087.
(R)-3-(3-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3r)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 3-chloro substituted cyclic carbonate $\mathbf{2 i}(137.30 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L} 2(3.28 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 r}(208 \mathrm{mg}, 99 \%)$ as a paleyellow semi solid. HPLC purity: 85:15 er. $[\alpha]^{20}=-17.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.81(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.8,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~m}, J$ $=8.0,4.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.2,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{dd}, J=11.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.1,164.8,160.0,155.2,141.6,134.8,133.5,130.1,128.0,127.9,125.1,124.6,123.0,117.3,111.3$, 107.3, 92.3, 67.3, 57.8.IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3407,2925,2857,2352,1711,1681,1639,1569$, $1498,1401,1208,1149,1089,962,907,857,730,643$. HRMS (ESI): m / z calculated for $[M+H]^{+}$ $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl} 341.0581$, found 341.0593 .
(R)-3-(4-Fluorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3s)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and 4 -fluoro substituted cyclic carbonate $\mathbf{2 j}$ ($127.15 \mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.17 \mathrm{mg}, 1 \mathrm{~mol} \%$), L2 ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $3 \mathrm{~s}(180 \mathrm{mg}, 90 \%)$ as a paleyellow semi solid. HPLC purity: $84: 16$ er. $[\alpha]^{20}=-18.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.80(\mathrm{dd}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.0,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=8.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.6,164.5,162.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=248.2 \mathrm{~Hz}\right), 160.0,155.2,135.3,135.3,133.4,128.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right)$,, 124.6, 123.0, 117.3, $115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 111.4,107.6,91.9,67.5,57.6 .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, CDCl_{3}) δ-114.65. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3445,2926,2856,1723,1643,1607,1567,1507,1405$, 1262, 1233, 1161, 1095, 989, 951, 910, 842, 761, 703, 662, 637. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~F}$ 325.0876, found 325.0883.
(R)-4-Methyl- N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3yl)methyl)benzenesulfonamide (3t)

By following the general procedure, the reaction was performed with 4-hydroxycoumarin 1a (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and cyclic carbamate $\mathbf{2 k}$ ($210.54 \mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.17 \mathrm{mg}, 1 \mathrm{~mol} \%$), L2 ($3.28 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($10.37 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile (2 mL) at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford 3 t ($260 \mathrm{mg}, 92 \%$) as an off white solid. HPLC purity: 96:4 er. $[\alpha]^{20}=-19.2\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{mp} 104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.75(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.29$ (dd, $J=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=12.7,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=12.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,164.4$, $159.1,155.3,143.4,139.0,136 ., 133.4,129.7,129.0,128.0,127.0,126.6,124.5,123.0,117.2,111.2$,
106.7, 92.7, 56.0, 49.2, 21.5. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3898,3820,3727,3643,2951,2857,2367$, 1713, 1683, 1635, 1497, 1443, 1400, 1325, 1154, 1086, 965, 905, 818, 755, 697, 659. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S} 460.1219$, found 460.1227 .

(R)-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4one (3u)

By following the general procedure, the reaction was performed with 4-hydroxy-1-thiocoumarin $\mathbf{1 i}$ ($100 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}$ ($188.18 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.06 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L 2}(2.99 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.44 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 u}(172 \mathrm{mg}, 95 \%)$ as an off white solid. HPLC purity: 64:36 er. mp 119-121 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.3,6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=11.3,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{dd}, J=9.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.4,165.0,164.8,140.0,139.8$, $131.3,128.9,127.6,126.7,126.3,125.6,119.2,117.7,90.2,67.7,59.7$. IR (thin film): $v_{\text {max }} / \mathrm{cm}^{-1} 3412$, 3061, 3022, 2926, 2880, 1811, 1610, 1548, 1480, 1376, 1269, 1151, 1117, 1067, 887, 846, 739, 699, 667. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S} 323.0742$, found 323.0757.
(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4-one (3v)

By following the general procedure, the reaction was performed with 4-hydroxy-1-thiocoumarin $\mathbf{1 i}$ ($100 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($133.68 \mathrm{mg}, 0.561$ $\mathrm{mmol}, 1.0$ equiv) using CuI ($1.06 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L} 2(2.99 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($9.44 \mathrm{mg}, 15$ $\mathrm{mol} \%$) in acetonitrile (2 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified
by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{3 v}$ ($201 \mathrm{mg}, 96 \%$) as a off white solid. HPLC purity: 64:36 er. mp $104-106{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J$ $=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.44(\mathrm{~m}$, $4 \mathrm{H}), 5.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=11.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $11.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.4,164.0,163.9$, $138.8,136.3,132.3,131.6,130.3,127.7,127.3,126.5,125.7,125.3,125.2,124.7,124.6,123.7,118.1$, 116.7, 89.4, 66.7, 58.7. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3418,2958,2916,2673,2336,1812,1602,1545$, 1472, 1367, 1266, 1142, 1055, 883, 813, 733, 686. HRMS (ESI): m / z calculated for $[M+H]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S} 373.0898$, found 373.0912.
(\boldsymbol{R})-4-Methyl-N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-3yl)methyl)benzenesulfonamide (3w)

