Supporting Information

Multicomponent reactions access to S-Aryl dithiocarbamates via electron donor-acceptor under open-to air condition

YiSong Tang, ${ }^{a, b}$ Yougen Cai, ${ }^{b}$ Zhiwei Xie, ${ }^{b}$ XiaoYun Chen, ${ }^{* a}$ Jun Yi ${ }^{* b}$
${ }^{\text {a }}$ School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
${ }^{\text {b }}$ School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, P. R. China.
b*E-mail: yijun08@mail.ustc.edu.cn
a*E-mail: chenxy@just.edu.cn
Table of Contents
I. General Information and Materials S2
A. General Information S2
B. Materials S2
B. 1 Photochemical Reaction Set-up S2
B. 2 Table S1. thianthrenium salt used in this study S3
B. 3 Table S2. Amine used in this study S4
II. Optimization of reaction conditions S6
Table S1. Effect of solvent on the reaction S6
Table S2. Effect of base on the reaction S7
Table S3. Effect of Light source and reaction time on the reaction S7
Table $\mathbf{S 4}$. Effect of the concentration and loading of $\mathrm{CS}_{2} /$ base/amine on the reaction S8
Table S5. Control experiment S8
III. Synthesis synthesis of S-Aryl dithiocarbamates and synthetic applications S9
A. General procedure for the synthesis of S-Aryl dithiocarbamates S9
B. Two-step One-pot reactions for S-Aryl dithiocarbamates S10
C. Irradiation with natural sunlight S10
D. $\mathrm{H}_{2} \mathrm{O}$ as the green solvent S11
E. Flow-gram scale reaction S11
IV. Mechanistic Investigations S12
A1. UV/vis studies S12
A2. Job plot S13
A3. Benesi-Hildebrand Plot S14
A4. Light on/off experiment S15
B1. Radial inhibitors (TEMPO) S16
B2. Radical clock experiment S17
B3. 5 was chosen as the coupling partner with thianthrenium salt 1a S19
B4. Without light and $60^{\circ} \mathrm{C}$ conditions S19
V. Characterization of the products S20
Reference S5

I. General Information and Materials

A. General Information

All commercially available starting materials were purchased from Titan and Energy Chemical Company and were used without further purification unless otherwise stated. All reaction vessels were dried in an oven at $110^{\circ} \mathrm{C}$ and cooled in an air atmosphere before use. Unless otherwise indicated, the solvents used were all common solvents, no further drying was required, reactions were performed under an air atmosphere and 40 W white LEDs (4000k) irradiation at room temperature. All the reactions were monitored by TLC using precoated sheets of silica gel G/UV-254 of 0.25 mm thickness (Merck 60F254) using UV light for observation. Using 200-300 mesh silica gel for column chromatography. Yields generally referred to chromatographically isolated yields, unless otherwise noted. ${ }^{1} \mathbf{H}$ NMR (400 MHz), ${ }^{13} \mathbf{C}$ NMR (100 MHz) spectra were recorded on BRUKER DRX-400 spectrometer in chloroform-D1 and TMS as an internal standard. For ${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz})$, chloroform-D1 ($\delta=7.26 \mathrm{ppm}$) serverd as internal standard and the following abbreviations were used to indicate the multiplicity, for ${ }^{13} \mathbf{C}$ NMR (100 MHz), chloroform-D1 ($\delta=77.16 \mathrm{ppm}$): singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). The data of HRMS was carried out on Agilent 6210TOF LC/MS mass spectrometer. X-ray crystallographic data were collected by using a Bruker D8 QUEST X-ray single crystal diffractometer at Changshu Institute of Technology, China. UV-visible spectroscopy was recorded on a SHIMADZU UV 3600 UV-visible spectrophotometer.

B. Materials

B. 1 Photochemical Reaction Set-up

All reactions have been studied in the oven-dried glass round bottom flask (commercial supplier: Synthware). The light source used for illuminating the quartz reaction tube consists of white LEDs (4000 k) and adapter (manufacturer: Xuzhou Facai Lighting Co. Ltd. of China), and the radiator purchased from Taobao (https://gpiled.taobao.com). The reactor was 3.0 cm from 40 W white LEDs and magnetic stirrer maintains a speed of 800 RPM.

Figure S1. Photograph of the reaction setup.

B. 2 Table S1. thianthrenium salt used in this study

The tetrafluoroborate thianthrenium salts $\mathbf{1}$ were synthesized from the corresponding commercially available compounds, according to the literature procedure. ${ }^{1}$

1a, 98\%

1e, 84%

1i, 58%

1m, 82\%

1b, 78%

1f, 73%

1j, 76\%

1n, 61\%

1k, 68\%

10, 70%

1d, 81%

1g, 78%

11, 75\%

1p, 90\%

1q, 60%

1r, 69\%

1c, 87%

h, 59\%

1s, 86%
1t, 88\%

1u, 59%

1v, 54%

1w, 38\%

1x, 58\%

1y, 79\%

1ab, 92%

1z, 95%

1ac, 69\%

B. 3 Table S2. Amine used in this study.

All the amine are commercially available.

Procedure \mathbf{A}^{1} :

1

Under ambient atmosphere, a 100.0 mL round-bottom flask equipped with a magnetic stir bar was charged with $\mathbf{S 1}(10.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{MeCN}(22.7 \mathrm{~mL}, \mathrm{C}=0.44 \mathrm{M})$. Trifluoroacetic anhydride ($2780 \mu \mathrm{~L}, 20.0 \mathrm{mmol}, 2.0$ equiv.) was added at ambient temperature while stirring. After cooling to $0^{\circ} \mathrm{C}$, thianthrene S-oxide ($2320 \mathrm{mg}, 10.0$ mmol, 1.0 equiv.) was added in one portion, followed by the addition of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ ($2993 \mu \mathrm{~L}, 22 \mathrm{mmol}, 2.2$ equiv.) in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then at ambient temperature for 5 h . The reaction mixture was concentrated under reduced pressure, and subsequently diluted with DCM $(50.0 \mathrm{~mL})$. The solution was poured onto a saturated aqueous NaHCO_{3} solution $(100.0 \mathrm{~mL})$, and the layers were separated. The organic phase was washed with aqueous NaBF_{4} solution $(3 \times 50.0 \mathrm{~mL}$, $10 \%)$, and with water $(2 \times 100.0 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with $\mathrm{DCM} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})$ to afford products $\mathbf{1}$.

Procedure $\mathbf{B}^{\mathbf{2}}$:

Under ambient atmosphere, a 100.0 mL borosilicate vial was charged with arylboronic acid ($10.0 \mathrm{mmol}, 1.00$ equiv.), thianthrene-S-oxide ($2320 \mathrm{mg}, 10.0 \mathrm{mmol}, 1.00$ equiv.) and dry $\mathrm{MeCN}(40.0 \mathrm{~mL}, \mathrm{C}=0.25 \mathrm{M})$. After cooling to $0^{\circ} \mathrm{C}$, trifluoroacetic anhydride ($4170 \mu \mathrm{~L}, 30.0 \mathrm{mmol}, 3.0$ equiv.) addition at $0{ }^{\circ} \mathrm{C}$ in one portion, followed by $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}$ ($1632 \mu \mathrm{~L}, 12.0 \mathrm{mmol}, 1.2$ equiv.) was added in one portion at 0 C . The vial was sealed with a screw-cap, and the deep purple mixture was allowed to stand at $0^{\circ} \mathrm{C}$ for 1 h , followed by warming the reaction mixture to $25^{\circ} \mathrm{C}$ over a period of 1 h . After stirring at $25^{\circ} \mathrm{C}$ for 1 h further, the reaction mixture was concentrated under reduced pressure, and the residue was diluted with $50.0 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was poured onto a saturated aqueous NaHCO_{3} solution (100.0 mL). The mixture was poured into a separatory funnel, and the layers were separated. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was collected, and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with aqueous NaBF_{4} solution ($3 \times 50.0 \mathrm{~mL}, 5 \% \mathrm{w} / \mathrm{w}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(\mathrm{v} / \mathrm{v})$. The desired products were collected and dried in vacuo to afford $\mathbf{1 n}, \mathbf{1 u - 1 x}$.

