Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information-II

Two-step, High-yielding Total Synthesis of Antibiotic Pyrones

Akram Hussain,^{[a]‡} Revoju Sravanthi,^{[a][b]‡} Sunitha Katta,^[b] and Dhevalapally B. Ramachary*^[a]

 [a] Dr. Akram Hussain, Ms. Revoju Sravanthi, and Prof. Dr. Dhevalapally B. Ramachary Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India; E-mail: ramsc@uohyd.ac.in, ramchary.db@gmail.com
 [b] Dr. Sunitha Katta and Ms. Revoju Sravanthi, Pharmacognosy and Phytochemistry Division, Gitam Institute of Pharmacy, Gitam Deemed to be University, Visakhapatnam, 530 045, Andhra Pradesh, India

[‡]These authors contributed equally.

C	CONTENTS	
1.	Correlation NMR data of compound 7ab (Isogermicidin B)	S-3
2.	Correlation NMR data of compound 7bb (Isogermicidin A)	<i>S</i> -4
3.	Correlation NMR data of compound 7bc (Photopyrone A)	<i>S</i> -5
4.	Correlation NMR data of compound 7cc (Pseudopyronine A)	<i>S</i> -6
5.	Correlation NMR data of compound 7gc (Pseudopyronine B)	<i>S</i> -8
6.	Correlation NMR data of compound 7jc (Pseudopyronine C)	<i>S</i> -9
7.	Correlation NMR data of compound 7bd (Photopyrone B)	<i>S</i> -11
8.	Correlation NMR data of compound 7bh (Germicidin I)	<i>S</i> -13
9.	Correlation NMR data of compound 7ch (Violapyrone L)	<i>S</i> -14

10. Correlation NMR data of compound 7dh (Violapyrone J1)	<i>S</i> -15
11. Correlation NMR data of compound 7eh (Violapyrone J)	<i>S</i> -16
12. Correlation NMR data of compound 7fh (Violapyrone A)	<i>S</i> -18
13. Correlation NMR data of compound 7gh (Violapyrone I)	<i>S</i> -19
14. Correlation NMR data of compound 7hh (Violapyrone B)	<i>S</i> -20
15. Correlation NMR data of compound 7ih (Violapyrone H)	<i>S</i> -21
16. Correlation NMR data of compound (-)-71h [(-)-Violapyrone C]	<i>S</i> -23
17. Correlation NMR data of compound 11ch (Childinin G)	<i>S</i> -24
18. Correlation NMR data of compound 11fh (Violapyrone Q)	<i>S</i> -26
19. Correlation NMR data of compound 11gh (Violapyrone S)	<i>S</i> -27
20. Correlation NMR data of compound 11hh (Violapyrone R)	<i>S</i> -29
21. Correlation NMR data of compound 3d (Fistupyrone)	<i>S</i> -30
22. Correlation HRMS data of compound 7be (Photopyrone C), 7bf (Photopyrone E), 7bg (Photopyrone G)	S-31
23. References	<i>S</i> 32-S33
24. Correlated ¹ H NMR and ¹³ C NMR Spectral data	S34-S73

ОН		Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (125 MHz, CD ₃ OD)
H ₃ C		168.9 (C)	168.8 (C)
3-ethyl-4-hydroxy-6-propy	l-2 <i>H</i> -pyran-2-one (7ab)	168.0 (C)	167.6 (C)
(Isogermi	cidin B)	165.0 (C)	165.0 (C)
			105.3 (C)
		101.6 (CH)	101.3 (CH)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	36.3 (CH ₂)	36.3 (CH ₂)
5.98 (1H, s)	6.00 (1H, s)	21.4 (CH ₂)	21.3 (CH ₂)
2.44 (2H, t, <i>J</i> = 7.5 Hz)	2.46 (2H, t, <i>J</i> = 7.5 Hz)	17.4 (CH ₂)	17.3 (CH ₂)
2.39 (2H, q, <i>J</i> = 7.5 Hz)	2.41 (2H, q, <i>J</i> = 7.5 Hz)	13.8 (CH ₃)	13.7 (CH ₃)
1.67 (2H, m)	1.69 (2H, sext, <i>J</i> = 7.5 Hz)	12.9 (CH ₃)	12.9 (CH ₃)
1.03 (3H, t, J = 7.4 Hz)	1.05 (3H, t, J = 7.5 Hz)		
0.98 (3H, t, J = 7.4 Hz)	0.99 (3H, t, J = 7.5 Hz)		

 Table S1. Correlation of Natural and Synthetic NMR Data of Compound 7ab (Isogermicidin B):1

о́н		Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (125 MHz, CD ₃ OD)
H ₃ C	CH ₃	168.9 (C)	168.8 (C)
2 athyl 4 hydrawy 6 iachu	CH_3	167.9 (C)	167.5 (C)
(Isogermi	cidin A)	164.3 (C)	164.3 (C)
		105.3 (C)	105.3 (C)
		102.5 (CH)	102.2 (CH)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	43.6 (CH ₂)	43.5 (CH ₂)
5.97 (1H, s)	5.99 (1H, s)	28.3 (CH)	28.1 (CH)
2.39 (2H, q, <i>J</i> = 7.4 Hz)	2.42 (2H, q, <i>J</i> = 7.5 Hz)	22.6 (2 x CH ₃)	22.5 (2 x CH ₃)
2.32 (2H, d, <i>J</i> = 7.2 Hz)	2.35 (2H, d, <i>J</i> = 7.0 Hz)	17.4 (CH ₂)	17.3 (CH ₂)
2.03 (1H, m)	2.05 (1H, nonet, $J = 7.0$ Hz)	12.9 (CH ₃)	12.9 (CH ₃)
1.04 (3H, t, J = 7.4 Hz)	1.05 (3H, t, <i>J</i> = 7.5 Hz)		
0.96 (3H, d, <i>J</i> = 6.7 Hz)	0.98 (6H, d, <i>J</i> = 6.5 Hz)		

Table S2. Correlation of Natural and Synthetic NMR Data of Compound 7bb (Isogermicidin A):¹