By following the general procedure, the reaction was performed with 4-hydroxy-1-thiocoumarin $1 \mathbf{i}$ ($100 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.0$ equiv) and cyclic carbamate 2 k ($191.56 \mathrm{mg}, 0.561 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.06 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L} \mathbf{2}(2.99 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.44 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-20{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 4 h . The residue was purified by flash column chromatography on silica gel ($50 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{3 w}$ ($235 \mathrm{mg}, 88 \%$) as an off white semi solid. HPLC purity: 64:36 er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.4,7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.52 (d, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,164.6,164.5,143.4,140.1,139.5,136.8,131.4,129.7,128.9$, $127.8,127.0,126.7,126.5,126.3,125.5,118.9,116.2,116.1,91.2,57.5,49.0,21.5$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3870,3566,3256,3026,2924,2855,2363,1619,1549,1480,1443,1376,1331,1159$, 1092, 1070, 895, 815, 756, 707, 666. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S} 2$ 476.0916, found 476.0920.

2.3 Optimization of [3+2] Cycloaddition of α-Naphthol to Cyclic Carbonates ${ }^{a}$

4a

2a

5a

L1

L2: $R={ }^{i} p r, R={ }^{i} p r$
L3: $\mathrm{R}=\mathrm{Ph}, \mathrm{R}=\mathrm{Ph}$

L4: $\mathrm{R}={ }^{\mathrm{i}} \mathrm{pr}, \mathrm{R}={ }^{\mathrm{i}} \mathrm{pr}$
L5: $\mathrm{R}=\mathrm{Ph}, \mathrm{R}=\mathrm{Ph}$

L6

entry	Catalyst	Base	Solvent	Time	Yield $(\%)^{b}$	$e r$ of 5a
1	CuI/L1	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	60	50:50
2	CuI/L1	DIPEA	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	20	57:43
3	CuI/L1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	35	53:47
4	CuI/L1	TEA	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	25	50:50
5	CuI/L1	TEA	Toluene	16 h	<5	-
6	CuI/L1	DABCO	EtOAc	18 h	38	51:49
7	CuI/L1	DABCO	DCM	24 h	<5	-
8	CuI/L1	DABCO	MeOH	24 h	20	-
9	CuI/L1	DABCO	Toluene	36 h	<5	-
10	$\mathrm{Cu}(\mathrm{OAc})_{2} / \mathbf{L 1}$	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	18 h	40	53:47
11	$\mathrm{Cu}(\mathrm{acac})_{2} / \mathbf{L} 1$	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	18 h	45	53:47
12	CuI/L1	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	62	50:50
13	CuI/L2	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	62	50:50
14	CuI/L3	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	64	53:47
15	CuI/L4	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	58	57:43
16	CuI/L5	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	58	57:43
17	CuI/L6	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	60	50:50
18	CuI/L1	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	58	50:50
19^{c}	CuI/L1	DABCO	$\mathrm{CH}_{3} \mathrm{CN}$	16 h	58	50:50

${ }^{a}$ The reaction conditions were performed with $\mathbf{4 a}(0.693 \mathrm{mmol})$, $\mathbf{2 a}(0.693 \mathrm{mmol})$, base ($15 \mathrm{~mol} \%$), catalyst ($1 \mathrm{~mol} \%$) and ligand ($2 \mathrm{~mol} \%$) in solvent $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, unless otherwise stated. Reactions were monitored by TLC, then subjected directly to silica gel column chromatography. ${ }^{b}$ Yields of purified products. ${ }^{c}$ The reactions were carried out at $-20^{\circ} \mathrm{C}$.

2.4 General Procedure for Dihydronaphtho[1,2-b]furan Scaffolds 5

To a clean and dry round-bottom flask, added dried $\mathrm{CuI}(1 \mathrm{~mol} \%)$ and $\mathbf{L 1}(2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}$ solvent and stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h and the resultant Copper-ligand complex was cooled to $-10{ }^{\circ} \mathrm{C}$ and then added $\mathbf{4 a - 4 d}$ ($0.616 \mathrm{mmol}, 1.0$ equiv) followed by DABCO ($0.092 \mathrm{mmol}, 15 \mathrm{~mol} \%$) and cyclic carbonate $\mathbf{2 a - 2 j}$ ($0.616 \mathrm{mmol}, 1.0$ equiv) dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ was added slowly drop wise. The reaction was maintained at $-10^{\circ} \mathrm{C}$ for 16 h . After completion of reaction, water was added to the reaction mixture and extracted to EtOAc twice and washed the organic layer with brine solution and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using $20 \% \mathrm{EtOAc} /$ hexanes as eluent to afford the pure furo[1,2$b]$ dihydronaphthol scaffolds 5.

