Supplementary Information

Supplementary Information

Concise and collective total syntheses of 2,4-disubstituted furan-derived natural products from hydroxyoxetanyl ketones

Shubhranshu Shekhar Sahoo,^{a,b} Priyanka Kataria,^{a,b} and Ravindar Kontham*,^{a,b}

^aOrganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune - 411008, India.

^bAcademy of Scientific and Industrial Research (AcSIR), Ghaziabad – 201002, India.

*Email: <u>k.ravindar@ncl.res.in</u>, <u>konthamravindar@gmail.com</u>

S. No.	Contents	Page No.
1.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic methylfuroic acid (1) (Table S1)	S2
2.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic rabdoketone A (2) (Table S2)	S 3
3.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic rabdoketone B (3) (Table S3)	S 4
4.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic paleofuran A (4) (Table S4)	S5
5.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic paleofuran B (5) (Table S5)	S6-S7
6.	Comparison of ¹ H and ¹³ C NMR data of natural and synthetic tournefolin C (6) (Table S6)	S7-S8
7.	¹ H and ¹³ C NMR spectra	S9-S49

Table of Contents

Table S1: Comparison of ¹H and ¹³C NMR data of natural and synthetic methylfuroic acid (1).

Methylfuroic acid (1) (Natural)		Methylfuroic acid (1) (Synthetic)		Methylfuroic acid (1) (Synthetic)		
in CDCl ₃		in CDCl ₃		in CDCl ₃		
Zhang <i>et al</i> .		Murphree et al.		This work		
	δH (mult, J in	δC (mult, <i>J</i> in Hz)	δ H (mult, J in Hz)	δC (mult, J in	$\delta H (mult, J in Hz)$	δC (mult, <i>J</i> in Hz)
	Hz)	(125 MHz)	(400 MHz)	Hz)	(400 MHz)	(101 MHz)
	(500 MHz)			(100 MHz)		
2	-	154.06	-	154.01	-	154.21
3	6.33 (s, 1H)	105.55	6.33 (s, 1H)	105.54	6.35 (s, 1H)	105.67
4	-	119.72	-	119.76	-	119.40
5	7.93 (s, 1H)	147.56	7.94 (s, 1H)	147.58	7.96 (s, 1H)	147.75
1'	2.29 (s, 3H)	13.35	2.31 (s, 3H)	13.33	2.32 (s, 3H)	13.54
2'	-	168.41	-	168.39	_	168.88

Table S2: Comparison of ¹H and ¹³C NMR data of natural and synthetic rabdoketone A (2).

Rabdoketone A (2) (Natural) in		Rabdoketone A (2) (Synthetic)		Rabdoketone A (2) (Synthetic)		
CDCl ₃		in CDCl ₃		in CDCl ₃		
	Ma et al.		Murphree et al		This work	
	$\delta H (mult, J in Hz)$	δC (mult, J	$\delta H (mult, J in Hz)$	δC (mult, J	$\delta H (mult, J in Hz)$	δC (mult,
	(400 MHz)	in Hz)	(400 MHz)	in Hz)	(400 MHz)	J in Hz)
		(100 MHz)		(100 MHz)		(101 MHz)
2	-	148.6	-	154.2	-	154.3
3	6.29 (s, 1H)	115.6	6.33 (s, 1H)	104.5	6.34 (s, 1H)	104.5
4	-	129.8	-	129.3	-	129.3
5	7.31 (s, 1H)	143.7	7.94 (s, 1H)	145.8	7.84 (s, 1H)	145.9
1'	2.31 (s, 3H)	11.6	2.29 (s, 3H)	13.5	2.30 (s, 3H)	13.5
2'	-	191.3	-	195.5	-	195.5
3'	2.63 (d, 2H)	24.7	2.54 (d, 2H)	25.6	2.55 (d, 7.0, 2H)	25.6
4'	2.20 (m, 1H)	47.7	2.15-2.28 (m, 1H)	49.3	2.27-2.20 (m, 1H)	49.4
5'; 6'	0.90 (d, 6H)	22.5	0.95 (d, 6H)	22.8	0.96 (d, 6.6, 6H)	22.9

Table S3: Comparison of ¹H and ¹³C NMR data of natural and synthetic rabdoketone B (3).