0.96 (3H, d, <i>J</i> = 6.7 Hz)			
---------------------------------	--	--	--

Table S3. Correlation of Natural and Synthetic NMR Data of Compound 7bc (Photopyrone A):²

		Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD) 174.1 (C)	Present synthetic compound ¹³ C NMR (125 MHz, CD ₃ OD) 168.3 (C)
0~~	CH ₃	170.3 (C)	167.1 (C)
3-Hexyl-4-hydroxy-6-isobu (Photopy	tyl-2 <i>H</i> -pyran-2-one (7bc) rone A)	164.0 (C)	163.7 (C)
		105.3 (CH)	103.5 (C)
		103.2 (C)	101.5 (CH)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	43.1 (CH ₂)	42.9 (CH ₂)
5.91 (1H, s)	5.94 (1H, s)	32.7 (CH ₂)	32.4 (CH ₂)
2.34 (2H, dd, $J = 7.8, 7.2$ Hz) 2.34 (2H, t, $J = 7.5$ Hz)		30.0 (CH ₂)	29.7 (CH ₂)
2.27 (2H, d, $J = 7.2$ Hz)	2.29 (2H, d, <i>J</i> = 7.5 Hz)	28.9 (CH ₂)	28.4 (CH ₂)
2.01 (1H, sept, $J = 7.0$ Hz)	2.00 (1H, nonet, $J = 6.5$ Hz)	27.6 (CH)	27.6 (CH)

1.43 (2H, m)	1.42 (2H, quint, <i>J</i> = 7.0 Hz)	23.6 (CH ₂)	23.4 (CH ₂)
1.29 (2H, m)		23.1 (CH ₂)	23.2 (CH ₂)
1.29 (2H, m)	1.32-1.24 (6H, m)	22.1 (CH ₃)	21.9 (CH ₃)
1.29 (1H, m)	-	22.1 (CH ₃)	21.9 (CH ₃)
0.94 (3H, d, <i>J</i> =6.8 Hz)	0.92 (3H, d, <i>J</i> = 7.0 Hz)	13.9 (CH ₃)	13.9 (CH ₃)
0.94 (3H, d, <i>J</i> = 6.8 Hz)	0.92 (3H, d, <i>J</i> = 7.0 Hz)		
0.88 (3H, d, <i>J</i> = 6.8 Hz)	0.86 (3H, t, J = 6.0 Hz)		

Table S4. Correlation of Natural and Synthetic NMR Data of Compound **7cc** (Pseudopyronine A):³

Isolated compound ¹ H NMR (400 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	34.2 (CH ₂)	34.5 (CH ₂)
5.98 (1H, s)	6.02 (1H, s)	32.9 (CH ₂)	33.2 (CH ₂)
2.46 (2H, t, <i>J</i> = 7.6 Hz)	2.50 (2H, t, $J = 7.5$ Hz)	32.2 (CH ₂)	32.5 (CH ₂)
2.37 (2H, t, $J = 7.5$ Hz)	2.41 (2H, t, $J = 8.0$ Hz)	30.2 (CH ₂)	30.5 (CH ₂)
1.70-1.60 (2H, m)	1.69 (2H, quint, <i>J</i> = 7.5 Hz)	29.0 (CH ₂)	29.2 (CH ₂)
1.50-1.40 (2H, m)	1.49 (2H, quint, <i>J</i> = 7.5 Hz)	27.6 (CH ₂)	27.9 (CH ₂)
1.40-1.32 (10H, m)	1.44-1.33 (10H, m)	23.9 (CH ₂)	24.1 (CH ₂)
0.92 (3H, t, J = 7.0 Hz)	0.96 (3H, t, <i>J</i> = 7.5 Hz)	23.7 (CH ₂)	23.9 (CH ₂)
0.89 (3H, t, J = 7.0 Hz)	0.93 (3H, t, J = 6.5 Hz)	23.4 (CH ₂)	23.6 (CH ₂)
		14.4 (CH ₃)	14.7 (CH ₃)
		14.2 (CH ₃)	14.5 (CH ₃)

			Isolated compound	Present synthetic
			¹³ C NMR	compound
			(100 MHz DMSO	13 C NMR (125
	-			$MI_{-} DMSO(1)$
	C	νH	<i>d</i> ₆)	MHZ, DMSO- a_6)
H ₃ C	\frown		165.0 (C)	164.8 (C)
	oc	CH ₃	164.8 (C)	164.8 (C)
6-heptyl-3-hexy	/I-4-hydro (Pseudop	oxy-2 <i>H</i> -pyran-2-one (7gc) oyronine B)	162.6 (C)	162.7 (C)
			101.3 (C)	101.4 (C)
			99.2 (CH)	99.2 (CH)
Isolated compo ¹ H NMR (400 MHz, DMS	ound $O-d_6)$	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	32.6 (CH ₂)	32.6 (CH ₂)
		11.02 (1H, br s)	31.2 (CH ₂)	31.16 (CH ₂)
5.94 (1H, s))	5.96 (1H, s)	31.1 (CH ₂)	31.11 (CH ₂)
2.37 (2H, t, <i>J</i> = 8	.0 Hz)	2.39 (2H, t, <i>J</i> = 7.5 Hz)	28.6 (CH ₂)	28.5 (CH ₂)
2.24 (2H, t, <i>J</i> = 8	.0 Hz)	2.24 (2H, t, <i>J</i> = 7.5 Hz)	28.6 (CH ₂)	28.3 (CH ₂)
1.51 (2H, t, $J = 8$.0 Hz)	1.52 (2H, quint, <i>J</i> = 7.0 Hz)	28.2 (CH ₂)	28.2 (CH ₂)
1.35 (2H, t, <i>J</i> = 8	.0 Hz)	1.35 (2H, quint, <i>J</i> = 7.0	27.5 (CH ₂)	27.5 (CH ₂)

 Table S5. Correlation of Natural and Synthetic NMR Data of Compound 7gc (Pseudopyronine B):⁴

