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Optimization via solid phase micro extraction (SPME) approach 

The extractions were carried out using 1 cm PDMS fiber (100 μm of thickness) obtained 

from Supelco (Bellefonte, PA, USA), with a SPME holder (Supelco) for manual 

sampling. Capped vials of 10 mL containing 0.5 mL of UP water and magnetic stirrer 

(Dist, Florianópolis, Santa Catarina, Brazil) were using. The SPME optimization was 

performed using a gas chromatograph with a flame ionization detector GC-FID (Agilent, 

USA) equipped with Zebron ZB-5MS capillary column (30 m × 0.25 mm × 0.25 μm, 

Torrance, CA, USA). The injection was performed in splitless mode, and the oven 

temperature program was adjusted to 60 °C (maintained for 1 min), increasing at 10 °C 

min-1 to 260 °C (maintained for 2 min). The injector temperature was set at 260 °C. The 

fiber was subjected to a thermal desorption time of 5 min in GC injection port. No 

carryover effect was observed under these conditions. The reaction by-products were 

identified via comparison with reference standards. An univariate design was applied to 

optimize the extraction time (3 to 9 min) for the HS-SPME system (Table S1 and Figure 

S1). The reaction time (10 to 50 min) and the KIO3 concentration  (15 to 55%) were 

avaliable. A Doehlert design was applied to optimize the reaction conditions. The reaction 

time (10 to 50 min) and the KIO3 concentration  (15 to 55%) were available (Table S2 

and Figure S2). Statistica 8.0 software was used for the data treatment in multivariate 

approaches. 

 

Table S1. Thiophenol extraction time optimization by HS-SPME. 

 

Entry[a] Extraction 

time (min.) 

Normalized peak 

area ± RSD 

1 3 54.0 ± 8.5 

2 5 73.1 ± 6.3 

3 7 97.0 ± 10.6 

4 9 100.0 ± 13.6 

[a] Conditions: 1a (0.1 mmol), H2O (0.5 mL), extraction time (minutes), 25 °C.  

RSD: Relative Standard Deviation.   
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Figure S1. Thiophenol 1a extraction time optimization by HS-SPME. 

 

Table S2. Optimization of reaction conditions. 

 

Entry[a] Catalyst (mol%) Reaction time (min.) % Yield [b] 

1 - 30 - 

2 I2 (20) 30 18 

3 NaI (20) 30 12 

4 KI (20) 30 15 

5 NaIO3 (20) 30 100 

6 KIO3 (20) 30 100 

7 KIO3 (20) 10 62 

8 KIO3 (15) 20 96 

9 KIO3 (25) 20 99 

10 KIO3 (20) 30 99 

11 KIO3 (20) 30 99 

12 KIO3 (20) 30 99 

13 KIO3 (15) 40 90 

14 KIO3 (25) 40 99 

15 KIO3 (20) 50 99 

[a] Conditions: 1a (0.1 mmol), catalyst (mol%), H2O (0.5 mL), reaction time (minutes), 

temperature 25 °C. [b] % yield determined by HS-SPME. [c] extraction time by HS-

SMPE (7 min). 
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Figure S2. Doehler planning for optimization of KIO3 concentration and reaction time 

(Table S2, entry 7-15). 

 

 

 

 

Yield (%) = 64,2896+0,5739*x+0,6361*y 

R2= 0,7277 

Figure S3. Response surface. 
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General remarks 

Starting materials obtained from commercial suppliers were used unless otherwise stated. 

Column chromatography was performed using silica gel 60 (diameter 0.05 - 0.10 mm) 

Macherey-Nagel. Thin layer chromatography (TLC) was performed using Macherey-

Nagel pre-coated TLC sheets ALUGRAMⓇ Xtra SIL with layer of 0.20 mm. 

Visualization was achieved by UV fluorescence, iodine chamber and acidic vanillin. 