Rabdoketone B (3) (Natural) in CDCl ₃			Rabdoketone B (3) (Synthetic) in $CDCl_3$	
Ma et al.			This	work
	δH (mult, J in Hz)	$\delta C (mult, J in Hz)$	δH (mult, J in Hz)	δC (mult, J in Hz)
	(400 MHz)	(100 MHz)	(400 MHz)	(101 MHz)
2	-	149.3	-	154.1
3	6.30 (s, 1H)	115.7	6.38 (s, 1H)	104.9
4	-	129.9	-	130.6
5	7.31 (s, 1H)	143.1	7.84 (s, 1H)	145.1
1'	2.36 (s, 3H)	11.9	2.30 (s, 3H)	13.6
2'	-	181.5	-	185.7
3'	6.72 (s, 1H)	120.6	6.40-6.39 (m, 1H)	121.8
4'	-	156.4	-	156.1
5'	1.93 (s, 3H)	20.8	1.95 (s, 1H)	21.2
6'	2.20 (s, 3H)	28.0	2.22 (s, 1H)	28.0
1				

Table S4: Comparison of ¹H and ¹³C NMR data of natural and synthetic paleofuran A (4).

7' 1' 2 3 1' OH

Paleofuran A (4) (Natural) in DMSO- d_6		Paleofuran A (4) (Synthetic)		Paleofuran A (4) (Synthetic)		
Klapper <i>et al</i> .		in CDCl ₃		in CDCl ₃		
			Klapper	et al.	This work	
	$\delta H (mult, J in Hz)$	δC (mult, <i>J</i> in Hz)	$\delta H (mult, J in Hz)$	δC (mult, J in	$\delta H (mult, J in Hz)$	$\delta C (mult, J in Hz)$
	(600 MHz)	(150 MHz)	(300 MHz)	Hz)	(400 MHz)	(101 MHz)
				(75 MHz)		
2	-	158.7	-	158.7	-	158.7
3	6.35 (s, 1H)	104.9	6.35 (s, 1H)	104.9	6.35 (s, 1H)	104.9
4	-	119.2	-	119.2	-	119.2
5	7.96 (s, 1H)	147.7	7.96 (s, 1H)	147.7	7.97 (s, 1H)	147.7
1'	2.62 (t, 7.5, 2H)	27.9	2.62 (t, 6.2, 2H)	27.9	2.62 (t, 7.5, 2H)	27.9
2'	1.64 (p, 7.2, 2H)	27.8	1.59–1.69 (m, 2H)	27.8	1.61–1.68 (m, 2H)	27.8
3'	1.33 (m, 2H)	29.1	1.27–1.33 (m, 8H)	29.1	1.26–1.38(m, 8H)	29.1
4'	1.33 (m, 2H)	29.1		29.1		29.1
5'	1.29 (m, 2H)	31.9		31.9		31.9
6'	1.30 (m, 2H)	22.8		22.8		22.8
7'	0.89 (t, 6.6, 3H)	14.2	0.89 (t, 5.2, 3H)	14.2	0.88 (t, 6.63, 3 H)	14.2
1"	-	169.0	-	169.0	-	169.4

Table S5: Comparison of ¹H and ¹³C NMR data of natural and synthetic paleofuran B (5).

Paleofuran B (5) (Natural) in DMSO-d ₆ Klapper <i>et al</i> .			Paleofuran B (5) (Synt This wor	hetic) in CDCl ₃ rk
	δH (mult, J in Hz)	$\delta C (mult, J in Hz)$	δ H (mult, J in Hz)	δC (mult, J in Hz)
	(600 MHz)	(150 MHz)	(400 MHz)	(101 MHz)
2	-	158.7	-	158.7
3	6.35 (s, 1H)	104.9	6.35 (s, 1H)	104.9
4	-	119.2	-	119.1
5	7.96 (s, 1H)	147.5	7.96 (s, 1H)	147.6
1'	2.62 (t, 7.5, 2H)	28.0	2.62 (t, <i>J</i> = 7.63 Hz, 2H)	27.9
2'	1.64 (p, 7.2, 2H)	27.8	1.64 (p, <i>J</i> = 7.38 Hz, 2H)	27.8
3'	1.33 (m, 2H)	29.4	1.25 (m, 12H)	29.4
4'	1.27 (m, 2H)	29.2/29.5/29.6		29.2/29.4/29.6
5'	1.27 (m, 2H)	29.2/29.5/29.6		29.2/29.4/29.6
6'	1.27 (m, 2H)	29.2/29.5/29.6		29.2/29.4/29.6
7'	1.27 (m, 2H)	32.0		32.0
8'	1.29 (m, 2H)	22.8		22.8

9'	0.88 (t, 6.8, 3H)	14.2	0.88 (t, J = 6.7 Hz, 3H)	14.3
1"	-	167.8	-	168.2

Table S6: Comparison of ¹H and ¹³C NMR data of natural and synthetic tournefolin C (6).