2.5 Experimental and Characterization of Dihydronaphtho[1,2-b]furan Scaffolds (5a-j)

(2-Methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5a)

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.693$ mmol, 1.0equiv) and cyclic carbonate $\mathbf{2 a}(130.52 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.32 \mathrm{mg}, 1$ $\mathrm{mol} \%), \mathbf{L 1}(8.63 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(11.67 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by column chromatography on silica gel $(20 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to afford $\mathbf{5 a}(120 \mathrm{mg}, 60 \%)$ as a red semi solid. HPLC purity: 50:50 er. Enantioselectivity was not achieved. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 8.02(\mathrm{dt}, J=6.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.85 (dd, $J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{ddd}, J=7.9,5.3,2.4$ $\mathrm{Hz}, 3 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=6.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, MeOH-d4) $\delta 168.2,152.4,142.9,134.4,128.2,127.7,126.9$,
$126.5,125.9,125.6,125.2,122.1,121.6,120.6,119.7,86.18,67.6,58.9$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1}$ $3408,3058,2930,2866,1677,1585,1506,1448,1381,1214,1160,1071,932,810,753,695$. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2}$: 289.1229 found 289.1237.
(3-(4-Chlorophenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5b)

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.693$ mmol, 1.0 equiv) and 4-chloro substituted cyclic carbonate $2 f(154.41 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.32 \mathrm{mg}, 1 \mathrm{~mol} \%)$, L1 ($8.63 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($11.67 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 b}$ ($130 \mathrm{mg}, 58 \%$) a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (ddd, $J=28.8,11.3,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{t}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,152.7,140.7$, $134.5,133.2,131.6,130.3,128.9,128.7,128.1,126.7,126.3,124.0,122.6,121.4,121.3,119.9,87.9$, 68.3, 58.9. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3457,3060,2927,2856,1814,1672,1993,1384,1217,1163$, 1089, 1017, 936, 812, 757, 675. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Cl}: 323.0839$, found 323.0847.

(3-([1,1'-Biphenyl]-4-yl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5c)

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}(100 \mathrm{mg}, 0.693$ mmol, 1.0 equiv) and biphenyl substituted cyclic carbonate 2 c ($183.31 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.32 \mathrm{mg}, 1 \mathrm{~mol} \%)$, $\mathbf{L} 1(8.63 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(11.67 \mathrm{mg}, 15 \mathrm{~mol} \%) \mathrm{in}$ acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash
column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 c}(137 \mathrm{mg}, 54 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 8.06-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.48(\mathrm{~m}$, $7 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dd, $J=8.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $4.16(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 169.5,153.8$, $143.3,141.9,141.0,135.8,129.8,129.1,128.8,128.3,128.1,127.9,127.3,127.0,126.6,123.5,123.1$, $122.0,121.1,87.6,69.0,60.1$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3453,3023,2930,1811,1680,1586,1486$, 1382, 1215, 1159, 1077, 931, 812, 755, 694. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{2}$: 365.1542 , found 365.1554 .

(3-(3-Methoxyphenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5d)

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.693$ $\mathrm{mmol}, 1.0$ equiv) and 3-methoxy substituted cyclic carbonate $\mathbf{2 d}(151.35 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.32 \mathrm{mg}, 1 \mathrm{~mol} \%)$, L2 $(8.63 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(11.67 \mathrm{mg}, 15 \mathrm{~mol} \%) \mathrm{in}$ acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 d}(115 \mathrm{mg}, 52 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 8.05-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.46$ (m, $3 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{ddd}, J=7.8,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{ddd}, J=8.2,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOH}-d 4$) δ $169.3,161.3,153.7,145.7,135.8,130.6,129.1,127.3,127.0,126.5,123.5,123.0,122.0,121.1,120.5$, $114.5,113.0,87.6,69.0,60.3,55.6$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3453,2926,2856,1732,1677,1593$, 1455, 1382, 1255, 1227, 1161, 1058, 977, 937, 809, 771, 696. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3}$ 319.1334, found 319.1342.

(2-Methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5e)

S22

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.693$ mmol, 1.0 equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($165.24 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.32 \mathrm{mg}, 1 \mathrm{~mol} \%$), L1 ($8.63 \mathrm{mg}, 2 \mathrm{~mol} \%$) and DABCO ($8.63 \mathrm{mg}, 0.104 \mathrm{mmol}, 0.15$ equiv) in acetonitrile (2 mL) at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{5 e}(150 \mathrm{mg}, 64 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.73(\mathrm{~m}, 5 \mathrm{H}), 7.48$ (ddd, $J=24.8,8.5,4.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.34(\mathrm{ddd}, J=13.4,8.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.06-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{dd}$, $J=11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=11.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , MeOH-d4) $\delta 168.2,152.5,140.1,134.5,133.3,132.4,127.9,127.8,127.0,126.0,125.8,125.7,125.6$, $125.3,125.1,122.1,121.8,121.6,120.7,119.7,86.5,67.6,59.1$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3454,3057$, 2952, 2889, 1811, 1676, 1636, 1588, 1513, 1444, 1382, 1271, 1216, 1159, 1063, 935, 809, 754, 683. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{2}: 339.1385$, found 339.1391 .