	Hz)		
1.28 (2H, m)		26.2 (CH ₂)	26.2 (CH ₂)
1.26 (2H, m)		22.7 (CH ₂)	22.6 (CH ₂)
1.26 (2H, m)	1.21.1.17(14H m)	22.0 (CH ₂)	22.05 (CH ₂)
1.26 (2H, m)	1.31-1.17 (14H, m) –	22.0 (CH ₂)	22.02 (CH ₂)
1.26 (2H, m)		14.0 (CH ₃)	13.9 (CH ₃)
1.25 (2H, m)		13.8 (CH ₃)	13.9 (CH ₃)
1.25 (2H, m)			
0.84 (3H, m)	0.07.0.73 (611 m)		
0.84 (3H, m)	0.97-0.75 (0H, III)		

 Table S6. Correlation of Natural and Synthetic NMR Data of Compound 7jc (Pseudopyronine C):⁴

ОН Н ₃ С	Isolated compound ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆)
$0^{\circ} 0^{\circ} 0^{\circ$	166.9 (C)	164.7 (C)
(Pseudopyrinone C)	165.1 (C)	164.7 (C)

		162.0 (C)	162.7 (C)
		101.5 (C)	101.3 (C)
		100.4 (CH)	99.2 (CH)
Isolated compound ¹ H NMR (400 MHz, DMSO- d ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	32.6 (CH ₂)	32.5 (CH ₂)
	11.01 (1H, br s)	31.2 (CH ₂)	31.2 (CH ₂)
5.86 (1H, s)	5.98 (1H, s)	31.2 (CH ₂)	31.1 (CH ₂)
2.34 (2H, t, <i>J</i> = 8.0Hz)	2.41 (2H, t, <i>J</i> = 7.5 Hz)	28.8 (CH ₂)	28.8 (CH ₂)
2.22 (2H, t, <i>J</i> = 8.0 Hz)	2.26 (2H, t, <i>J</i> = 7.5 Hz)	28.6 (CH ₂)	28.62 (CH ₂)
1.50 (2H, t, <i>J</i> =8.0 Hz)	1.54 (2H, quint, <i>J</i> = 6.5 Hz)	28.6 (CH ₂)	28.6 (CH ₂)
1.34 (2H, t, <i>J</i> =8.0 Hz)	1.38 (2H, quint, <i>J</i> = 6.5 Hz)	28.6 (CH ₂)	28.5 (CH ₂)
1.28 (2H, m)		28.2 (CH ₂)	28.2 (CH ₂)

1.28 (2H, m)	1.28-1.23 (18H, m)	27.7 (CH ₂)	27.4 (CH ₂)
1.26 (2H, m)		26.2 (CH ₂)	26.2 (CH ₂)
1.26 (2H, m)		22.8 (CH ₂)	22.6 (CH ₂)
1.26 (2H, m)		22.1 (CH ₂)	22.05 (CH ₂)
1.26 (2H, m)		22.1 (CH ₂)	22.03 (CH ₂)
1.25 (2H, m)		13.9 (CH ₃)	13.9 (CH ₃)
1.24 (2H, m)		13.9 (CH ₃)	13.9 (CH ₃)
1.23 (2H, m)			
0.85 (3H, m)			
0.85 (3H, m)	0.90-0.78 (0H, III)		

Table S7. Correlation of Natural and Synthetic NMR Data of Compound 7bd (Photopyrone B):²

СН3 ОН	Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (100 MHz, CD ₃ OD)
H ₃ C CH ₃	167.6 (C)	167.5 (C)
$O^{-}O^{-} CH_{3}$ 4-Hydroxy-6-isobutyl-3-(5-methylhexyl)-2 <i>H</i> -pyran-2-one (7bd)	166.9 (C)	166.3 (C)
(Photopyrone B)	162.7 (C)	162.8 (C)

		102.4 (C)	102.5 (C)
		101.0 (CH)	100.6 (CH)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	42.0 (CH ₂)	42.0 (CH ₂)
5.96 (1H, s)	5.97 (1H, s)	38.7 (CH ₂)	38.6 (CH ₂)
2.37 (2H, dd, <i>J</i> = 7.6, 7.3 Hz)	2.37 (2H, t, <i>J</i> = 8.0 Hz)	27.9 (CH ₂)	27.8 (CH ₂)
2.31 (2H, d, <i>J</i> = 7.0 Hz)	2.33 (2H, d, <i>J</i> = 7.5 Hz)	27.7 (CH)	27.7 (CH)
2.02 (1H, sept, $J = 7.0$ Hz)	2.03 (1H, nonet, $J = 7.0$ Hz)	26.9 (CH ₂)	26.9 (CH ₂)
1.52 (1H, sept, $J = 6.7$ Hz)	1.52 (1H, nonet, <i>J</i> = 6.5 Hz)	26.7 (CH)	26.7 (CH)
1.43 (2H, m)	1.44 (2H, quint, <i>J</i> = 7.5 Hz)	22.5 (CH ₂)	22.5 (CH ₂)
1.31 (2H, m)	1.36-1.28 (2H, m)	21.6 (CH ₃)	21.6 (CH ₃)
1.19 (2H, m)	1.20 (2H, q, <i>J</i> = 6.5 Hz)	21.6 (CH ₃)	21.6 (CH ₃)
0.94 (3H, d, <i>J</i> =6.7 Hz)	0.95 (6H, d, <i>J</i> =7.0 Hz)	21.0 (CH ₃)	21.1 (CH ₃)
0.94 (3H, d, <i>J</i> = 6.7 Hz)		21.0 (CH ₃)	21.1 (CH ₃)

0.86 (3H, d, <i>J</i> = 6.7 Hz)	0.87 (6H, d, <i>J</i> = 6.5 Hz)	
0.86 (3H, d, <i>J</i> = 6.7 Hz)		

 Table S8. Correlation of Natural and Synthetic NMR Data of Compound 7bh (Germicidin I):5