Reference

1 (a) E. M. Alvarez, T. Karl, F. Berger, L. Torkowski and T. Ritter, Angew. Chem. Int. Ed., 2021, 60, 13609-13613; (b) F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank and T. Ritter, Nature., 2019, 567, 223-228; (c) P. S. Engl, A. P. Haring, F. Berger, G. Berger, A. Perez-Bitrian and T. Ritter, J. Am. Chem. Soc., 2019, 141, 13346-13351; (d) J. Li, J. Chen, R. Sang, W. S. Ham, M. B. Plutschack, F. Berger, S. Chabbra, A. Schnegg, C. Genicot and T. Ritter, Nat. Chem., 2020, 12, 56-62; (e) R. Sang, S. E. Korkis, W. Su, F. Ye, P. S. Engl, F. Berger and T. Ritter, Angew. Chem. Int. Ed., 2019, 58, 16161-16166; (f) A. Selmani and F. Schoenebeck, Org. Lett., 2021, 23, 4779-4784; (g) F. Ye, F. Berger, H. Jia, J. Ford, A. Wortman, J. Borgel, C. Genicot and T. Ritter, Angew. Chem. Int. Ed., 2019, 58, 14615-14619; (h) Y.-L. Zhang, G.-H. Wang, Y. Wu, C.-Y. Zhu and P. Wang, Org. Lett., 2021, 23, 8522-8526; (i) Y. Zhao, C. Yu, W. Liang and F. W. Patureau, Org. Lett., 2021, 23, 6232-6236.3.
2 (a) J. Li, J. Chen, R. Sang, W. S. Ham, M. B. Plutschack, F. Berger, S. Chabbra, A. Schnegg, C. Genicot and T. Ritter, Nat. Chem., 2020, 12, 56-62. (b) X.-Y. Chen, Y.-N. Li, Y. Wu, J. Bai, Y. Guo and P. Wang, J. Am. Chem. Soc., 2023, 145, 10431-10440.

II. Optimization of reaction conditions

Table 1. Effect of solvent on the reaction ${ }^{a}$

Entry	Solvent	Yield of 4a (\%) ${ }^{\boldsymbol{b}}$
1	DMSO	23
2	DMF	38
3	CH3CN $^{\prime}$	AcOEt
4	DCM	29
5	DCE	13
6	THF	22
7	DMA	16
8	$1,4-$ oxidant	18
9	NMP	46
10	Acetone	26
11	Et	
12	DMC	37
13	MeOH	24
14	Toluene	14
15	tBuOH	28
16	DMA	21
$17 \boldsymbol{c}$		

${ }^{\text {a Reaction procedure:under an }} \mathrm{N}_{2}$ atmosphere, 0.2 mmol scale utilizing $\mathbf{1 a}$ (1 equiv), 2 (1.5 equiv), 3a (3 equiv) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) in dry solvent ($2 \mathrm{ml}, 0.1 \mathrm{M}$) under blue Kessil irradiation ($\lambda_{\max }=465 \mathrm{~nm}$) for 12 h at rt . ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}}$ DMA was not degassed and dried.

Table 2. Effect of base on the reaction ${ }^{a}$

Entry	Base	Yield of 4a (\%) ${ }^{\text {b }}$
1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	56
2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	27
3	tBuOK	35
4	KOH	39
5	NaOH	32
6	NaHCO_{3}	40
7	$\mathrm{K}_{3} \mathrm{PO}_{4}$	67
8	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	56
9	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	48
10	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	34
11	$\mathrm{Na}_{3} \mathrm{PO}_{4} \bullet \mathbf{1 2 H}_{\mathbf{2}} \mathrm{O}$	47
12	NaHSO_{4}	25
13	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	32
14	NaOAc	19
15	DIPEA	60
16	DABCO	25
17	DMAP	35
18	DBU	50
19	TEA	36
20	Py	29

${ }^{a}$ Reaction procedure:under an N_{2} atmosphere, 0.2 mmol scale utilizing $\mathbf{1 a}$ (1 equiv), 2 (1.5 equiv), 3a (3 equiv) and base (1.5 equiv) in DMA ($2 \mathrm{ml}, 0.1 \mathrm{M}$) under blue Kessil irradiation ($\lambda_{\max }=465 \mathrm{~nm}$) for 12 h at rt . ${ }^{b}$ Isolated yield.

Table 3. Effect of Light source and reaction time on the reaction ${ }^{a}$

Entry	Light source	Time	Yield of 4a (\%) ${ }^{\boldsymbol{b}}$
1	Blue Kessil $\left(\lambda_{\max }=456 \mathrm{~nm}\right)$	12	67
2	White Kessil $(7000 \mathrm{k})$	12	70
3	Purple Kessil $\left(\lambda_{\max }=370 \mathrm{~nm}\right)$	12	traces
4	Purple Kessil $\left(\lambda_{\max }=390 \mathrm{~nm}\right)$	12	traces
5	Blue LEDs panel $\left(\lambda_{\max }=455 \mathrm{~nm}\right)$	12	65
6	White LEDs panel $(6000 \mathrm{k})$	12	76
$\mathbf{7}$	White LEDs panel $(\mathbf{4 0 0 0 k})$	$\mathbf{1 2}$	$\mathbf{8 6}$
8	Purple LEDs panel $\left(\lambda_{\max }=395 \mathrm{~nm}\right)$	12	traces
9	White LEDs panel $(4000 \mathrm{k})$	10	78
10	White LEDs panel $(4000 \mathrm{k})$	14	84

${ }^{a}$ Reaction procedure:under an N_{2} atmosphere, 0.2 mmol scale utilizing 1 a (1 equiv), 2 (1.5 equiv), 3a (3 equiv) and base (1.5 equiv) in DMA ($2 \mathrm{ml}, 0.1 \mathrm{M}$) under light irradiation for 12 h at rt . ${ }^{b}$ Isolated yield.

Table 4. Effect of the concentration and loading of $\mathrm{CS}_{2} /$ base/amine on the reaction ${ }^{a}$

Entry	2(equiv)	3a(equiv)	$\mathrm{K}_{3} \mathrm{PO}_{4}($ equiv)	[solvent]	Yield of 4a(\%) ${ }^{\text {b }}$
1	3	1.5	1.5	0.1 M	86
2	3	1.5	2	0.1 M	75
3	3	1.5	1	0.1 M	47
4	3	2	1.5	0.1 M	83
5	3	3	1.5	0.1 M	77
6	3	1	1.5	0.1 M	66
7	2	1.5	1.5	0.1 M	79
8	4	1.5	1.5	0.1 M	84
9	3	1.5	1.5	0.2 M	88
10	3	1.5	1.5	0.06 M	83
11	3	1.5	1.5	0.05 M	64

${ }^{a}$ Reaction procedure:under an N_{2} atmosphere, 0.2 mmol scale utilizing $\mathbf{1 a}$ (1 equiv), 2, 3a and base in DMA under White LEDs panel (4000k) irradiation for 12 h at rt . ${ }^{b}$ Isolated yield.