(7-Methoxy-2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5f)

By following the general procedure, the reaction was performed with 7-methoxy-1-Naphthol $\mathbf{4 b}$ (100 $\mathrm{mg}, 0.574 \mathrm{mmol}, 1.0$ equiv) and cyclic carbonate $\mathbf{2 a}(108.1 \mathrm{mg}, 0.574 \mathrm{mmol}, 1.0$ equiv) using CuI ($1.09 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L} \mathbf{1}(7.15 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\operatorname{DABCO}(9.66 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile (2 mL) at $-10{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 f}$ ($108 \mathrm{mg}, 59 \%$) as a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 168.2$, $157.9,151.7,142.9,129.9,129.4,128.2,126.9,126.5,125.8,121.4,120.5,119.5,118.8,98.6,85.9$, 67.6, 59.1, 54.5. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3446,2926,2858,1732,1678,1605,1460,1441,1379$, 1341, 1271, 1227, 1157, 1069, 935, 837, 705, 696, 661. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} 319.1334$, found 319.1357.
(8-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5g)

By following the general procedure, the reaction was performed with 6-methoxy-1-Naphthol $\mathbf{4 c}$ (100 $\mathrm{mg}, 0.574 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($136.86 \mathrm{mg}, 0.574 \mathrm{mmol}$, 1.0 equiv) using CuI ($1.09 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L} \mathbf{1}(7.15 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and DABCO ($9.66 \mathrm{mg}, 15 \mathrm{~mol} \%$) in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 g}(123 \mathrm{mg}, 58 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 7.99-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.41$ (m, $3 \mathrm{H}), 7.36(\mathrm{dd}, J=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{dd}, J=9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOH}-d 4$) δ 169.7, 159.6, 154.1, 141.7, 137.4, 134.7, 133.7, 129.2, 129.1, 128.4, 127.2, 127.0, 126.4, 124.5, 124.1, 123.5, 122.0, 1197, 116.4, 107.3, 87.7, 69.0, 60.3, 55.8. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3408,3012,2926,1729,1675,1636,1602,1472,1424,1362,1249,1216,1150$, 1026, 947, 914, 818, 751, 677. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{3}: 369.1491$, found 369.1491 .

(8-Fluoro-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol

 (5h)

By following the general procedure, the reaction was performed with 6-fluoro-1-Naphthol 4d (100 $\mathrm{mg}, 0.616 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}$ ($146.91 \mathrm{mg}, 0.616 \mathrm{mmol}$, 1.0 equiv) using $\mathrm{CuI}(1.17 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathbf{L 1}(7.68 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(10.37 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 h}(136 \mathrm{mg}, 62 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.64(\mathrm{~m}$,
$1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48$ $(\mathrm{d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , MeOHd4) $\delta 169.3,162.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.0 \mathrm{~Hz}\right), 153.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}\right), 141.3,134.7,133.8,132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $9.0 \mathrm{~Hz}), 129.2,128.4,127.9,127.2,126.9,126.4,123.2,122.8,121.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.6 \mathrm{~Hz}\right), 117.5\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{F}=25.5 \mathrm{~Hz}), 105.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}\right), 88.9,68.9,60.6 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d} 4$) $\delta-115.57$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3445,3057,2930,1731,1676,1639,1522,1454,1368,1266,1190,1159$, 1092, 1060, 940, 832, 757, 666. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~F}: 357.1291$, found 357.1293.

(7-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5i)

By following the general procedure, the reaction was performed with 7-methoxy-1-Naphthol $\mathbf{4 e}$ (100 $\mathrm{mg}, 0.574 \mathrm{mmol}, 1.0$ equiv) and naphthyl substituted cyclic carbonate $\mathbf{2 b}(136.86 \mathrm{mg}, 0.574 \mathrm{mmol}$, 1.0 equiv) using CuI ($1.09 \mathrm{mg}, 1 \mathrm{~mol} \%$), $\mathbf{L} \mathbf{1}(7.15 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(9.66 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $\mathbf{5 i}(121 \mathrm{mg}, 57 \%)$ a red semi solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 7.93(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43$ $(\mathrm{m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOH}-d 4$) δ $169.6,167.2,159.4,153.2,141.6,134.7,133.8,131.4,130.8,129.2,129.1,128.4,127.2,127.03$, $126.4,122.9,121.9,120.9,120.2,100.0,87.6,68.9,60.6,55.9$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3432,3049$, 2934, 1817, 1731, 1677, 1639, 1517, 1462, 1377, 1339, 1275, 1158, 1061, 936, 835, 760, 662. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{3} 369.1491$, found 369.1512.

(4-Methyl-N-((2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3$\mathbf{y l}$)methyl)benzenesulfonamide (5j)

By following the general procedure, the reaction was performed with 1-Naphthol $\mathbf{4 a}$ ($100 \mathrm{mg}, 0.693$ mmol, 1.0 equiv) and cyclic carbamate $\mathbf{2 j}$ ($236.78 \mathrm{mg}, 0.693 \mathrm{mmol}, 1.0$ equiv) using $\mathrm{CuI}(1.32 \mathrm{mg}, 1$ $\mathrm{mol} \%), \mathbf{L 1}(8.63 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{DABCO}(11.67 \mathrm{mg}, 15 \mathrm{~mol} \%)$ in acetonitrile $(2 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 h . The residue was purified by flash column chromatography on silica gel (20% EtOAc/hexanes) to afford $\mathbf{5 j}(168 \mathrm{mg}, 55 \%)$ as a red semi solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{MeOH}-d 4) \delta 7.99-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.23(\mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.99(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.32 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOH}-d 4$) $\delta 167.3,152.3,142.9,142.7,137.9,134.6$, $129.0,128.4,127.8,126.9,126.3,126.1,124.0,121.9,121.8,120.7,119.6,87.2,57.4,50.5,20.1$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3277,3059,2925,1814,1671,1598,1449,1383,1331,1161,1085,930,810$, 756, 698, 667. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}: 442.1477$, found 442.1478 .