			1
OH H2C		Isolated compound ${}^{13}C$ NMR (125 MHz, DMSO- d_6)	Present synthetic compound ¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆)
	CH ₃	168.0 (C)	165.1 (C)
4-Hydroxy-6-isobutyl-3-me	 CH₃ thvl-2<i>H</i>-pyran-2-one (7bh) 	165.4 (C)	164.7 (C)
(Germi	cidin I)	160.3 (C)	161.6 (C)
		101.9 (CH)	100.2 (CH)
		94.7 (C)	96.6 (C)
Isolated compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	41.6 (CH ₂)	41.6 (CH ₂)
	11.12 (1H, br s, OH)	26.0 (CH)	26.4 (CH)
5.86 (1H, s)	5.97 (1H, s)	21.7 (CH ₃)	21.9 (CH ₃)
2.21 (2H, d, $J = 6.5$ Hz)	2.28 (2H, d, <i>J</i> = 7.0 Hz)	21.7 (CH ₃)	21.9 (CH ₃)
1.89 (1H, m)	1.91 (1H, nonet, $J = 7.0$	8.4 (CH ₃)	8.4 (CH ₃)

	Hz)	
1.69 (3H, s)	1.74 (3H, s)	
0.88 (3H, d, J = 6.5 Hz)	0.99 (611 d $I = 6.5$ Hz)	
0.88 (3H, d, J = 6.5 Hz)	0.88 (0H, d, J = 0.3 HZ)	

Table S9. Correlation of Natural and Synthetic NMR Data of Compound 7ch (Violapyrone L):⁶

ŎН		Isolated compound ${}^{13}C$ NMR (125 MHz, DMSO- d_6)	Present synthetic compound ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆)
H ₃ C		165.2 (C)	167.7 (C)
0 0	CH ₃	165.0 (C)	167.1 (C)
4-Hydroxy-3-methyl-6-pentyl-2 <i>H</i> -pyran-2-one (7ch) (Violapyrone L)		163.2 (C)	164.2 (C)
		99.6 (CH)	100.6 (CH)
		96.3 (C)	97.7 (C)
Isolated compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	32.9 (CH ₂)	33.1 (CH ₂)
5.98 (1H, s)	5.98 (1H, s)	30.8 (CH ₂)	30.9 (CH ₂)
2.40 (2H, t, <i>J</i> = 7.5 Hz)	2.36 (2H, t, <i>J</i> = 7.5 Hz)	26.3 (CH ₂)	26.5 (CH ₂)

1.74 (3H, s)	1.70 (3H, s)	22.1 (CH ₂)	22.3 (CH ₂)
1.53 (2H, quintet, <i>J</i> = 7.5 Hz)	1.48 (2H, quintet, <i>J</i> = 7.5 Hz)	14.1 (CH ₃)	14.3 (CH ₃)
1.29 (2H, m)	1.70 (3H, s) 1.48 (2H, quintet, <i>J</i> = 7.5 Hz) 1.25-1.14 (4H, m) 0.78 (3H, t, <i>J</i> = 7.0 Hz)	8.7 (CH ₃)	8.7 (CH ₃)
1.27 (2H, m)			
0.88 (3H, t, <i>J</i> = 7.1 Hz)	0.78 (3H, t, <i>J</i> = 7.0 Hz)		

 Table S10. Correlation of Natural and Synthetic NMR Data of Compound 7dh (Violapyrone J1):7

ОН	Isolated compound ¹³ C NMR (150 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (100 MHz, CD ₃ OD)
	169.3 (C)	169.4 (C)
0	168.4 (C)	168.2 (C)
(Violapyrone J1)	165.1 (C)	165.4 (C)
	101.1 (CH)	101.1 (CH)
	98.8 (C)	99.2 (C)
Isolated compoundPresent synthetic ¹ H NMRcompound ¹ H NMR	37.1 (CH ₂)	37.3 (CH ₂)

(600 MHz, CD ₃ OD)	(500 MHz, CD ₃ OD)		
5.98 (1H, s)	5.90 (1H, s)	32.2 (CH ₂)	32.6 (CH ₂)
2.47 (2H, t, <i>J</i> = 7.8 Hz)	2.39 (2H, t, <i>J</i> = 8.0 Hz)	28.3 (CH)	28.9 (CH)
1.83 (3H, s)	1.75 (3H, s)	22.3 (2 x CH ₃)	22.9 (2 x CH ₃)
1.58 (1H, m)	1.50 (1H, nonet, $J = 6.5$ Hz)	8.3 (CH ₃)	8.5 (CH ₃)
1.53 (2H, m)	1.46-1.40 (2H, m)		
0.95 (6H, d, <i>J</i> = 6.6 Hz)	0.84 (6H, d, <i>J</i> = 6.5 Hz)		

Table S11. Correlation of Natural and Synthetic NMR Data of Compound 7eh (Violapyrone J):⁸

OH H₂C,	Isolated compound ¹³ C NMR (125 MHz, DMSO- d_6) ⁷	Present synthetic compound ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆)
CH ₃	166.7 (C)	165.1 (C)
O [´] O [´] → → → → → → → → → → → → → → → → → → →	165.2 (C)	164.8 (C)
(Violapyrone J)	161.9 (C)	162.5 (C)
	100.2 (CH)	99.2 (CH)

		95.5 (C)	96.5 (C)
Isolated compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	32.6 (CH ₂)	32.6 (CH ₂)
	11.09 (1H, br s)	30.9 (CH ₂)	30.9 (CH ₂)
5.91 (1H, br s)	5.97 (1H, s)	27.6 (CH ₂)	27.9 (CH ₂)
2.37 (2H, t, <i>J</i> =7.5 Hz)	2.39 (2H, t, <i>J</i> = 7.5 Hz)	26.1 (CH ₂)	26.2 (CH ₂)
1.71 (3H, s)	1.73 (3H, s)	21.7 (CH ₂)	21.9 (CH ₂)
1.51(2H, m)	1.51 (2H, quint, <i>J</i> = 7.5 Hz)	13.7 (CH ₃)	13.8 (CH ₃)
1.27 (2H, m)		8.3 (CH ₃)	8.3 (CH ₃)
1.26 (2H, m)	1.32-1.19 (6H, m)		
1.26 (2H, m)			
0.85 (3H, t, J = 6.5 Hz)	0.84 (3H, t, <i>J</i> = 7.0 Hz)		