Table 5. Control experiment ${ }^{a}$

Entry	Variation	Yield of 4a (\%) ${ }^{\mathbf{b}}$
$\mathbf{1}$	No Light	n.r.
$2^{\mathbf{c}}$	No Light	n.r.
3	No $\mathrm{K}_{3} \mathbf{P O}_{4}$	traces

${ }^{\text {a Reaction procedure:under an }} \mathrm{N}_{2}$ atmosphere, 0.2 mmol scale utilizing $\mathbf{1 a}$ (1 equiv), 2 (1.5 equiv), 3a (3 equiv) and $\mathrm{K}_{3} \mathrm{PO}_{4}(1.5$ equiv) in DMA ($2 \mathrm{ml}, 0.1 \mathrm{M}$) under White LEDs panel (4000k) irradiation for 12 h at rt . ${ }^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{c}} 60^{\circ} \mathrm{C}$ instead of rt. n.r. $=$ No reaction.

Open-to-air

Under an air atmosphere, to a $10-\mathrm{ml}$ glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1 a}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}(0.3 \mathrm{mmol}, 1.5$ equiv) and DMA (Dimethylacetamide, $1.0 \mathrm{ml}, \mathrm{c}=0.2 \mathrm{M}$), After uniform mixing, $\mathbf{3 a}(0.3 \mathrm{mmol}, 1.5$ equiv) and carbon disulfide ($0.6 \mathrm{mmol}, 3.0$ equiv) were added to the tube and closed with a cap. Subsequently, the reaction mixture was stirred at room temperature with the irradiation of a 40 W white LEDs panel (4000k) for 12 h . Upon completion, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$, poured into a separatory funnel and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous NaCl solution $(2 \times 30 \mathrm{~mL})$. The EtOAc layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with PE/EA $(20: 1(\mathrm{v} / \mathrm{v}))$, then the solvent was removed in vacuo to provide the desired product $\mathbf{4 a}(86 \%, 56.9 \mathrm{mg})$ as a amorphous yellow solid.

III. Synthesis synthesis of S-Aryl dithiocarbamates and synthetic applications

A. General procedure for the synthesis of S-Aryl dithiocarbamates

Under an air atmosphere, to a $10-\mathrm{ml}$ glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($0.3 \mathrm{mmol}, 1.5$ equiv) and DMA (Dimethylacetamide, $1.0 \mathrm{ml}, \mathrm{c}=0.2 \mathrm{M}$), After uniform mixing, $\mathbf{3 a}$ ($0.3 \mathrm{mmol}, 1.5$ equiv) and carbon disulfide ($0.6 \mathrm{mmol}, 3.0$ equiv) were added to the tube and closed with a cap. Subsequently, the reaction mixture was stirred at room temperature with the irradiation of a 40 W white LEDs panel (4000k) for 12 h . Upon completion, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{ml})$, poured into a separatory funnel and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous NaCl solution ($2 \times 20 \mathrm{~mL}$). The EtOAc layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with $\mathrm{PE} / \mathrm{EA}$, then the solvent was removed in vacuo to provide the desired products 4 .

B. Two-step One-pot reactions for S-Aryl dithiocarbamates

In the air, diphenyl ether ($0.5 \mathrm{mmol}, 1.0$ equiv.) and dry $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$ were added to a 25.0 mL round-bottom flask, and trifluoroacetic anhydride ($139 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 2.0$ equiv.) was added at once while stirring, and the reaction solution was cooled to $0{ }^{\circ} \mathrm{C}$. Subsequently, thianthrene S -oxide ($116.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(150 \mu \mathrm{~L}, 1.1 \mathrm{mmol}, 2.2$ equiv.) were added sequentially in one portion while stirring, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then warmed to room temperature and continued to stir for 5 hours. The reaction mixture was concentrated under reduced pressure, and then DMA (2.5 mL), $\mathrm{K}_{3} \mathrm{PO}_{4}(159.2 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv) 3h($87 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv)/3ay ($187 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$, 1.5 equiv.), $\mathbf{C S}_{2}(90 \mu \mathrm{~L}, 1.5$ mmol, 3.0 equiv) were added. The vial was sealed with PTFE cap, and the reaction was stirred and irradiated with a White LEDs (approximately 3 cm away from the light source) at room temperature (the actual reaction temperature is about $33 \sim 40^{\circ} \mathrm{C}$) for 6 h . The reaction mixture was diluted with
50.0 mL of ethyl acetate, followed by washing with saturated aqueous NaCl solution (3 x 15 mL). The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography, (eluent: $\mathrm{PE} / \mathrm{AcOEt}$) as eluent, to provide the products $\mathbf{4 b f}$ and $\mathbf{4 b g}$ in 71% and 62% yields, respectively.

C. Irradiation with natural sunlight

In the air, to a 10.0 mL glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}) / \mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, then 2.0 mL DMA, $\mathbf{C S}_{\mathbf{2}}(36$ $\mu \mathrm{L}, 0.6 \mathrm{mmol}, 3.0$ equiv.), N-Methylaniline $\mathbf{3 y}$ ($33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv.)/ Nortropine $\mathbf{3 r}$ ($35 \mu \mathrm{~L}$, $0.3 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.3 \mathrm{mmol}, 1.5$ equiv) were added to the tube and followed closed with a cap. Subsequently, the reaction mixture was stirred under solar light at room temperature for one day (A total of 6 hours of sunlight irradiation, Location: $31^{\circ} 36^{\prime} 44^{\prime \prime} \mathrm{N}, 120^{\circ} 44^{\prime} 06^{\prime \prime} \mathrm{E}$). Upon completion, the reaction mixture was diluted with 20.0 mL of ethyl acetate, followed by washing with saturated aqueous NaCl solution $(3 \times 10 \mathrm{~mL})$. The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography, (eluent: $\mathrm{PE} / \mathrm{AcOEt}$) as eluent, to provide the products $\mathbf{4 b h}$ and 4bi in 76% and 65% yields, respectively.
D. $\mathrm{H}_{2} \mathrm{O}$ as the green solvent

In the air, to a 10.0 mL glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}) / \mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, then $2.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, \mathbf{C S}_{2}(36 \mu \mathrm{~L}$, $0.6 \mathrm{mmol}, 3.0$ equiv.), dimethylamine 3 t ($15 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv.)/Morpholine $\mathbf{3 a}$ ($26 \mu \mathrm{~L}, 0.3$ mmol, 1.5 equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}(63.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added to the tube and followed closed with a cap. Subsequently, the reaction was stirred and irradiated with a White LEDs
(approximately 3 cm away from the light source) at room temperature (the actual reaction temperature is about $33 \sim 40^{\circ} \mathrm{C}$) for 6 h . The reaction mixture was diluted with 20.0 mL of ethyl acetate, followed by washing with saturated aqueous NaCl solution ($3 \times 10 \mathrm{~mL}$). The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography, (eluent: $\mathrm{PE} / \mathrm{AcOEt}$) as eluent, to provide the products $\mathbf{4 b j}$ and $\mathbf{4 b k}$ in 67% and 56% yields, respectively.