2.6 Gram Scale Synthesis of Compounds 3a and 5a

Gram Scale Synthesis of Dihydrofuro[3,2-c]coumarin 3a

To a clean and dry round-bottom flask, under nitrogen atmosphere added dried $\mathrm{CuI}(0.012 \mathrm{~g}, 1 \mathrm{~mol} \%)$ and $\mathbf{L 2}(0.032 \mathrm{~g}, 2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ solvent and stirred at $70^{\circ} \mathrm{C}$ for 1 h and the resultant Copper-ligand complex was cooled to $-20^{\circ} \mathrm{C}$ and then added 1 a ($1.0 \mathrm{~g}, 6.16 \mathrm{mmol}, 1.0$ equiv) followed by DABCO ($0.103 \mathrm{~g}, 0.15$ equiv) and cyclic carbonate $\mathbf{2 a}(1.16 \mathrm{~g}, 6.16 \mathrm{mmol}, 1.0$ equiv) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added slowly drop wise. The reaction was maintained and stirred at $-20^{\circ} \mathrm{C}$ for 8 h . After completion of reaction, the reaction mixture was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel using 50% $\mathrm{EtOAc} /$ hexanes as eluent to afford the pure furo[3,2-c]coumarin scaffold $\mathbf{3 a}(1.85 \mathrm{~g}, 98 \%)$ as pale yellow solid. HPLC purity: 98:2 er

Gram Scale Synthesis of Dihydronaphtho[1,2-b]furan (5a)

To a clean and dry round-bottom flask, added dried $\mathrm{CuI}(0.013 \mathrm{~g}, 1 \mathrm{~mol} \%)$ and $\mathbf{L 1}(0.086 \mathrm{~g}, 2 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ solvent and stirred at $70^{\circ} \mathrm{C}$ for 1 h and the resultant Copper-ligand complex was cooled to $-10^{\circ} \mathrm{C}$ and then added $\mathbf{4 a}(1.0 \mathrm{~g}, 6.936 \mathrm{mmol}, 1.0$ equiv) followed by $\operatorname{DABCO}(0.117 \mathrm{~g}, 15$ $\mathrm{mol} \%$) and cyclic carbonate $\mathbf{2 a}\left(1.3 \mathrm{~g}, 6.936 \mathrm{mmol}\right.$, 1.0 equiv) dissolved in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was added slowly drop wise. The reaction was maintained at $-10^{\circ} \mathrm{C}$ for 24 h . After completion of reaction, water was added to the reaction mixture and extracted with EtOAc twice and washed the organic layer with brine solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using $20 \% \mathrm{EtOAc} /$ hexanes as eluent to afford the pure furo[1,2-b]dihydronaphthol scaffolds $\mathbf{5 a}(1.2 \mathrm{~g}, 60 \%)$ as a red semi solid. HPLC purity: 50:50 er

2.7. Product Derivatization

(R)-(2-Methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3-yl)methyl acetate (6)

To a clean and dry round-bottom flask added compound $\mathbf{3 a}(100 \mathrm{mg}, 0.326 \mathrm{mmol}, 1.0$ equiv) in DCM $(2 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.489 \mathrm{mmol}, 1.5$ equiv) and acetic anhydride ($0.04 \mathrm{~mL}, 0.489 \mathrm{mmol}, 1.5$ equiv) were added slowly and the reaction mixture was stirred at room temperature for 8 h . After completion of the reaction, the reaction mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM twice and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using $20 \% \mathrm{EtOAc} /$ hexanes as eluent to afford 6 (91 $\mathrm{mg}, 80 \%$) as an off white semi-solid. HPLC purity: 97.7:2.3 er ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80$ (dd, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{ddd}, J=8.7,7.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dt}, J=8.6,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~m}$, $J=10.5,8.0,5.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.63(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,165.4,163.9,158.3$, $155.5,139.2,133.2,129.0,128.13,126.8,124.4,123.0,117.3,111.6,106.9,92.2,66.1,56.0,29.8$, 21.0. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3438,3254,2928,2857,1724,1685,1641,1604,1566,1496,1453$, 1393, 1226, 1083, 1039, 963, 904, 862, 755, 694. HRMS (ESI): m/z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}_{5}$: 349.1076, found 349.1067.