он		Isolated compound ${}^{13}C$ NMR (150 MHz, DMSO- d_6)	Present synthetic compound ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆)
H ₃ C	CH ₃	165.6 (C)	165.1 (C)
	CH ₃	165.5 (C)	164.8 (C)
4-нуагоху-3-metny 2 <i>H</i> -pyran- (Violap)	1-6-(4-metnyipentyi)- 2-one (7fh) vrone A)	162.9 (C)	162.5 (C)
	, ,	99.8 (CH)	99.2 (CH)
		96.9 (C)	96.5 (C)
Isolated compound ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	38.0 (CH ₂)	37.5 (CH ₂)
5.96 (1H, s)	5.95 (1H, s)	33.2 (CH ₂)	32.8 (CH ₂)
2.37 (2H, t, <i>J</i> = 7.3 Hz)	2.36 (2H, t, <i>J</i> = 7.5 Hz)	27.7 (CH)	27.2 (CH)
1.72 (3H, s)	1.71 (3H, s)	24.6 (CH ₂)	24.2 (CH ₂)
1.51 (2H, m)	1.54-1.45 (3H, m)	22.8 (2 x CH ₃)	22.4 (2 x CH ₃)
1.50 (1H, m)		8.8 (CH ₃)	8.3 (CH ₃)
1.15 (2H, q, <i>J</i> = 6.9 Hz)	1.14 (2H, q, <i>J</i> = 7.0 Hz)		

 Table S12. Correlation of Natural and Synthetic NMR Data of Compound 7fh (Violapyrone A):9

0.84 (6H, d, $J = 6.6$ Hz)	0.83 (6H, d, <i>J</i> = 6.5 Hz)		
----------------------------	---------------------------------	--	--

 Table S13. Correlation of Natural and Synthetic NMR Data of Compound 7gh (Violapyrone I):11

OH H ₃ C		Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (100 MHz, CD ₃ OD)
		169.2 (C)	169.2 (C)
6 Hontyl 4 bydroxy 3 mot	\sim CH ₃	168.0 (C)	167.9 (C)
6-Heptyl-4-hydroxy-3-methyl-2 <i>H</i> -pyran-2-one (/gn) (Violapyrone I)		165.0 (C)	165.0 (C)
		101.1 (CH)	101.1 (CH)
		99.0 (C)	99.1 (C)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	34.4 (CH ₂)	34.4 (CH ₂)
5.99 (1H, s)	5.99 (1H, s)	33.0 (CH ₂)	32.9 (CH ₂)
2.48-2.45 (2H, t, $J = 8.1$ Hz) 2.47 (2H, t, $J = 7.5$ Hz)		30.2 (CH ₂)	30.2 (CH ₂)
1.85 (3H, s)	1.85 (3H, s)	30.1 (CH ₂)	30.1 (CH ₂)
1.65-1.62 (2H, m)	1.69-1.59 (2H, m)	28.1 (CH ₂)	28.1 (CH ₂)

1.35-1.30 (8H, m)	1.38-1.27 (8H, m)	23.8 (CH ₂)	23.8 (CH ₂)
0.91-0.89 (3H, t, <i>J</i> = 6.9 Hz)	0.90 (3H, t, <i>J</i> = 7.0 Hz)	14.6 (CH ₃)	14.5 (CH ₃)
		8.4 (CH ₃)	8.4 (CH ₃)

Table S14. Correlation of Natural and Synthetic NMR Data of Compound **7hh** (Violapyrone B):⁹

OH H ₃ C		Isolated compound ¹³ C NMR (125 MHz, DMSO- d_6) ⁷	Present synthetic compound ¹³ C NMR (125 MHz, DMSO- <i>d</i> ₆)
	CH3	165.2 (C)	165.1 (C)
CH ₃ 4-hydroxy-3-methyl-6-(5-methylhexyl)- 2 <i>H</i> -pyran-2-one (7hh) (Violapyrone B)		164.9 (C)	164.9 (C)
		162.6 (C)	162.5 (C)
		99.2 (CH)	99.2 (CH)
		96.6 (C)	96.5 (C)
Isolated compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO- <i>d</i> ₆)	38.1 (CH ₂)	38.0 (CH ₂)
11.1 (1H, br s)	11.1 (1H, br s)	32.6 (CH ₂)	32.6 (CH ₂)

5.98 (1H, br s)	5.98 (1H, s)	27.4 (CH)	27.3 (CH)
2.41 (2H, t, <i>J</i> = 7.3 Hz)	2.41 (2H, t, <i>J</i> = 7.5 Hz)	26.6 (CH ₂)	26.5 (CH ₂)
1.74 (3H, s)	1.74 (3H, s)	26.1 (CH ₂)	26.0 (CH ₂)
1.50 (2H, m)	1.50 (3H, quint, <i>J</i> = 7.5 Hz)	22.5 (2 x CH ₃)	22.5 (2 x CH ₃)
1.49 (1H, m)		8.4 (CH ₃)	8.4 (CH ₃)
1.27 (2H, m)	1.28 (2H, quint, <i>J</i> = 7.0 Hz)		
1.16 (2H, m)	1.16 (2H, q, <i>J</i> = 8.0 Hz)		
0.85 (6H, d, J = 6.6 Hz)	0.84 (6H, d, <i>J</i> = 6.5 Hz)		

Table S15. Correlation of Natural and Synthetic NMR Data of Compound 7ih (Violapyrone H):¹⁰

	Isolated compound	Present synthetic
	¹³ C NMR	compound
	(100 MHz,	¹³ C NMR (125
ОН	CD ₃ OD)	MHz, CD ₃ OD)
H ₃ C CH ₃	169.9 (C)	169.1 (C)
	169.5 (C)	167.9 (C)
4-nydroxy-3-metnyi-6-(6-metnyiheptyi)-2H-pyran-2-one (7in) (Violapyrone H)	164.8 (C)	164.9 (C)