E. Flow-gram scale reaction

Under an air atmosphere, the flow system adopted a two-feed microreactor consisted of a 4 mL piece of PFA tube with an internal diameter of 0.8 mm ($1 / 16^{\prime \prime}$ outer diameter) and a length of 600 cm . thianthrenium salt $\mathbf{1 a}(18.3 \mathrm{~g}, 38.7 \mathrm{mmol}, 1.0$ equiv.) was dissolved in DMA (194.0 mL) and pumped into the microreactor through the feed 2 (flow rate: $9700 \mu \mathrm{~L} / \mathrm{min}$), while the mixture containing $\mathbf{C S}_{2}$ ($7.0 \mathrm{~mL}, 116.1 \mathrm{mmol}, 3.0$ equiv.) and N-methylaniline ($8.4 \mathrm{~mL}, 77.4 \mathrm{mmol}, 2.0$ equiv.) in DMA (387.0 mL) was introduced into the microreactor through the feed $\mathbf{1}$ (flow rate: $12900 \mu \mathrm{~L} / \mathrm{min}$), the back pressure regulator was attached to the output line to maintain a stable system pressure of 5.0 bar. The reaction temperature was maintained at $35^{\circ} \mathrm{C}$ by adjusting the heat sink system, and the reaction mixture was pumped at a total flow rate of $22600 \mu \mathrm{~L} / \mathrm{min}$ with a dwell time of 10 min at the 40 W White LEDs irradiation. The reaction mixture was collected in a separate 1000.0 mL output conical flask. $\mathrm{H}_{2} \mathrm{O}(120.0 \mathrm{~mL})$ and $\mathrm{EtOAc}(120.0 \mathrm{~mL})$ were added to the reaction mixture and stirred 5 min open-to-air, then poured at once into a 1500 mL separatory funnel and the organic phase was collected. The aqueous phase was extracted with EtOAc $(2 \times 100.0 \mathrm{~mL})$. The combined organic phases were washed with brine $(2 \times 100.0 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (petroleum ether/EtOAc $=10: 1$) to afford compound $\mathbf{4 b h}(10.1 \mathrm{~g}, 75 \%)$ as light yellow solid.

IV. Mechanistic Investigations

A1. UV/vis studies:

UV/vis absorption spectra were measured in a 1 cm quartz cuvette using a SHIMADZU UV-3600

UV-visible spectrophotometer. Absorption spectra of individual reaction components and mixtures thereof were recorded. A bathochromic shift was observed for a mixture of thianthrenium tetrafluoroborate salt 1a, carbon disulfide 3, and $\mathrm{K}_{3} \mathrm{PO}_{4}$ in DMA $(0.2 \mathrm{M})$, which was a visibly intense yellow in color (Figure S3, bottle 6). This indicates the formation of an electron donoracceptor (EDA) complex (Figure S4, dark grey band).

Figure S3. Visual appearance of reaction components and mixtures thereof.

Figure S4. UV/vis absorption spectra of individual reaction components and a combination thereof. All spectra were measured in DMA and with a concentration of 0.1 M thianthrenium salt $1 \mathrm{a}, 0.15 \mathrm{M}$ morpholine $\mathbf{2 a}, 0.3 \mathrm{M}$ carbon disulfide $\mathbf{3 a}$, and $0.15 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$. The stoichiometry and concentration of samples reflects the used reaction conditions.

A2. Job Plot

A Job's plot was drawn to evaluate the stoichiometry of the EDA complex (A) with thianthrenium salt 1a and thiolate 5 (where 5 was generated through the reaction of carbon disulfide 2 and
morpholine 3a in the presence of $\mathrm{K}_{3} \mathrm{PO}_{4}$). First, the absorption spectrum of the EDA complex was recorded using a SHIMADZU UV-3600 UV-Vis spectrophotometer in a 1 mm path quartz cuvette to find its maximum absorption wavelength at 380 nm (Figure S5). Next, we measured the absorption at 380 nm of DMA solution with different donor/acceptor ratios in a constant concentration $(0.10 \mathrm{M})$ of the two components. All absorbances were recorded in 96 -well plates by using a Infinite M 200 PRO (TECAN, Switzerland). The absorbance values were plotted against the molar fraction (\%) of thianthrenium salt 1a and thiolate $\mathbf{5}$. The maximum absorbance was obtained with a $1: 1$ mixture, indicating that it is the stoichiometry of the EDA complex in solution (Figure S6), plotted as a function of molar fraction of the potassium dithiocarbamate of 5. A parabolic curve with a maximum absorbance value at 50% mol fraction of thianthrenium salt $\mathbf{1 a}$ was obtained, indicating a 1:1 EDA complex between $\mathbf{1 a}$ and the conjugated base of 5 .

Figure S5. UV-vis Absorption Spectra of 5.

Figure S6. Job Plot of the EDA complex system between 1a and 5 at 380 nm .

A3. Benesi-Hildebrand Plot

The association constant of the EDA complex formed between thianthrenium salt 1a and thiolate $\mathbf{5}$ were determined spectrophotometrically in DMA, by using the Hildebrand-Benesi method, and the absorbance values of five solutions containing a constant value of 0.01 M of thianthrenium salt 1a and increasing amounts of the thiolate of 5 from 0.01 M to 0.05 M were recorded in 1 mm path quartz cuvettes at 380 nm by using a SHIMADZU UV-3600 UV-visible spectrophotometer. According to the methodology, $1 / \Delta$ Absorbance versus $1 /[$ thiolate of 5] were plotted and a linear relationship (Figures S7) was observed. The following association constants $\left(\mathrm{K}_{\mathrm{EDA}}\right)$, calculated dividing the intercept by the slope, were found to be $13.6 \mathrm{M}^{-1}$ for the $\mathbf{1 a} / \mathbf{5}$ complex.

Figure S7. Benesi-Hildebrand Plot of the EDA complex system between 1a and $\mathbf{5}$ at 380 nm

A4. Light on/off experiment

In the air, to six 10.0 mL glass tube equipped with a magnetic stirring bar were charged with thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, then $2.0 \mathrm{~mL} \mathrm{DMA}, \mathbf{C S}_{2}(36 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv.), morpholine 3a ($26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{K}_{3} \mathrm{PO}_{4}(63.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were added to the tube and followed closed with a cap. Subsequently, the reaction was stirred and irradiated with a white LEDs (approximately 3 cm away from the light source) at room temperature (the actual reaction temperature is about $33 \sim 40^{\circ} \mathrm{C}$). After 2 h , the white LEDs was turned off, and one tube was removed from the irradiation setup for analysis. The remaining five tubes were stirred in the absence of light for an additional 2 h . Then, one tube was removed for analysis, and the white LEDs was turned back on to irradiate the remaining four reaction mixtures. After an additional 2 h of irradiation, the white LEDs was turned off, and one tube was removed for analysis. The remaining three tubes were stirred in the absence of light for an additional 2 h . Then, a tube was removed for analysis, and the white LEDs was turned back on to irradiate the remaining two reaction mixtures. After 2 h , the white LEDs was turned off, and one tube was removed for analysis. The last tube was stirred in the absence of light for an additional 2 h , and then it was analyzed. The yields were determined by HRMS (Figure S8).