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-8-(phenylethynyl)-2,3-dihydro-4H-

 furo[3,2-c]chromen-4-one (7)

To a clean and dry sealed tube added compound $\mathbf{3 i}$ ($50 \mathrm{mg}, 0.115 \mathrm{mmol}, 1.0$ equiv) in DMF (2 mL), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.80 \mathrm{mg}, 1 \mathrm{~mol} \%), \mathrm{CuI}\left(2.19 \mathrm{mg}, 0.001 \mathrm{mmol}, 0.1\right.$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(0.03 \mathrm{~mL}, 0.230$ $\mathrm{mmol}, 2.0$ equiv), stirred the reaction mixture at room temperature for 15 mins and then added phenyl acetylene ($15.3 \mathrm{mg}, 0.149 \mathrm{mmol}, 1.3$ equiv) and the reaction mixture was stirred at room temperature for 16 h . After completion of the reaction, the reaction mixture was filtered through celite pad and washed the bed with EtOAc. Now, collected the filtrate and washed with $\mathrm{NH}_{4} \mathrm{Cl}$ solution and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel using $25 \% \mathrm{EtOAc} /$ hexanes as eluent to afford $7(41 \mathrm{mg}, 77 \%)$ as a pale yellow semi-solid. HPLC purity: 99:1 er. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.90(\mathrm{~m}, 3 \mathrm{H}), 7.87-$ $7.79(\mathrm{~m}, 5 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=11.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}$, $J=8.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,163.3,159.2,154.0,136.5,136.0,133.3$, $132.8,132.7,128.9,128.6,128.3,127.5,127.3,126.5,126.4,126.3,125.8,125.5,124.6,118.9,117.3$, $117.3,113.0,108.6,92.3,67.1,58.4$. IR (thin film): $v_{\max } / \mathrm{cm}^{-1} 3394,3058,2927,2871,1726,1662$, 1600, 1560, 1488, 1424, 1383, 1306, 1263, 1211, 1149, 1103, 1064, 965, 910, 859, 820, 762, 728, 663. HRMS (ESI): m / z calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{31} \mathrm{H}_{21} \mathrm{O}_{4}: 457.1369$, found 457.1380 .

3. References

1. M. Wang, B. Li, B. Gong, H. Yao and A. Lin, Chem. Commun., 2022, 58, 2850-2853.

4. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ Spectra of Compounds

(R)-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3a)

(\boldsymbol{R})-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3a)

(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3b)

S31
(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3b)

	1	1	1	1	T	1	T	T	T	1 , 1	1	1	T	1	T	T	1	1	1
200	190	180	170	160	150	140	130	120	110	${ }_{f 1(\mathrm{ppm})}^{100} 90$	80	70	60	50	40	30	20	10	0

(R)-8-Bromo-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3c)

(R)-8-Bromo-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3c)

(R)-8-Fluoro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3d)

(R)-8-Fluoro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3d)

(R)-8-Fluoro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3d)

(R)-8-Chloro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3e)

(R)-8-Chloro-3-(hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3e)

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-1-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3f)

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-1-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3f)

(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3g)

(R)-3-(Hydroxymethyl)-8-methyl-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3g)

(R)-3-(Hydroxymethyl)-7-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3h)

(R)-3-(Hydroxymethyl)-7-methyl-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3h)

S45
(R)-8-Bromo-3-(hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3i)

(\boldsymbol{R})-8-Bromo-3-(hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3i)

(R)-3-(hydroxymethyl)-7-methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3j)

(R)-3-(hydroxymethyl)-7-methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3j)

T	1	1	1	T	1	I	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f1}(\mathrm{DDm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

(R)-3-(hydroxymethyl)-9-methoxy-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3k)

(R)-3-(hydroxymethyl)-9-methoxy-2-methylene-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3k)

(R)-3-([1,1'-Biphenyl]-4-yl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (31)

(R)-3-([1,1'-Biphenyl]-4-yl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (31)

(R)-3-(hydroxymethyl)-3-(2-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3m)

(R)-3-(hydroxymethyl)-3-(2-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3m)

(R)-3-(Hydroxymethyl)-3-(3-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3n)

(R)-3-(Hydroxymethyl)-3-(3-methoxyphenyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3n)

(R)-3-(Hydroxymethyl)-2-methylene-3-(p-tolyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3o)

(R)-3-(Hydroxymethyl)-2-methylene-3-(p-tolyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3o)

	1					T		T	1		1	T	T	1	1		1			
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

(R)-3-(4-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3p)

(R)-3-(4-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3p)

(R)-3-(4-Bromophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3q)

(R)-3-(4-Bromophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3q)

(R)-3-(3-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3r)

(R)-3-(3-Chlorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3r)

(R)-3-(4-Fluorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3s)

(R)-3-(4-Fluorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3s)

(R)-3-(4-Fluorophenyl)-3-(hydroxymethyl)-2-methylene-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3s)

(R)-4-Methyl-N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3-yl)methyl)benzenesulfonamide (3t)

(R)-4-Methyl-N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3-yl)methyl)benzenesulfonamide (3t)

(R)-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4-one (3u)

(R)-3-(Hydroxymethyl)-2-methylene-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4-one (3u)

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4-one (3v)

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-2,3-dihydro-4H-thiochromeno[4,3-b]furan-4-one (3v)

(R)-4-Methyl-N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-3-yl)methyl)benzenesulfonamide (3w)

S75
(R)-4-Methyl-N-((2-methylene-4-oxo-3-phenyl-2,3-dihydro-4H-thiochromeno[4,3-b]furan-3-yl)methyl)benzenesulfonamide(3w)