 

General procedures for synthesis of disulfides 

Procedure A:  

In a 20 mL glass tube, thiophenol 1a (1.0 mmol), potassium iodate (KIO3; 20 mol%) and water 

(5 mL) were added. The reaction was stirred for 30 min at 25 °C. At the end of this period, the 

reaction was extracted with ethyl acetate (3 x 10 mL). The organic phase was dried over 

anhydrous Na2SO4, filtered through filter paper and the organic solvent removed in a rotary 

evaporator under reduced pressure at 40 °C. The crude product was purified by column 

chromatography on silica gel using an isocratic elution system (hexane). At the end of the 

isolation step, product 2a was obtained as a white solid in quantitative yield. 

 

Procedure B: (For substrates that have limited solubility in water)  

In a 20 mL glass tube, corresponding thiol (1.0 mmol), potassium iodate (KIO3; 20 mol%), Triton-

X100 (0.5 ML) and water (5 mL) were added. The reaction was stirred for 120 min at 25 °C. At 

the end of this period, the reaction was extracted with ethyl acetate (3 x 10 mL). The organic 

phase was dried over anhydrous Na2SO4, filtered through filter paper and the organic solvent 

removed in a rotary evaporator under reduced pressure at 40 °C. The crude product was purified 

by column chromatography on silica gel using an isocratic elution system (hexane). At the end of 

the isolation step,  desired product was obtained. 
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Gram-Scale Procedure:In a 100 mL glass baloom, corresponding thiol (5.0 mmol or 10.0 

mmol), and water (25 mL for 5.0 mmol scale or 50 mL for 10 mmol scale) were added. The 

reaction was stirred for 30 min at 25 °C. At the end of this period, the reaction was extracted with 

ethyl acetate (3 x 30 mL). The organic phase was dried over anhydrous Na2SO4, filtered through 

filter paper and the organic solvent removed in a rotary evaporator under reduced pressure at 40 

°C. The crude product was purified by column chromatography on silica gel using an isocratic 

elution system (hexane). At the end of the isolation step, product 2a was obtained as a white solid 

in respective yield. 

 

 

Characterization data products 

General considerations: The melting points were taken on a MQAPF-301 melting point 

apparatus, uncorrected. 1H and 13C NMR spectra were recorded on Varian NMR AS 400 

spectrometer and Brucker NMR AC 200, with the samples dissolved in CDCl3 or DMSO-

d6. Chemical shifts are informed in ppm downfield from the signal of TMS, used as 

internal standard, and the coupling constants (J) are expressed in Hertz (Hz).  

 

 

Diphenyl disulfide (2a):1 Obtained as white solid (104.6 mg, 96%); Purified using 

hexane as a eluent; mp: 60-62 °C, Rf = 0.8 (hexane);  1H NMR (400 MHz, Chloroform-d) 

δ 7.49 (dd, J = 7.4, 1.9 Hz, 4H), 7.33 – 7.24 (m, 4H), 7.25 – 7.16 (m, 2H). 13C NMR (100 

MHz, CDCl3) δ 136.9, 129.0, 127.4, 127.1. 

 

  

1,2-di-p-tolyldisulfane (2b):1  Obtained as white solid (113,2 mg, 92%); Purified using 

hexane as a eluent; mp: 48-50 °C, Rf = 0.8 (hexane); 1H NMR (400 MHz, Chloroform-d) 

δ 7.37 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 2.29 (s, 1H). 13C NMR (100 MHz, 

CDCl3) δ 137.5, 133.8, 129.7, 128.4, 21.0. 
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1,2-di-o-tolyldisulfane (2c):1 Obtained as yellow oil (108.2 mg, 88%); Purified using 

hexane as a eluent; Rf = 0.6 in (hexane); 1H NMR (200 MHz, Chloroform-d) δ 7.71 – 

7.44 (m, 2H), 7.13 (d, J = 2.8 Hz, 6H), 2.42 (s, 6H). 13C NMR (50 MHz, CDCl3) δ 137.4, 

135.4, 130.3, 128.7, 127.3, 126.7, 20.0.  