Figure S8. Light on/off experiment

B. Control Reactions

B. 1 Radial inhibitors (TEMPO)

Under an air atmosphere, to a $10-\mathrm{ml}$ glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1 n}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), TEMPO ($156.3 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($52.3 \mathrm{mg}, 0.6 \mathrm{mmol}, 1.5$ equiv) and DMA (Dimethylacetamide, $1.0 \mathrm{~mL}, \mathrm{C}=0.2 \mathrm{M}$), After uniform mixing, 3a ($33 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv) and $\mathbf{C S}_{\mathbf{2}}(36 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv) were added to the tube and closed with a cap. Subsequently, the reaction mixture was stirred at room temperature with the irradiation of a 40 W White LEDs panel (4000k) for 6 h , only trace amounts of $\mathbf{4 b l}$ was observed and the radical trapping product $\mathbf{5}$ was detected by HRMS.

```
Elemental Composition Report Page 1
Single Mass Analysis
olerance =20.0 PPM / DBE: }\operatorname{min}=-1.5,\operatorname{max}=50.
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron lons
Na, (up to 50 closest results for each mass)
llements (led: 23-23 N: 0-14 O: 0-13 Na: 0-3 Cl: 1-2 
221223-1-TEMPO-243 (0.258)
```



```
Ninimum: 
```


B. 2 Radical clock experiment

In the air, to a 10.0 mL glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $\mathbf{1 q}(102.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(63.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv), then 2.0 mL DMA, $\mathbf{C S}_{\mathbf{2}}(36 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv.), and morpholine $\mathbf{3 a}(26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were added to the tube and followed closed with a cap. Subsequently, the reaction was stirred and irradiated with a White LEDs (approximately 3 cm away from the light source) at room temperature (the actual reaction temperature is about $33 \sim 40^{\circ} \mathrm{C}$) for 6 h . The reaction mixture was diluted with
20.0 mL of ethyl acetate, followed by washing with saturated aqueous NaCl solution ($3 \times 10 \mathrm{~mL}$). The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography, (eluent: $\mathrm{PE} / \mathrm{AcOEt}=8: 1$) as eluent, to provide the mixture products of \mathbf{A} and \mathbf{B} in 67% yield, and the ratio of \mathbf{B} to \mathbf{A} was found to be $2: 1$ from the ${ }^{\mathbf{1}} \mathbf{H N M R}$ spectra. In addition, the cyclized product \mathbf{A} was observed by HRMS.

```
Elemental Composition Report Page 1
Single Mass Analysis
Tolerance = 20.0 PPM / DBE: }\operatorname{min}=-1.5,\operatorname{max}=50.
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
2020 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 14-14 H: 16-16 N: 0-14 O: 0-13 Na: 0-3 S: 2-3 K: 0-1 
221223-1-hunhuachanwu 14(0.098)
```



```
Minimum: 
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula
395.9698 395.9704 
```


ก	$\stackrel{9}{8}$	$\stackrel{\square}{0}$	\pm	-
$\stackrel{\circ}{1}$	¢	\%	is	\%

B. 37 was chosen as the coupling partner with thianthrenium salt 1a.

In the air, to a 10.0 mL glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt 1a $(94.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and DMA $(2.0 \mathrm{~mL})$, then $\mathbf{5}(40.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) was added to the tube and followed closed with a cap. Subsequently, the reaction was stirred and irradiated with a 40 W white LEDs (approximately 3 cm away from the light source) at room temperature (the actual reaction temperature is about $33 \sim 40{ }^{\circ} \mathrm{C}$) for 6 h . The reaction mixture was diluted with 20.0 mL of ethyl acetate, followed by washing with saturated aqueous NaCl solution $(3 \times 10 \mathrm{~mL})$. The ethyl acetate layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting crude product was purified by column chromatography, (eluent: $\mathrm{PE} / \mathrm{AcOEt}=8: 1$) as eluent, to to afford compound $\mathbf{4 a}$ in 74% yield as light yellow oil.

B. 4 Without light and $60^{\circ} \mathrm{C}$ conditions.

In the air, to a 10.0 mL glass tube quipped with a magnetic stirring bar was charged with thianthrenium salt $1 \mathbf{a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(63.7 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv $)$, then 2.0 mL DMA, $\mathbf{C S}_{2}$ ($36 \mu \mathrm{~L}, 0.6 \mathrm{mmol}, 3.0$ equiv.) , and morpholine $\mathbf{3 a}$ ($26 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were added to the tube and followed closed with a cap. Subsequently, the reaction was stirred and irradiated under dark at $60^{\circ} \mathrm{C}$ for 6 h and monitored by TLC. The reaction failed to provide the desired product 4a.

V. Characterization of the Target Products

4-phenoxyphenyl morpholine-4-carbodithioate (4a)

Following general procedure, thianthrenium salt $\mathbf{1 a}(95.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and morpholine $\mathbf{3 a}$ ($27 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 a}$. 56.9 mg , yield 86%. Light yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.03$ (m, 2H), $4.34-3.96$ (m, 4H), 3.83 (t, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 198.5, 159.6, 155.8, 138.7, 129.9, 124.2, 124.0, 120.0, 118.5, $66.3,51.2(\mathrm{~d}, J=74.7 \mathrm{~Hz})$.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]{ }^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$332.0779, found 332.0786.

4-phenoxyphenyl thiomorpholine-4-carbodithioate (4b)

Following general procedure, thianthrenium salts $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and thiomorpholine $\mathbf{3 b}$ ($30 u L, 3.0 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4b.
51.4 mg , yield 74%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (eluent petroleum ether/ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} H$ NMR (400 MHz , Chloroform- d) $\delta 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=80.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.81(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 197.9,159.7,155.9,138.8,130.0124 .3,124.2,120.1,118.5,54.3$ (d, $J=129.3 \mathrm{~Hz}$), $27.3(\mathrm{~d}, J=28.3 \mathrm{~Hz}$).
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaOS}_{3}{ }^{+} 370.0370$, found 370.0372.

4-phenoxyphenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4c)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine 3 ($43 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 c}$.
68.6 mg , yield 84%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.30$ (eluent petroleum ether/ ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1}$ H NMR (400 MHz, Chloroform- d) $\delta 8.28(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=97.3 \mathrm{~Hz}$, 4H), 3.93 ($\mathrm{s}, 4 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 198.3,161.2,159.6,157.9,155.9,138.7,130.0,124.3,124.2$, 120.1, 118.5, 110.8, 43.0 .

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]{ }^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{OS}_{2}{ }^{+}$409.1157, found 409.1162.

4-phenoxyphenyl 4-(2-hydroxyethyl)piperidine-1-carbodithioate (4d)

Following general procedure, thianthrenium salt $\mathbf{1 a}(95.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperidin-4-yl)ethan-1-ol 3 ($39 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 d}$.
43.3 mg , yield 58%. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.41-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~d}, J=72.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 197.0, 159.5, 156.0, 138.8, 130.0, 124.8, 124.2, 120.0, 118.5, $66.9,51.4(\mathrm{~d}, J=156.6 \mathrm{~Hz}), 38.5,29.7,28.5(\mathrm{~d}, J=79.8 \mathrm{~Hz})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]{ }^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$374.1248, found 374.1241.

4-phenoxyphenyl 4-carbamoylpiperidine-1-carbodithioate (4e)

Following general procedure, thianthrenium salt 1a $(94.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, carbon disulfide ($36 \mu L, 0.6$
mmol, 3.0 equiv.) and piperidine-4-carboxamide ($38.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 e}$.
$69.9 \mathrm{mg}, 74 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.28$ (petroleum ether/ethyl acetate $\left.=1: 1(\mathrm{v}: \mathrm{v})\right)$
${ }^{1} H$ NMR (400 MHz, Chloroform- d) $\delta 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=93.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=263.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{~s}, 2 \mathrm{H})$, $2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.89(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 197.6,176.0,159.5,155.9,138.8,130.0,124.5,124.3,120.1$, 118.5, 50.6 (d, $J=143.4 \mathrm{~Hz}$), 41.7, 28.43.

HRMS-ESI (m/z) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+}$395.0864, found 395.0859.