Tournefolin C (6) (Natural) in DMSO- d_6		Tournefolin C (6) (Synthetic) in DMSO- d_6		
Lin <i>et al</i> .			This work	
	δH (mult, J in Hz)	δC (mult, J in Hz)	δH (mult, J in Hz)	δC (mult, J in Hz)
	(300 MHz)	(75 MHz)	(400 MHz)	(101 MHz)
2	-	151.7	-	151.7
3	7.08 (s, 1H)	107.9	7.14 (d, 0.75, 1H)	108.0
4	-	120.1	-	120.2
5	8.35 (s, 1H)	146.4	8.39 (s, 1H)	146.6
1'	-	146.4	-	146.5
2'	-	116.2	-	116.2
3'	7.06 (d, 2.0, 1H)	110.8	7.07 (d, 2.8, 1H)	110.8
4'	-	149.8	-	149.9

Supplementary Information

5'	6.59 (dd, 8.7, 2.0, 1H)	116.9	6.60 (dd, 8.7, 2.8, 1H)	117.0
6'	6.77 (d, 8.7, 1H)	116.0	6.79 (d, 8.7, 1H)	116.1
1"	-	162.9	-	163.0
OMe	3.78 (s, 1H)	51.4	3.79 (s, 1H)	51.5
OH	8.86 (s, 1H)	-	8.93 (s, 1H)	-
ОН	9.53 (s, 1H)	-	9.62 (s, 1H)	-

¹H and ¹³C NMR spectra

¹H NMR spectrum of 1-(3-hydroxyoxetan-3-yl)propan-2-one (11):

¹³C NMR spectrum of 1-(3-hydroxyoxetan-3-yl)propan-2-one (11):

¹H NMR spectrum of (5-methylfuran-3-yl)methanol (12):

¹³C NMR spectrum of (5-methylfuran-3-yl)methanol (12):

¹H NMR spectrum of methylfuroic acid (1):

¹³C NMR spectrum of methylfuroic acid (1):

¹H NMR spectrum of 5-methylfuran-3-carbaldehyde (14):

¹³C NMR spectrum of 5-methylfuran-3-carbaldehyde (14):

¹H NMR spectrum of 3-methyl-1-(5-methylfuran-3-yl)butan-1-ol (16):

¹³C NMR spectrum of 3-methyl-1-(5-methylfuran-3-yl)butan-1-ol (16):

¹H NMR spectrum of rabdoketone A (2):

S20 | Page

¹³C NMR spectrum of rabdoketone A (2):

¹H NMR spectrum of 3-methyl-1-(5-methylfuran-3-yl)but-2-en-1-ol (18):

S22 | Page

¹³C NMR spectrum of 3-methyl-1-(5-methylfuran-3-yl)but-2-en-1-ol (18):

¹H NMR spectrum of rabdoketone B (3):

¹³C NMR spectrum of rabdoketone B (3):

¹H NMR spectrum of 1-(3-hydroxyoxetan-3-yl)nonan-2-one (21):

¹³C NMR spectrum of 1-(3-hydroxyoxetan-3-yl)nonan-2-one (21):

¹H NMR spectrum of (5-heptylfuran-3-yl)methanol (23):

¹³C NMR spectrum of (5-heptylfuran-3-yl)methanol (23):

¹H NMR spectrum of paleofuran A (4):

¹³C NMR spectrum of paleofuran A (4):

¹H NMR spectrum of 1-(3-hydroxyoxetan-3-yl)undecan-2-one (22):

¹³C NMR spectrum of 1-(3-hydroxyoxetan-3-yl)undecan-2-one (22):

¹H NMR spectrum of (5-nonylfuran-3-yl)methanol (24):

¹³C NMR spectrum of (5-nonylfuran-3-yl)methanol (24):

¹H NMR spectrum of paleofuran B (5):

¹³C NMR spectrum of paleofuran B (5):

¹H NMR spectrum of 5-(2,5-bis(allyloxy)phenyl)furan-3-carboxylic acid (27):

¹³C NMR spectrum of 5-(2,5-bis(allyloxy)phenyl)furan-3-carboxylic acid (27):

¹H NMR spectrum of tournefolin C (6):

¹³C NMR spectrum of tournefolin C (6):

¹³C NMR spectrum of 1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl acetate [(S)-29]:

¹H NMR spectrum of shikonofuran A [(*S*)-(7)]:

$^{13}\mathrm{C}$ NMR spectrum of shikonofuran A [(S)-(7)] :

¹H NMR spectrum of 1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 2-methylbutanoate (31):

S46 | Page

¹³C NMR spectrum of 1-(5-(2,5-bis(allyloxy)phenyl)furan-3-yl)-4-methylpent-3-en-1-yl 2-methylbutanoate (31):

¹H NMR spectrum of shikonofuran B (8):

¹³C NMR spectrum of shikonofuran B (8):