 

  

1,2-bis(4-methoxyphenyl)disulfane (2d):1 Obtained as white solid (125.3 mg, 90%); 

Purified using hexane/ethyl acetate (95:5), Mp: 34-35 °C, Rf = 0.4 (hexane); 1H NMR 

(200 MHz, Chloroform-d) δ 7.39 (d, J = 8.9 Hz, 4H), 6.83 (d, J = 8.8 Hz, 4H), 3.79 (s, 

6H). 13C NMR (50 MHz, CDCl3) δ 205.6, 160.0, 132.6, 128.5, 114.6, 55.3. 

 

  

1,2-bis(2-methoxyphenyl)disulfane (2e):1 Obtained as white solid (130,8 mg, 94%); 

Purified using hexane/ethyl acetate (95:5), Mp: 117-119 °C, Rf = 0.3 (hexane); 1H NMR 

(400 MHz, CDCl3) δ 7.51 (dd, J = 7.7, 1.7 Hz, 2H), 7.15 (td, J = 7.6, 1.7 Hz, 2H), 6.87 

(dd, J = 7.6, 1.2 Hz, 2H), 6.81 (dd, J = 8.1, 1.2 Hz, 2H), 2.42 (s, 6H). 13C NMR (100 

MHz, CDCl3) δ 156.4, 127.6, 127.4, 124.3, 121.2, 110.4. 
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1,2-bis(4-chlorophenyl)disulfane (2f):1 Obtained as pallid yellow solid (114.1 mg, 

80%); Purified using hexane as a eluent, Mp: 65-66 °C, Rf = 0.6 (hexane); 1H NMR (400 

MHz, CDCl3) δ 7.38 (d, J = 8.7 Hz, 4H), 7.25 (d, J = 8.7 Hz, 4H).  13C NMR (100 MHz, 

CDCl3) δ 135.0, 133.5, 129.2, 129.1, 55.7. 

 

 

1,2-bis(2-chlorophenyl)disulfane (2g):2 Obtained as yellow solid (112.0 mg, 78%); 

Obtained as white solid (108.2 mg, 88%); Purified using hexane as a eluent; mp: 80-82°C   

1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J = 7.8, 1.8 Hz, 2H), 7.33 (dd, J = 7.7, 1.6 Hz, 

2H), 7.23 – 7.07 (m, 4H). 3C NMR (100 MHz, CDCl3) δ 134.2, 131.7, 129.6, 127.7, 127.6, 

127.5, 127.1. 

 

 

1,2-bis(3-chlorophenyl)disulfane (2h):1 Obtained as white solid (137.8 mg, 98%); 

Purified using hexane as a eluent; mp: 68-70 °C  1H NMR (400 MHz, CDCl3) δ 7.46 (m, 

2H), 7.32 (dq, J = 7.2, 1.8 Hz, 2H), 7.26 – 7.14 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 

138.3, 135.0, 130.1, 127.5, 126.9, 125.2. 
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1,2-bis(4-bromophenyl)disulfane( 2i):1 Obtained as pallid yellow solid (163.6 mg, 

87%); Purified using hexane as a eluent, Mp: 92-95 °C, Rf = 0.5 (hexane); 1H NMR (400 

MHz, Chloroform-d) δ 7.41 (d, J = 8.6 Hz, 4H), 7.32 (d, J = 8.6 Hz, 4H). 13C NMR (100 

MHz, CDCl3) δ 135.7, 132.2, 129.3, 121.5.  

 

 

1,2-bis(4-fluorophenyl)disulfane (2j):2 Obtained as yellow oil (119.5 mg, 94%); 

Purified using hexane as a eluent, Rf = 0.6 in hexane; 1H NMR (200 MHz, Chloroform-

d) δ 7.43 (dd, J = 8.6, 5.2 Hz, 4H), 6.99 (t, J = 8.6 Hz, 4H). 13C NMR (50 MHz, 

Chloroform-d) δ 162.6 (d, 1J = 248.2 Hz), 132.2 (d, 4J = 2.7 Hz), 131.2 (d, 3J = 8.2 Hz), 

116.2 (d, 2J = 22.1 Hz).  