4-phenoxyphenyl 4-((tert-butoxycarbonyl)amino)piperidine-1-carbodithioate (4f)

Following general procedure, thianthrenium salts $1 \mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CS}_{2}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and tert-butyl piperidin-4-ylcarbamate ($60.1 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 f}$.
72.8 mg , yield 82%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ethyl acetate $=3: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=54.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}$, 2H), $1.61-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 197.6, 159.5, 155.9, 155.1, 138.7, 129.9, 124.6, 124.2, 120.0, $118.4,79.8,50.0(\mathrm{~d}, J=54.0 \mathrm{~Hz}), 47.5,32.1(\mathrm{~d}, J=67.7 \mathrm{~Hz}), 28.4$.
HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+} 467.1439$, found 467.1434.

Methyl 2-methoxy-5-((4-methylenepiperidine-1-carbonothioyl)thio)benzoate (4g)

Following general procedure, thianthrenium salt $\mathbf{1 b}(90.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 4-methylenepiperidine $\mathbf{3}$ ($34 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4 g .
46.5 mg , yield 69%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J$
$=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=113.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 196.9,165.6,160.7,143.0,142.6,140.6,122.3,120.5,112.7$, $110.8,56.7,52.8(\mathrm{~d}, J=189.9 \mathrm{~Hz}), 52.1,34.0(\mathrm{~d}, J=73.7 \mathrm{~Hz})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$360.0704, found 360.0706.

Methyl 5-((4-chloropiperidine-1-carbonothioyl)thio)-2-methoxybenzoate (4h)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 4-chloropiperidine 3 ($33 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 h}$.
53.9 mg , yield 75%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.11(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 197.4, 165.6, 160.8, 142.6, 140.6, 122.1, 120.6, 112.7, 56.2, 55.7, 52.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNNaO}_{3} \mathrm{~S}_{2}{ }^{+}$382.0314, found 382.0309.
Ethyl-1-(((4-methoxy-3-(methoxycarbonyl)phenyl)thio)carbonothioyl)piperidine-3-carboxylate (4i)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol})$ and ethyl piperidine-3-carboxylate ($47 \mu L, 0.3 \mathrm{mmol}$) were used to afford the desired product $\mathbf{4 i}$. 54.0 mg , yield 68%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=122.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=53.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=83.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=13.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-$ $1.67(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 197.5,172.5,165.6,160.8,142.6,140.6,122.2,120.6,112.7$, 61.0, 56.2, 52.3, 52.1, 41.1, 29.7, 27.4, 24.2, 14.2.

HRMS-ESI (m/z) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{5} \mathrm{~S}_{2}{ }^{+} 420.0915$, found 420.0918 .

Methyl-2-methoxy-5-((1,2,3,4-tetrahydroisoquinoline-2- carbonothioyl)thio) Benzoate (4j)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, carbon disulfide ($36 \mathrm{uL}, 0.6$ mmol) and 1,2,3,4-tetrahydroisoquinoline ($38 \mathrm{uL}, 0.3 \mathrm{mmol}$) were used to afford the desired product $\mathbf{4 j}$. 59.8 mg , yield 83%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.46$ (petroleum ether/ethyl acetate $\left.=5: 1(\mathrm{v}: \mathrm{v})\right)$
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.93$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (dd, $J=9.0,3.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=72.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{dt}, J=99.4,5.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 197.1, $165.5,160.8,142.6,140.7,134.7$ (d, $J=96.0 \mathrm{~Hz}$), 132.2 (d, $J=123.2 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=60.1 \mathrm{~Hz}), 127.4(\mathrm{~d}, J=33.3 \mathrm{~Hz}), 126.9(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 126.5(\mathrm{~d}, J=$ $47.5 \mathrm{~Hz}), 121.8,120.6,112.7,56.2,52.1,51.4(\mathrm{~d}, J=588.8 \mathrm{~Hz}), 51.2(\mathrm{~d}, J=134.3 \mathrm{~Hz}), 28.9(\mathrm{~d}, J=71.7$ Hz).
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$396.0704, found 396.0706.

Methyl-2-methoxy-5-((4,5,6,7-tetrahydrothieno[3,2-c]pyridine-5-carbonothioyl)thio)benzoate (4 k)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), carbon disulfide (36 uL , 0.6 mmol) and 4,5,6,7-tetrahydrothieno[3,2-c]pyridine ($52.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) were used to afford the desired product $\mathbf{4 k}$.
50.0 mg , yield 66%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (dd, $J=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ $(\mathrm{s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=85.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=123.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=26.7 \mathrm{~Hz}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 198.9,166.6,161.9,143.7,141.7,133.0,131.2,126.0,125.4$, $122.8,121.6,113.8,57.2,53.2,51.3(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 49.9,25.9$ (d, $J=88.9 \mathrm{~Hz}$).
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}_{3}$ 402.0268, found 402.0266.

Methyl-2-methoxy-5-((4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-5-

carbonothioyl)thio)benzoate (41)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, carbon disulfide (36 uL , $0.6 \mathrm{mmol}, 3.0$ equiv.) and 4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine ($47.9 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv) were used to afford the desired product $\mathbf{4 1}$.
40.7 mg , yield 56%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (dichloromethane/ methanol $=30: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=91.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=119.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 2.91$ (d, $J=36.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 198.9(\mathrm{~d}, ~ J=53.5 \mathrm{~Hz}), 165.7,160.7,142.6,140.6,137.5$, 135.6, 134.7, 121.9, 120.4, 112.8, 56.2, 52.2, 49.8 (d, $J=76.8 \mathrm{~Hz}$), 29.9 (d, $J=49.5 \mathrm{~Hz}$), 22.1 (d, J $=167.0 \mathrm{~Hz}$).
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3} \mathrm{~S}_{2}$ 386.0609, found 386.0611 .

Methyl 2-methoxy-5-((4-oxoazepane-1-carbonothioyl)thio)benzoate (4m)

Following general procedure, thianthrenium salts $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and azepan-4-one ($35 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4m.
50.8 mg , yield 72%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ethyl acetate $=6: 1, \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.82(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.78$ (m, 2H), $2.74-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.86(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 210.1,197.3,165.5,160.9,142.6,140.6,121.7,120.6,112.8$, 56.2, 55.4, 52.2, 51.6, 43.1, 40.5, 25.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NNaO}_{4} \mathrm{~S}_{2}{ }^{+} 376.0653$, found 376.0648 .

4-phenoxyphenyl pyrrolidine-1-carbodithioate (4n)

Following general procedure, thianthrenium salts $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mathrm{uL}, 0.6 \mathrm{mmol}$, 3.0 equiv.) and thiomorpholine ($25 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4n.
52.9 mg , yield 84%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (eluent petroleum ether/ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} H$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.44-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H})$, $2.04-1.97$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 193.5,159.4,155.9,138.5,129.9,124.4,124.2,120.0,118.4$, 55.4, 51.0, 26.3, 24.4.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaOS}_{2}{ }^{+} 338.0649$, found 338.0651.
Methyl 5-((6,6-dimethyl-3-azabicyclo[3.1.0]hexane-3-carbonothioyl)thio)-2methoxybenzoate (40)

Following general procedure, thianthrenium salts $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 6,6-dimethyl-3-azabicyclo[3.1.0]hexane ($37 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 40.
54.8 mg , yield 78%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ethyl acetate $=8: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.83-3.75(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 192.3, 165.6, 160.7, 142.4, 140.4, 121.9, 120.5, 112.6, 56.2, 55.6, 52.1, 50.8, 28.3, 26.5, 26.0, 19.6, 12.7.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$374.0861, found 374.0859.