		102.0 (CH)	101.0 (CH)
		98.7 (C)	98.9 (C)
Isolated compound ¹ H NMR (400 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	40.1 (CH ₂)	40.0 (CH ₂)
5.96 (1H, s)	6.01 (1H, s)	34.4 (CH ₂)	34.2 (CH ₂)
2.46 (2H, t, <i>J</i> = 7.5 Hz)	2.49 (2H, t, <i>J</i> = 7.5 Hz)	30.4 (CH ₂)	30.2 (CH ₂)
1.84 (3H, s)	1.87 (3H, s)	29.7 (CH)	29.1 (CH)
1.64 (2H, m)	1.66 (2H, quint, <i>J</i> = 7.5 Hz)	28.3 (CH ₂)	28.2 (CH ₂)
1.53 (1H, m)	1.55 (1H, septet, <i>J</i> = 6.5 Hz)	28.1 (CH ₂)	28.0 (CH ₂)
1.34 (2H, m)	1.36 (4H, quint, <i>J</i> = 3.5	23.1 (2 x CH ₃)	23.0 (2 x CH ₃)
1.34 (2H, m)	Hz)	8.4 (CH ₃)	8.2 (CH ₃)
1.19 (2H, m)	1.21 (2H, m)		
0.88 (6H, d, <i>J</i> = 6.5 Hz)	0.90 (6H, d, <i>J</i> = 7.0 Hz)		

OH H ₃ C		Isolated compound ¹³ C NMR (125 MHz, CD ₃ OD)	Present synthetic compound ¹³ C NMR (125 MHz, CD ₃ OD)
0	СН3	169.3 (C)	169.2 (C)
(R)-4-hydroxy-3-methy	CH ₃	168.2 (C)	168.0 (C)
2 <i>H</i> -pyran-2-c (Violapyr	one ((-)- 7lh)	165.0 (C)	165.0 (C)
			101.1 (CH)
		99.0 (C)	99.0 (C)
Isolated compound ¹ H NMR (500 MHz, CD ₃ OD)	Present synthetic compound ¹ H NMR (500 MHz, CD ₃ OD)	37.5 (CH ₂)	37.4 (CH ₂)
5.99 (1H, s)	6.01 (1H, s)	35.7 (CH)	35.6 (CH)
2.47 (2H, t, <i>J</i> = 7.5 Hz)	2.49 (2H, t, <i>J</i> = 7.5 Hz)	34.4 (CH ₂)	34.3 (CH ₂)
1.85 (3H, s)	1.87 (3H, s)	30.7 (CH ₂)	30.6 (CH ₂)
1.62 (2H, m)	1.70-1.58 (2H, m)	28.4 (CH ₂)	28.3 (CH ₂)
1.36 (2H, m)	1 45 1 20 (51	27.6 (CH ₂)	27.5 (CH ₂)
1.33 (2H, m)	1.43-1.30 (3H, III)	19.7 (CH ₃)	19.6 (CH ₃)

 Table S16. Correlation of Natural and Synthetic NMR Data of Compound (-)-7lh [(-)-Violapyrone C]:¹¹

1.32 (1H, m)		11.9 (CH ₃)	11.8 (CH ₃)
1.15 (2H, m)	1.22-1.11 (2H, m)	8.4 (CH ₃)	8.3 (CH ₃)
0.87 (3H, t, J = 7.0 Hz)	0.93-0.85 (6H, m) -		
0.86 (3H, d, <i>J</i> = 6.5 Hz)			

Table S17. Correlation of Natural and Synthetic NMR Data of Compound 11ch (Childinin G):^{12,13}

OMe H ₃ C OCH ₃ 4-Methoxy-3-methyl-6-pentyl-2 <i>H</i> -pyran-2-one (11ch) (Childinin G)		Isolated compound ¹³ C NMR (150 MHz, CDCl ₃)	Present synthetic compound ¹³ C NMR (125 MHz, CDCl ₃)
		166.2 (C)	165.9 (C)
		166.0 (C)	165.8 (C)
		164.6 (C)	164.4 (C)
		94.3 (C)	100.8 (C)
		94.3 (CH)	94.1 (CH)
Isolated compound	Present synthetic		
¹ H NMR	compound ¹ H NMR	56.3 (CH ₃)	56.1 (CH ₃)
(600 MHz, CDCl ₃)	(500 MHz, CDCl ₃)		

5.99 (1H, s)	5.99 (1H, s)	34.3 (CH ₂)	34.1 (CH ₂)
3.87 (3H, s)	3.87 (3H, s)	31.3 (CH ₂)	31.1 (CH ₂)
2.47 (2H, t, <i>J</i> = 7.9 Hz)	2.48 (2H, t, <i>J</i> = 8.0 Hz)	26.9 (CH ₂)	26.7 (CH ₂)
1.90 (3H, s)	1.90 (3H, s)	22.5 (CH ₂)	22.2 (CH ₂)
1.66 (2H, m)	1.67 (2H, quint, <i>J</i> = 7.5 Hz)	14.1 (CH ₃)	13.8 (CH ₃)
1.32 (4H, m)	1.37-1.29 (4H, m)	8.6 (CH ₃)	8.3 (CH ₃)
0.89 (3H, t, J = 7.1 Hz)	0.90 (3H, t, <i>J</i> = 7.0 Hz)		

		Isolated compound	Present synthetic
OMe		$(125 \text{ MH}_7 \text{ DMSO})$	^{13}C NMP (125
H₂C、		(125 MIIZ, DIVISO-	$MH_7 DMSO_d_{c}$
		166.6 (C)	166.6 (C)
4 Mathema 2 mathed		165.4 (C)	164.9 (C)
4-Methoxy-3-methyl-6-(4-methylpentyl) -2 <i>H</i> -pyran-2-one (11fh) (Violapyrone Q)		164.4 (C)	164.5 (C)
		95.5 (C)	99.1 (C)
		95.1 (CH)	95.3 (CH)
Isolated compound ¹ H NMR (500 MHz, DMSO-d ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO-d ₆)	56.0 (CH ₃)	57.2 (CH ₃)
6.48 (1H, s)	6.48 (1H, s)	38.0 (CH ₂)	38.1 (CH ₂)
3.95 (3H, s)	3.88 (3H, s)	33.6 (CH ₂)	33.8 (CH ₂)
2.44 (2H, t, <i>J</i> = 7.5 Hz)	2.48 (2H, t, <i>J</i> = 7.5 Hz)	27.6 (CH)	27.6 (CH)
1.73 (3H, s)	1.76 (3H, s)	24.6 (CH ₂)	24.8 (CH ₂)
1.59 (2H, m)	1.62.1.52 (2H m)	22.8 (CH ₃)	22.8 (CH ₃)
1.53 (1H, m)	1.02-1.55 (5 n , III)	22.8 (CH ₃)	22.8 (CH ₃)
1.16 (2H, m)	1.19 (2H, q, J = 7.0 Hz)	9.0 (CH ₃)	8.8 (CH ₃)