(2-Methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5a)

(2-Methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5a)

(3-(4-Chlorophenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5b)

(3-(4-Chlorophenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5b)

(3-([1,1'-Biphenyl]-4-yl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5c)

(3-([1,1'-Biphenyl]-4-yl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5c)

(3-(3-Methoxyphenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5d)

(3-(3-Methoxyphenyl)-2-methylene-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5d)

(2-Methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5e)

(2-Methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5e)

(7-Methoxy-2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5f)

(7-Methoxy-2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5f)

(8-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5g)

(8-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5g)

(8-Fluoro-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5h)

(8-Fluoro-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5h)

(8-Fluoro-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5h)

(7-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5i)

(7-Methoxy-2-methylene-3-(naphthalen-2-yl)-2,3-dihydronaphtho[1,2-b]furan-3-yl)methanol (5i)

4-Methyl-N-((2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methyl)benzenesulfonamide (5j)

S96

4-Methyl-N-((2-methylene-3-phenyl-2,3-dihydronaphtho[1,2-b]furan-3-yl)methyl)benzenesulfonamide (5j)

	1	1	1		I		1	1	1	1				1	1	1	1	1		
200	190	180	170	160	150	140	130	120	110	$\begin{aligned} & 100 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

(R)-(2-Methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3-yl)methyl acetate 6

(R)-(2-Methylene-4-oxo-3-phenyl-2,3-dihydro-4H-furo[3,2-c]chromen-3-yl)methyl acetate 6

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-8-(phenylethynyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one 7

(R)-3-(Hydroxymethyl)-2-methylene-3-(naphthalen-2-yl)-8-(phenylethynyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one 7

5. HPLC Chromatograms of Compounds

5.1. HPLC Chromatograms of Compounds 3a-w

HPLC analysis conditions: CHIRALPAK IA-3 column, 50% PrOH in hexanes, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=225 \mathrm{~nm}$.

HPLC Chromatogram of Compound 3a (racemic)

HPLC Chromatogram of Compound 3a obtained from L2

HPLC Chromatogram of Compound 3b (racemic)

1 PDA Multi 5/320nm 4nm
PDA Ch5 320nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.235	2532417	305080	65.456	66.886
2	6.432	1336481	151040	34.544	33.114
Total		3868898	456120	100.000	100.000

HPLC Chromatogram of Compound 3b obtained from L2

HPLC Chromatogram of Compound 3c (racemic)

HPLC Chromatogram of Compound 3c obtained from L2

HPLC Chromatogram of Compound 3d (racemic)

HPLC Chromatogram of Compound 3d obtained from L2

HPLC Chromatogram of Compound 3e (racemic)

Chromatogram
NKM-BSN-8N D:IKIRANMAIN03112023.1.lcd

1 PDA Multi 3/254nm 4nm
PDA Ch3 254 nm 4 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.336	4219014	570177	50.030	52.428
2	6.287	4214030	517357	49.970	47.572
Total		8433044	1087534	100.000	100.000

HPLC Chromatogram of Compound 3e obtained from L2

HPLC Chromatogram of Compound $3 f$ (racemic)

Chromatogram
NKM-BSN-FR D:LKIRANMAI12122023.23.lcd

1 PDA Multi 3/254nm 4nm
PeakTable
PDA Ch3 254 nm 4 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	6.217	4336684	465520	50.254	59.443
2	9.205	4292924	317614	49.746	40.557
Total		8629608	783134	100.000	100.000

HPLC Chromatogram of Compound 3f obtained from L2

Chromatogram

HPLC Chromatogram of Compound 3 g (racemic)

Chromatogram

1 PDA Multi $5 / 320 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch5 320nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.615	3472909	434549	49.790	51.178
2	6.194	3502190	414552	50.210	48.822
Total		6975098	849101	100.000	100.000

HPLC Chromatogram of Compound 3g obtained from L2

HPLC Chromatogram of Compound 3h (racemic)

HPLC Chromatogram of Compound 3h obtained from L2

HPLC Chromatogram of Compound 3i (racemic)

HPLC Chromatogram of Compound 3i obtained from L2

HPLC Chromatogram of Compound $\mathbf{3 j}$ (racemic)

HPLC Chromatogram of Compound 3j obtained from L2

Chromatogram

NKM-BSN-11 D:IKIRANMAIV03112023.6.lcd

HPLC Chromatogram of Compound 3k (racemic)

HPLC Chromatogram of Compound 3k obtained from L2

HPLC Chromatogram of Compound 31 (racemic)

HPLC Chromatogram of Compound 31 obtained from L2

HPLC Chromatogram of Compound 3m (racemic)

HPLC Chromatogram of Compound 3m obtained from L2

HPLC Chromatogram of Compound 3n (racemic)

HPLC Chromatogram of Compound 3n obtained from L2

HPLC Chromatogram of Compound 3o (racemic)

HPLC Chromatogram of Compound 3o obtained from L2

HPLC Chromatogram of Compound 3p (racemic)

HPLC Chromatogram of Compound 3p obtained from L2

HPLC Chromatogram of Compound 3q (racemic)