 

 

1,2-bis(3-(trifluoromethyl)phenyl)disulfane (2k):3 Obtained as yellow oil (130.1 mg, 

74%); Purified using hexane as a eluent, Rf = 0.6 in hexane;  1H NMR (400 MHz, CDCl3) 

δ 7.82 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 7.8 Hz, 2H), 7.46 (t, J = 7.7 Hz, 2H), 7.30 (t, J = 

7.7 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 135.39, 132.51, 129.46, 128.5 (q, J = 32.7 

Hz),  127.2,  126.0 (q, J = 8.2 Hz), 123.8 (q, J = 272.7 Hz). 
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1,2-bis(4-nitrophenyl)disulfane(2l): Obtained as yellow solid (87.9 mg, 57%); Purified 

using hexane/ethyl acetate (50:50), Mp:182-185°C, Rf = 0.4; 1H NMR (400 MHz, 

Chloroform-d) δ 8.20 (d, J = 9.1 Hz, 4H), 7.62 (d, J = 9.1 Hz, 4H). 13C NMR (100 MHz, 

CDCl3) δ 147.0, 144.0, 126.4, 124.4. 

 

 

4,4'-disulfanediyldianiline (2m):1 Obtained as white solid (57.1 mg, 46%); Purified 

using hexane/ethyl acetate (50:50); mp: 108-109 °C   1H NMR (200 MHz, Chloroform-

d) δ 7.25 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 8.4 Hz, 4H), 3.76 (s, 1H). 13C NMR (50 MHz, 

CDCl3) δ 147.1, 133.9, 125.6, 115.3. 

 

 

2,2'-disulfanediyldianiline (2n):2 Obtained as yellow solid (79.4 mg, 64%); Purified 

using hexane/ethyl acetate (50:50); mp: 92-94 °C   1H NMR (400 MHz, CDCl3) δ 7.18 

(dd, J = 8.2, 6.9 Hz, 4H), 6.80 – 6.67 (m, 2H), 6.61 (tt, J = 7.3, 1.3 Hz, 2H), 4.36 (s, 4H). 

13C NMR (100 MHz, CDCl3) δ 148.6, 136.7, 131.5, 118.6, 118.1, 115.2. 
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1,2-di(pyridin-2-yl)disulfane (2o):2 Obtained as white solid (90.3 mg, 82%); Purified 

using hexane/ethyl acetate (1:1), Mp: 52 °C, Rf = 0.4; 1H NMR (400 MHz, Chloroform-

d) δ 8.50 – 8.42 (m, 2H), 7.65 – 7.50 (m, 4H), 7.11 (td, J = 5.2, 3.0 Hz, 2H). 13C NMR 

(100 MHz, CDCl3) δ 158.8, 149.4, 137.3, 121.0, 119.5.  

 

 

1,2-di(pyrimidin-2-yl)disulfane(2p):4 Obtained as white solid (77.4 mg, 70%); Purified 

using hexane/ethyl acetate (95:5); mp: 108-109 °C   1H NMR (200 MHz, Chloroform-d) 

δ 8.59 (d, J = 4.9 Hz, 4H), 7.11 (t, J = 4.8 Hz, 2H).13C NMR (50 MHz, CDCl3) δ 169.5, 

157.8, 118.1. 

 

 

1,2-di(thiophen-2-yl)disulfane (2q):5  Obtained as yellow oil (2w = 69.1 mg, 30%; 2wi 

= 188.9 mg = 82%)  1H NMR (400 MHz, CDCl3) δ 7.46 (dd, J = 5.3, 1.5 Hz, 2H), 7.13 

(dd, J = 3.7, 1.4 Hz, 2H), 6.98 (dd, J = 5.5, 3.5 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 

135.6, 132.2, 127.7(2C). 

 

1,2-bis(4,5-dihydrothiazol-2-yl)disulfane (2r):6 Obtained as yellow oil ( 2r = 70,8 mg 

= 60%; 1H NMR (400 MHz, Chloroform-d) δ 4.70 (t, J = 7.8 Hz, 1H), 4.00 (t, J = 8.3 
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Hz, 1H), 3.40 (t, J = 7.8 Hz, 1H), 3.31 (t, J = 8.3 Hz, 1H). 13C NMR (100 MHz, 

Chloroform-d) δ 58.7, 56.9, 36.3, 28.7. 