Table S18. Correlation of Natural and Synthetic NMR Data of Compound 11fh (Violapyrone Q):¹³

0.86 (3H, d, J = 6.5 Hz)	0.87 (3H, d, <i>J</i> = 7.0 Hz)	
0.86 (3H, d, <i>J</i> = 6.5 Hz)	0.87 (3H, d, <i>J</i> = 7.0 Hz)	

Table S19. Correlation of Natural and Synthetic NMR Data of Compound **11gh** (Violapyrone S):¹³

		Isolated compound ¹³ C NMR	Present synthetic compound
OMe		(125 MHz, DMSO-	¹³ C NMR (125
		d ₆)	MHz, DMSO-d ₆)
			166.2 (C)
0, 0 ~	~ ~ CH ₃	164.7 (C)	164.5 (C)
6-Heptyl-4-methoxy-3-methyl-2 <i>H</i> -pyran-2-one (11gh) (Violapyrone S)		164.2 (C)	164.1 (C)
		98.8 (C)	98.6 (C)
		94.9 (CH)	94.9 (CH)
Isolated compound ¹ H NMR (500 MHz, DMSO-d ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO-d ₆)	56.8 (CH ₃)	56.7 (CH ₃)
6.47 (1H, s)	6.43 (1H, s)	33.2 (CH ₂)	33.1 (CH ₂)
3.85 (3H, s)	3.85 (3H, s)	31.3 (CH ₂)	31.1 (CH ₂)
2.46 (2H, t, $J = 7.5$ Hz) 2.48-2.43 (2H, m)		28.5 (CH ₂)	28.3 (CH ₂)

1.75 (3H, s)	1.73 (3H, s)	28.4 (CH ₂)	28.3 (CH ₂)
1.58 (2H, m)	1.55 (2H, quint, <i>J</i> = 7.0 Hz)	26.5 (CH ₂)	26.5 (CH ₂)
1.29 (2H, m)		22.4 (CH ₂)	22.0 (CH ₂)
1.28 (2H, m)	1.28-1.21 (8H, m)	14.2 (CH ₃)	13.9 (CH ₃)
1.26 (2H, m)		8.6 (CH ₃)	8.3 (CH ₃)
1.22 (2H, m)			
0.83 (3H, d, <i>J</i> = 6.7 Hz)	0.83 (3H, t, J = 7.0 Hz)		

		Isolated compound	Present synthetic
OMe		¹³ C NMR	compound
		(125 MHz, DMSO-	¹³ C NMR (125
H ₃ C		d_6)	MHz, DMSO-d ₆)
070		166.2 (C)	166.3 (C)
	ĊН ₃	164.5 (C)	164.6 (C)
4-Methoxy-3-methyl-6-(5-methylhexyl) -2 <i>H</i> -pyran-2-one (11hh)		164.2 (C)	164.2 (C)
(Violapyrone R)		98.6 (C)	98.7 (C)
		95.0 (CH)	95.0 (CH)
Isolated compound ¹ H NMR (500 MHz, DMSO-d ₆)	Present synthetic compound ¹ H NMR (500 MHz, DMSO-d ₆)	56.9 (CH ₃)	56.8 (CH ₃)
6.48 (1H, s)	6.48 (1H, s)	38.1 (CH ₂)	38.1 (CH ₂)
3.87 (3H, s)	3.87 (3H, s)	33.3 (CH ₂)	33.2 (CH ₂)
2.50 (2H, t, <i>J</i> = 7.5 Hz)	2.49 (2H, t, <i>J</i> = 7.5 Hz)	27.4 (CH)	27.4 (CH)
1.75 (3H, s)	1.75 (3H, s)	26.8 (CH ₂)	26.8 (CH ₂)
1.53 (2H, m)	1.60 - 1.47 (3H m)	26.1 (CH ₂)	26.2 (CH ₂)
1.47 (1H, m)	1.00 - 1.47 (311, 111)	22.6 (CH ₃)	22.5 (CH ₃)

Table S20. Correlation of Natural and Synthetic NMR Data of Compound 11hh (Violapyrone R):^{13,14}

1.29 (2H, m)	1.30 (2H, m)	22.6 (CH ₃)	22.5 (CH ₃)
1.18 (2H, m)	1.18 (2H, m)	8.7 (CH ₃)	8.5 (CH ₃)
0.86 (3H, dd, <i>J</i> = 15.6, 7.0 Hz)	0.85 (3H, d, <i>J</i> = 6.5 Hz)		
0.86 (3H, dd, <i>J</i> = 15.6, 7.0 Hz)	0.85 (3H, d, <i>J</i> = 6.5 Hz)		

Table S21. Correlation of Natural and Synthetic NMR Data of Compound **3d** (Fistupyrone):¹⁴

он		Isolated compound ¹³ C NMR (100 MHz, CDCl ₃)	Present synthetic compound ¹³ C NMR (100 MHz, CDCl ₃)
		172.7 (C)	172.6 (C)
0~0	CH ₃	168.4 (C)	168.3 (C)
4-Hydroxy-6-isopentyl-	2 <i>H</i> -pyran-2-one (3d)	167.6 (C)	167.5 (C)
(Fistupyrone)		101.2 (CH)	101.1 (CH)
		89.7 (CH)	89.6 (CH)
Isolated compound ¹ H NMR (400 MHz, CDCl ₃)	Present synthetic compound ¹ H NMR (500 MHz, CDCl ₃)	35.5 (CH ₂)	35.5 (CH ₂)