Methyl 5-((isoindoline-2-carbonothioyl)thio)-2-methoxybenzoate (4p)

Following general procedure, thianthrenium salts $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and isoindoline ($34 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4p.
$54.6 \mathrm{mg}, 76 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1}$ H NMR (400 MHz, Chloroform- d) $\delta 7.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 194.3,165.5,160.9,142.4,140.4,135.3,135.1,128.2,128.0$, $122.8,122.8,121.7,120.7,112.8,60.9,56.2,56.1,52.1$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}_{2}{ }^{+} 360.0728$, found 360.0735.

Methyl 5-((3,3-difluoroazetidine-1-carbonothioyl)thio)-2-methoxybenzoate (4q)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 3,3-difluoroacridine ($25 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4q.
$38.0 \mathrm{mg}, 57 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=10: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} H$ NMR (400 MHz, Chloroform- d) $\delta 7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{t}, J=11.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 196.3, 165.4, 161.0, 142.0, 140.1, 120.9, 120.3, 114.4 (t, $J=273.7$ Hz), 113.0, 66.2, 64.4, 56.2, 52.2.
HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$356.0203, found 356.0193.

4-phenoxyphenyl 3-hydroxy-8-azabicyclo[3.2.1]octane-8-carbodithioate (4r)

Following general procedure, thianthrenium salt 1a $(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}$ ($36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1] octan-3-ol ($35 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the
desired product 4r.
$54.2 \mathrm{mg}, 73 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=4: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} H$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.43-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.32-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~m}, 1 \mathrm{H})$, $2.51-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 190.3,159.5,155.9,138.7,130.0,124.2,124.0,120.0,118.4$, 64.8, 60.4, 58.2, 39.4, 37.9, 28.2, 26.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}_{2}{ }^{+}$394.0911, found 394.0902.

Methyl-2-methoxy-5-((3-oxo-8-azabicyclo[3.2.1]octane-8-carbonothioyl)thio)benzoate

(4s)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1] octan-3-one $\mathbf{3}$ ($38 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 s}$.
66.4 mg , yield 91%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=9: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.95(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.13$ $-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.81(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 206.3,193.3,165.5,160.9,142.5,140.5,121.0,120.7,112.8$, 59.8, 57.0, 56.2, 52.2, 48.4, 47.4, 29.4, 27.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+} 334.0548$, found 334.0543.

Methyl 5-((dimethylcarbamothioyl)thio)-2-methoxybenzoate (4t)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and dimethylamine 3 ($10 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $4 \mathbf{t}$.
50.7 mg , yield 89%. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 197.8, 165.6, 160.7, 142.5, 140.5, 122.6, 120.5, 112.7, 56.2, 52.1, 45.9, 42.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$308.0391, found 308.0390.

Methyl 5-((diethylcarbamothioyl)thio)-2-methoxybenzoate (4u)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and diethylamine ($31 \mathrm{uL}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 u}$.
$53.2 \mathrm{mg}, 85 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=16: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{q}, J=6.5,6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 196.1, 165.6, 160.7, 142.7, 140.7, 122.4, 120.5, 112.6, 56.2, 52.1, 50.1, 47.2, 12.8, 11.6.

HRMS-ESI (m/z) [M+Na] calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$336.0704, found 336.0711.

Methyl 5-((cyclopropyl(methyl)carbamothioyl)thio)-2-methoxybenzoate (4v)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and N-methylcyclopropanamine $\mathbf{3}(25 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $4 \mathbf{v}$.
47.9 mg , yield 77%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 201.9,165.6,160.6,142.4,140.5,123.1,120.5,112.6,56.2$, 52.1, 44.2, 35.7, 10.9.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$334.0548, found 334.0543.

Methyl 5-((benzyl(isopropyl)carbamothioyl)thio)-2-methoxybenzoate (4w)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol})$ and N-benzylpropan-2-amine ($50 \mu L, 0.3 \mathrm{mmol}$) were used to afford the desired product $4 \mathbf{w}$. $56.8 \mathrm{mg}, 73 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.92(\mathrm{~d}, J=37.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=35.5,8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.04(\mathrm{dd}, J=13.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H})$, $3.95(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=8.0,3 \mathrm{H}), 1.21(\mathrm{~d}, J=8.0,3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz , Chloroform- d) $\delta 199.4(\mathrm{~d}, J=18.2 \mathrm{~Hz}), 165.6,160.7,142.7(\mathrm{~d}, J=15.2 \mathrm{~Hz})$, $140.6,136.8(\mathrm{~d}, J=82.8 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=32.3 \mathrm{~Hz}), 127.1(\mathrm{~d}, J=50.5 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=39.4 \mathrm{~Hz})$, $122.4,120.5,112.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 56.2,55.3(\mathrm{~d}, J=106.1 \mathrm{~Hz}), 52.1,51.7(\mathrm{~d}, J=210.8 \mathrm{~Hz}), 20.9$, 19.8.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{3} \mathrm{~S}_{2} 412.1017$, found 412.1016.

Methyl 5-(((2-cyanoethyl)(methyl)carbamothioyl)thio)-2-methoxybenzoate (4x)

Following general procedure, thianthrenium salts $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 3-(methylamino)propanenitrile ($23 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $4 \mathbf{x}$.
43.4 mg , yield 67%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ethyl acetate $=7: 1, \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.83(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 192.6,166.7,159.1,133.6,131.6,120.1,120.0,118.5,112.0$, 56.0, 52.6, 52.0, 41.1, 16.5.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}$347.0500, found 347.0498.

Methyl 2-methoxy-5-((methyl(phenyl)carbamothioyl)thio)benzoate (4y)

Following Procedure X , thianthrenium salt $\mathbf{1 b}$ ($93.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathbf{C S}_{2}$ ($36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and N -methylaniline ($33 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 y}$.
$61.8 \mathrm{mg}, 89 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 2H), 7.01 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 (s, 3 H), 3.86 (s, 3H), 3.78 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 199.7, 165.6, 160.6, 144.8, 142.3, 140.4, 129.9, 129.3, 126.9, 123.4, 120.4, 112.6, 56.1, 52.1, 46.7.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+} 370.0548$, found 370.0540 .

4-phenoxyphenyl hexylcarbamodithioate (4z)

Following general procedure, thianthrenium salts $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and thiomorpholine ($40 u L, 3.0 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4z.
53.8 mg , yield 78%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (eluent petroleum ether/ethyl acetate $=9: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.15$ $(\mathrm{m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 195.2,160.5,155.2,137.5,130.2,124.9,121.6,120.2,119.3$, 46.4, 31.3, 28.0, 26.4, 22.5, 14.0 .

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaOS}_{2}{ }^{+} 368.1119$, found 368.1122.

Methyl 4-((((4-phenoxyphenyl)thio)carbonothioyl)amino)butanoate (4a')

Following general procedure, thianthrenium salt $1 \mathrm{a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}$), carbon disulfide ($36 u L$, $0.6 \mathrm{mmol}, 3.0$ equiv.) and methyl 4 -aminobutanoate ($31 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 a}^{\prime}$.
$51.3 \mathrm{mg}, 71 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 5 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-$ $1.84(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 196.0,173.6,160.5,155.3,137.6,130.2,124.8,121.5,120.2$, 119.3, 51.9, 45.9, 31.3, 23.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NNaO}_{3} \mathrm{~S}_{2}{ }^{+}$384.0704, found 384.0699.

4-phenoxyphenyl (3-hydroxypropyl)carbamodithioate (4b')

Following general procedure, thianthrenium salts $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 3-aminopropan-1-ol ($23 u L, 3.0 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4b'.
42.1 mg , yield 66%. Light yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.07-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 196.0,160.4,155.4,137.7,130.2,124.7,121.6,120.1,119.3$, 61.2, 45.4, 30.1

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NNaO}_{2} \mathrm{~S}_{2}{ }^{+} 342.0598$, found 342.0599 .