HPLC Chromatogram of Compound 3q obtained from L2

HPLC Chromatogram of Compound 3r (racemic)

HPLC Chromatogram of Compound 3 r obtained from L2

Chromatogram
NKM-BSN-21 D:\KIRANMAIV03112023.13.lcd

1 PDA Multi 3/254nm 4nm
PDA Ch3 254 nm 4 nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.746	17987910	2327807	84.991	87.040
2	6.568	3176589	346601	15.009	12.960
Total		21164499	2674408	100.000	100.000

HPLC Chromatogram of Compound 3s (racemic)

HPLC Chromatogram of Compound 3s obtained from L2

Chromatogram
NKM-KP-6F D:IKIRANMAIV01112023.10.lcd

1 PDA Multi 2/225nm 4nm
PDA Ch2 225 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.649	1026016	121212	83.491	88.272
2	7.032	202882	16104	16.509	11.728
Total		1228898	137316	100.000	100.000

HPLC Chromatogram of Compound 3t (racemic)

1 PDA Multi $1 / 320 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Chl 320nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	10.092	403757	23144	49.624	51.985
2	11.206	409874	21377	50.376	48.015
Total		813632	44521	100.000	100.000

HPLC Chromatogram of Compound 3t obtained from L2

HPLC Chromatogram of Compound 3u obtained from L2

Chromatogram
NKM-BSN-15 D:IKIRANMAIV01112023.6.lcd

1 PDA Multi 2/225nm 4nm
PDA Ch2 225 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	5.209	4281918	563449	63.822	64.450
2	5.618	2427226	310789	36.178	35.550
Total		6709144	874239	100.000	100.000

HPLC Chromatogram of Compound 3v obtained from L2

HPLC Chromatogram of Compound 3w obtained from L2

Chromatogram

HPLC Chromatogram of Compound 5a obtained from L2

HPLC Chromatogram of Compound 3a obtained from Gram-scale Reaction

Chromatogram
NKM-BSN-B D:IKIRANMAI12122023.2.lcd

1 PDA Multi $4 / 280 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch4 280 nm 4 nm

	PeakTable				
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.106	1174776	134213	97.929	98.469
2	8.259	24849	2087	2.071	1.531
Total		1199625	136300	100.000	100.000

HPLC Chromatogram of Compound 5a obtained from Gram-scale Reaction

HPLC Chromatogram of Compound 6

Chromatogram
NKM-BSN-C D:IKIRANMAI\12122023.8.lcd

1 PDA Multi $2 / 225 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch2 225 nm 4nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	6.115	5043142	570842	97.670	98.296
2	8.298	120298	9895	2.330	1.704
Total		5163440	580737	100.000	100.000

HPLC Chromatogram of Compound 7

6. X-ray crystallographic data of compound 3b

Structure of compound 3b

Figure S1. ORTEP diagram of compound 3b with the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystallization of 3b: To a mixture of compound $\mathbf{3 b}(10 \mathrm{mg})$ and DCM (2 mL) in a culture vial. The vial was covered with perforated aluminium foil and left aside for 2 days for crystal growth. After slow evaporation of the solvent, off-white crystals were obtained.

X-ray data for the compound was collected at room temperature on a Bruker D8 QUEST instrument with an $\mathrm{I} \mu \mathrm{S}$ Mo microsource $(\lambda=0.7107 \mathrm{~A})$ and a PHOTON-III detector. The raw data frames were reduced and corrected for absorption effects using the Bruker Apex 3 software suite programs [1]. The structure was solved using intrinsic phasing method [2] and further refined with the SHELXL [2] program and expanded using Fourier techniques. Anisotropic displacement parameters were included for all non-hydrogen atoms. The O-H atoms were located in the difference Fourier map and its positions and isotropic displacement parameters were refined. All C bound H atoms were positioned geometrically and treated as riding on their parent C atoms $[\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and $\operatorname{Uiso}(\mathrm{H})=$ 1.5Ueq(C) for methyl H or 1.2 $\mathrm{Ueq}(\mathrm{C})$ for other H atoms].

Crystal structure determination of 3b

Crystal Data for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{4}(M=320.33 \mathrm{~g} / \mathrm{mol})$: orthorhombic, space group $\mathrm{P} 2_{1} 2_{1} 2_{1}$ (no. 19), $a=9.7289(7) \AA, b=11.5281(9) \AA, c=13.9318(10) \AA, V=1562.5(2) \AA^{3}, Z=4, T=294.15 \mathrm{~K}$, $\mu(\mathrm{MoK} \alpha)=0.095 \mathrm{~mm}^{-1}$, Dcalc $=1.362 \mathrm{~g} / \mathrm{cm}^{3}, 26531$ reflections measured $\left(4.586^{\circ} \leq 2 \Theta \leq 60.99^{\circ}\right)$, 4605 unique ($R_{\text {int }}=0.0500, \mathrm{R}_{\text {sigma }}=0.0336$) which were used in all calculations. The final R_{1} was $0.0391(\mathrm{I}>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1088 (all data). CCDC 2308383 deposition numbers contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. Sheldrick G. M. (2015) Acta Crystallogr C71: 3-8.