6.01 (1H, s)	5.99 (1H, s)	31.6 (CH ₂)	31.5 (CH ₂)
5.58 (1H, s)	5.58 (1H, d, <i>J</i> = 1.5 Hz)	27.5 (CH)	27.4 (CH)
2.49 (2H, t, <i>J</i> = 7.8 Hz)	2.48 (2H, t, <i>J</i> = 7.5 Hz)	22.2 (2 x CH ₃)	22.1 (2 x CH ₃)
1.57 (1H, m)	1.59 (1H, nonet, $J = 6.5$ Hz)		
1.53 (2H, m)	1.52 (2H, q, <i>J</i> = 8.0 Hz)		
0.91 (6H, d, <i>J</i> = 6.4 Hz)	0.91 (6H, d, <i>J</i> = 6.5 Hz)		

Table S22: Correlation of Natural and Synthetic HRMS values for Photopyrone C, E, G.²

Photopyrone	Product Number	Molecular formula	Calcd. [M+H] (m/z)	Isolated compound HR ESI MS (m/z)	Present synthetic compound HR ESI MS (m/z)
С	7be	C ₁₇ H ₂₈ O ₃	281.211121	281.2115	281.2117
E	7bf	C19H32O3	309.242421	309.2428	309.2430
G	7bg	$C_{21}H_{36}O_3$	337.273721	337.2741	337.2743

23. References:

- 1. Zhang, X. M.; Peng, A. H.; Xie, W. D.; Wang, M.; Zheng, D.; Feng, M. K.; Hexokinase II Inhibitory Effect of Secondary Metabolites Derived from a Streptomyces sp. Associated with Mud Dauber Wasp. *Chem. Biodiverse.*, **2020**, *17*, e2000140.
- 2. Brachmann, A. O.; Brameyer, S.; Kresovic, D.; Hitkova, I.; Kopp, Y.; Manske, C.; Schubert, K.; Bode, H. B.; Heermann, R. Pyrones as bacterial signaling molecules. *Nat. Chem. Bio.* **2013**, *9*, 573-578.
- 3. Chaladaj, W.; Corbet, M.; Fürstner, A. Total synthesis of neurymenolide A based on a gold-catalyzed synthesis of 4-hydroxy-2-pyrones. *Angew. Chem. Int. Ed.* **2012**, *51*, 6929-6933.
- 4. Kresovic, D.; Schempp, F.; Cheikh-Ali, Z.; Bode, H. B. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis. *Beilstein J. Org. Chem.* **2015**, *11*, 1412-1417.
- 5. Hou, L.; Huang, H.; Li, H.; Wang, S.; Ju, J.; Li, W. Overexpression of a type III PKS gene affording novel violapyrones with enhanced anti-influenza A virus activity. *Microb. Cell Factories* **2018**, *17*, 61.
- Georgousaki, K.; González-Menéndez, V.; Tormo, J. R.; Tsafantakis, N.; Mackenzie, T. A.; Martín, J.; Gumeni, S.; Trougakos, I. P.; Reyes, F.; Fokialakis, N.; Genilloud, O. Comoclathrin, a novel potent skin-whitening agent produced by endophytic *Comoclathris* strains associated with Andalusia desert plants. *Scientific Reports* 2022, *12*, 1649.
- 7. Yang, R.-M.; Zhang, X.-L.; Wang, Li.; Huang, J.-P.; Yang, J.; Yan, Y.-J.; Luo, J.-Y.; Wang, X.-T.; Huang, S.-X. α-Pyrone derivatives from a *Streptomyces* strain resensitize tamoxifen resistance in breast cancer cells. *Nat. Prod. Bioprospect.* **2017**, *7*, 329-334.
- 8. Huang, H.; Hou, L.; Li, H.; Qiu, Y.; Ju, J.; Li, W. Activation of a plasmid-situated type III PKS gene cluster by deletion of a *wbl* gene in deepsea-derived *Streptomyces somaliensis* SCSIO ZH66. *Microb. Cell Factories* **2016**, *15*, 116.
- 9. Zhang, J.; Jiang, Y.; Cao, Y.; Liu, J.; Zheng, D.; Chen, X.; Han, Li.; Jiang, C.; Huang, X. Violapyrones A–G, α-Pyrone derivatives from *Streptomyces violascens* isolated from *Hylobates hoolock* feces. J. Nat. Prod. **2013**, 76, 2126-2130.
- 10. Shin, H. J.; Lee, H. S.; Lee, J. S.; Shin, J.; Lee, M. A.; Lee, Y. J.; Yun, J.; Kang, J. S. Violapyrones H and I, New Cytotoxic Compounds Isolated from Streptomyces sp Associated with the Marine Starfish Acanthaster planci. *Mar. Drugs* **2014**, *12*, 3283-3291, DOI: 10.3390/md12063283.
- 11. Lee, J. S.; Shin, J.; Shin, H. J.; Lee, H.-S.; Lee, Y.-J.; Lee, H.-S.; Won, H. Total synthesis and configurational validation of (+)-violapyrone C. *Eur. J. Org. Chem.* **2014**, 2014, 4472-4476.
- 12. Zhao, Z.-Z.; Chen, H.-P.; Huang, Y.; Zhang, S.-B.; Li, Z.-H.; Feng, T.; Liu, J.-K. Bioactive polyketides and 8,14-*seco*-ergosterol from fruiting bodies of the ascomycete *Daldinia childiae*. *Phytochem*. **2017**, *142*, 68-75.

- 13. Hou, L.; Wang, S.; Huang, H.; Li, H.; Wang, W.; Li, W. Generation of methylated violapyrones with improved anti-influenza A virus activity by heterologous expression of a type III PKS gene in a marine *Streptomyces* strain. *Bioorganic Med. Chem. Lett.* **2018**, *28*, 2865-2868.
- 14. Igarashi, Y.; Ogawa, M.; Sat, Y.; Saito, N.; Yoshida, R.; Kunoh, H.; Onaka, H.; Furumai, T. Fistupyrone, a novel inhibitor of the infection of chinese cabbage by *Alternaria brassicicola*, from *Streptomyces* sp. TP-A0569. *J. Antibiot.* **2000**, *53*, 1117-1122.

S-36