 

 

1,2-di(naphthalen-2-yl)disulfane (2s):4 Obtained as white solid (2x = traces; 2xi = 242.0 

mg, 76%); Purified using hexane/ethyl acetate (95:5), Mp: 140-142 °C, Rf = 0.7 (hexane); 

1H NMR (200 MHz, ) δ 7.98 (s, 1H), 7.84 – 7.55 (m, 8H), 7.53 – 7.37 (m, 4H). 13C NMR 

(50 MHz, CDCl3) δ 134.3, 133.5, 132.5, 129.0, 127.8, 127.5, 126.7, 126.6, 126.2, 125.7. 

 

  

1,2-dibenzyldisulfane (2t):1 Obtained as colourless solid (108.4 mg, 88%); Purified 

using hexane/ethyl acetate (95:5), Mp: 68-69 °C, Rf = 0.8; 1H NMR (400 MHz, 

Chloroform-d) δ 7.40 – 7.02 (m, 2H), 3.58 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 137.3, 

129.4, 128.4, 127.4, 43.2.  

 

  

1,2-bis(4-chlorobenzyl)disulfane (2u):2 Obtained as pallid yellow solid (143.4 mg, 

91%); Purified using hexane/ethyl acetate (95:5); mp: 52-54 °C  1H NMR (400 MHz, 

CDCl3) δ 7.33 – 7.20 (m, 4H), 7.20 – 7.10 (m, 4H), 3.55 (s, 4H). 13C NMR (100 MHz, 

CDCl3) δ 135.7, 133.3, 130.6, 128.6, 42.3. 
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1,1'-disulfanediylbis(propan-2-ol) (2v):7 Obtained a colorless oil (72.0 mg, 79%); 

Purified using hexane/ethyl acetate (70:30), Rf= 0.27;  1H NMR (400 MHz, Chloroform-

d) δ 4.08 (dqd, J = 8.0, 4.0, 1.8 Hz, 2H), 3.01 (s, 1H), 2.87 (ddd, J = 14.0, 10.3, 3.9 Hz, 

3H), 2.73 (td, J = 13.3, 8.1 Hz, 3H), 1.29 (d, J = 6.3 Hz, 6H).  13C NMR (100 MHz, 

CDCl3) δ , 66.1, 66.0, 47.8, 47.5, 22.0.  

 

 

3,3'-disulfanediyldipropionic acid (2w):2 Obtained as white solid (111.4 mg, 53%); 

Purified using hexane/ethyl acetate (70:30); mp= 153-155ºC; 1H NMR (200 MHz, CDCl3) 

δ 12.42 (s, 2H), 3.08 – 2.86 (m, 4H), 2.68 (t, J = 6.8 Hz, 4H).  13C NMR (50 MHz, CDCl3) 

δ 172.7, 33.6, 33.0. 

 

   

1,2-dithiane-4,5-diol (2x):1 Obtained as white solid (68.8 mg, 91%); Purified using 

hexane/ethyl acetate (70:30); mp: 128-130ºC; 1H NMR (200 MHz, DMSO-d6) δ 5.22 (d, 

J = 3.7 Hz, 2H), 3.35 (dd, J = 8.9, 3.9 Hz, 2H), 3.12 – 2.62 (m, 4H). 13C NMR (50 MHz, 

DMSO) δ 73.2, 40.2. 
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1,2-dicyclohexyldisulfane (2y):1 Obtained as light yellow oil (202.7 mg, 88%) 1H NMR 

(400 MHz, CDCl3) δ 3.40 – 0.64 (m, 12H). 13C NMR (100 MHz, CDCl3) 49.9; 32,8; 26.0; 

25.6. 

 

 

1-(dodecyldisulfanyl)dodecane (2z):1 Obtained as colorless oil (200.0 mg, 99%).1H 

NMR (400 MHz, CDCl3) δ 2.51 (qd, J = 7.6, 1.9 Hz, 4H), 1.66 – 1.56 (m, 4H), 1.45 – 

1.20 (m, 10H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl3) 34.0, 31.9, 29.6 

(2C), 29.5, 29.4, 29.3, 29.0, 28.3, 24.5, 22.6, 14.0. 

 

  

1-(4-methoxyphenyl)-2-phenyldisulfane: Obtained as yellow oil. (47.2 mg, 38%); 

Purified using hexane/ethyl acetate (95:5); 1H NMR (200 MHz, Chloroform-d) δ 7.55 – 

7.36 (m, 4H), 7.39 – 7.05 (m, 3H), 6.81 (d, J = 8.8 Hz, 2H), 3.76 (s, 3H). 13C NMR (50 

MHz, CDCl3) δ 159.8, 137.4, 132.6, 131.7, 129.0, 128.2, 127.2, 114.7, 55.3.  

 

 



 
SUPPORTING INFORMATION          
 

S15 
 

2-phenyl-3-(phenylthio)imidazo[1,2-a]pyridine che(4a):8 Obtained as white solid 

(116.4 mg, 77%); Purified using hexane/ethyl acetate (70:30); mp: 77-79 °C   1H NMR 

(200 MHz, CDCl3) δ 8.33 – 8.08 (m, 3H), 7.73 (dt, J = 9.0, 1.1 Hz, 1H), 7.62 – 7.03 (m, 

8H), 7.04 – 6.93 (m, 1H), 6.85 (td, J = 6.8, 1.2 Hz, 1H).  13C NMR (50 MHz, CDCl3) δ 

151.4, 147.1, 135.1, 133.3, 129.4, 128.5, 128.3, 126.6, 126.0, 125.5, 124.4, 117.6, 113.0, 

106.3.  

 

 

2-phenyl-3-(p-tolylthio)imidazo[1,2-a]pyridine (4b):8 Obtained as white solid (129.7 

mg, 85%); Purified using hexane/ethyl acetate (70:30); mp: 110-112 oC 1H NMR (200 

MHz, CDCl3) δ 8.21 (dddt, J = 11.2, 8.6, 6.4, 2.1 Hz, 3H), 7.72 (ddd, J = 9.0, 2.8, 1.7 Hz, 

1H), 7.54 – 7.10 (m, 5H), 7.06 – 6.75 (m, 4H), 2.24 (s, 3H).13C NMR (50 MHz, CDCl3) 

δ 151.1, 146.9, 135.9, 133.3, 131.4, 130.1, 129.5, 128.3, 126.8, 126.5, 125.7, 124.4, 117.5, 

112.9, 106.8, 20.8. 

 

3-((4-chlorophenyl)thio)-2-phenylimidazo[1,2-a]pyridine (4c):8 Obtained as white 

solid (50.5mg, 30%); Purified using hexane/ethyl acetate (95:5); mp: 158-160 °C  1H 

NMR (200 MHz, CDCl3) δ 8.31 – 8.08 (m, 3H), 7.74 (dt, J = 9.0, 1.2 Hz, 1H), 7.55 – 

7.35 (m, 5H), 7.24 – 7.09 (m, 2H), 7.00 – 6.81 (m, 2H). 13C NMR (50 MHz, CDCl3) δ 

151.6, 147.2, 133.7, 133.1, 132.0, 129.6, 128.7, 128.4, 128.3, 126.8, 124.3, 117.8, 113.2, 

105.7.     
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2a. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2b 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2c. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2d. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2e. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2f. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2g. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2h. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2i. 

 

 



 
SUPPORTING INFORMATION          
 

S26 
 

 

 

 

1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2j. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2k. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2l. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2m. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2n. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2o. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2p. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2q. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2r. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2s. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2t. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2u. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2v. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2w. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2x. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2y. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 2z. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 3a. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 4a. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 4b. 
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1H RMN (top) 13C NMR (bottom) CDCl3 spectra of compound 4c. 
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