4-phenoxyphenyl (4-methoxybenzyl)carbamodithioate (4c')

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}$ ($36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 4-methoxybenzylamine ($39 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $4 c^{\prime}$.
$61.0 \mathrm{mg}, 80 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $\left.=8: 1(\mathrm{v}: \mathrm{v})\right)$
${ }^{1} H$ NMR (400 MHz, Chloroform- d) $\delta 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.

4-phenoxyphenyl cyclopropylcarbamodithioate (4d')

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and cyclohexylamine ($21 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 d}$ '. $37.3 \mathrm{mg}, 62 \%$. Light yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 0.90-0.85(\mathrm{~m}$, $2 \mathrm{H}), 0.55-0.51(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 197.2,160.5,155.2,137.3,130.2,124.9,121.8,120.3,120.1$, 119.2, 29.2, 7.5.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaOS}_{2}{ }^{+}$324.0493, found 324.0492.

p-tolyl cyclohexylcarbamodithioate (4e')

Following general procedure, thianthrenium salt $\mathbf{1 0}(78.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}$ ($36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and cyclohexylamine ($34 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4} \mathbf{e}^{\prime}$.
$35.5 \mathrm{mg}, 67 \%$. Light yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.34$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.42-$ $1.25(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.01(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 193.8, 141.8, 135.4, 131.2, 125.3, 54.4, 31.3, 25.2, 24.2, 21.5.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NNaS}_{2}{ }^{+}$288.0857, found 288.0861.
Methyl (S)-2-cyclohexyl-2-(((p-tolylthio)carbonothioyl)amino)acetate (4f')

Following general procedure, thianthrenium salt $\mathbf{1 0}(78.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and methyl (S)-2-amino-2-cyclohexylacetate ($51.4 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 f}$ '.
$47.2 \mathrm{mg}, 70 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.44$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.72$ $-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.10(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.74(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 196.0,170.8,142.0,135.6,131.2,124.9,62.3,52.4,40.8$, 29.2, 28.4, 25.9, 21.5.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}_{2}{ }^{+} 360.1068$, found 360.1074 .

1,3-diphenylthiourea (4g')

Following general procedure, thianthrenium salt $\mathbf{1 a}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), carbon disulfide ($36 u L, 0.6$ mmol) and aniline ($27.3 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 g}^{\mathbf{\prime}}$.
$37.4 \mathrm{mg}, 87 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.21$ (s, 2H), $7.42-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 179.7,137.1,129.5,127.0,125.3$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{NaS} 251.0619$, found 251.0616.

Phenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4aa)

Following general procedure, thianthrenium salt $\mathbf{1 c}(76.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4aa.
$45.5 \mathrm{mg}, 72 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.39$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=84.1 \mathrm{~Hz}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 197.9, 161.1, 157.8, 137.1, 131.0, 130.2, 129.2, 110.7, 50.7 (d, $J=84.8 \mathrm{~Hz}$), 43.1.
HRMS-ESI (m/z) [M+H] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{+} 317.0895$, found 317.0890.

p-tolyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithioate (4ab)

Following general procedure, thianthrenium salt $\mathbf{1 0}(76.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}$ ($36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 a b}$.
$44.2 \mathrm{mg}, 76 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=15.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.54-$ $2.33(\mathrm{~m}, 6 \mathrm{H}), 2.25(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 206.6, 193.7, 140.9, 136.8, 130.2, 126.8, 59.7, 57.0, 48.4, 47.4, 29.4, 27.0, 21.6.

HRMS-ESI (m/z) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NNaOS}_{2}{ }^{+}$314.0649, found 314.0644.

4-butoxyphenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4ac)

Following general procedure, thianthrenium salt $\mathbf{1 i}(90.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ac.
$52.8 \mathrm{mg}, 68 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=95.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 6 \mathrm{H}), 1.82-1.72$ $(\mathrm{m}, 2 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 199.2,160.9,157.8,138.5,121.3,134.2,115.3,110.7,67.8$, $50.6(\mathrm{~d}, J=143.4 \mathrm{~Hz}), 43.1,31.3,19.3,13.9$.
HRMS-ESI (m/z) [M+H] calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{OS}_{2}{ }^{+}$389.1470, found 389.1467.

3,4-dimethoxyphenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4ad)

Following general procedure, thianthrenium salt $\mathbf{1 j}(88.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ad.
$52.7 \mathrm{mg}, 70 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.46$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (dd, $J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=108.6 \mathrm{~Hz}, 4 \mathrm{H})$, $4.02(\mathrm{~s}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 198.7,161.2,157.9,150.9,149.1,130.2,121.7,119.6,111.3$, $110.7,56.1,55.9,50.6(\mathrm{~d}, J=142.4 \mathrm{~Hz}), 43.1$.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+}$399.0925, found 399.0927.

3-cyano-4-methoxyphenyl methyl(phenyl)carbamodithioate (4ae)

Following general procedure, thianthrenium salt $\mathbf{1 p}(69.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and N-methylaniline ($33 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ae.
$42.8 \mathrm{mg}, 68 \%$. Yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.57-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.97 (s, 3H), 3.78 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 198.6,162.3,144.5,143.2,142.0,130.0,129.5,126.9,124.6$, 115.6, 111.8, 102.7, 56.3, 46.8.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}_{2}{ }^{+} 315.0626$, found 315.0632.

4-(4-cyano-3-fluorophenoxy)phenyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithi oate (4af)

Following general procedure, thianthrenium salt $\mathbf{1 e}(85.7 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 u L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4af.
$70.9 \mathrm{mg}, 86 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $16.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.02-$ $1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 206.3,192.7,164.1(\mathrm{~d}, J=261.6 \mathrm{~Hz}), 160.0(\mathrm{~d}, J=4.0 \mathrm{~Hz})$, $156.4,139.2,135.1,127.0,120.6,112.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 111.0,110.5(\mathrm{~d}, J=19.2 \mathrm{~Hz}), 94.3(\mathrm{~d}, J=$ 18.2 Hz), 59.8, 57.2, 48.4, 47.4, 29.5, 27.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{NaO}_{2} \mathrm{~S}_{2} 435.0613$, found 435.0617.

4-fluorobenzyl (E)-3-(dipropylamino)-2-(trifluoromethyl)acrylate (4ag)

Following general procedure, thianthrenium salt $\mathbf{1 d}(73.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1] octan-3-one 3 ($35 u L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ag.
56.5 mg , yield 80%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=9: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H})$, $2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 206.3,193.0,143.1,140.0,137.2,128.90,128.9,127.9$, 127.9, 127.3, 59.6, 57.1, 48.4, 47.4, 29.4, 27.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NOS}_{2}{ }^{+} 354.0986$, found 354.0996.

4'-(((trifluoromethyl)sulfonyl)oxy)-[1,1'-biphenyl]-4-yl-3-oxo-8-azabicyclo[3.2.1] octane-8-carbodithioate (4ah)

Following general procedure, thianthrenium salt $\mathbf{1 k}(120.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one $\mathbf{3}$ ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ah.
74.2 mg , yield 74%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=9: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.71-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.36(\mathrm{~m}, 3 \mathrm{H})$, $2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 206.3,192.6,149.3,141.1,140.5,137.5,130.1,129.1,128.0$, $121.82,118.8$ (q, $J=322.2 \mathrm{~Hz}$), 59.7, 57.2, 48.4, 47.4, 29.5, 27.1.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{4} \mathrm{~S}_{3}{ }^{+}$524.0248, found 524.0241.

4-((4-methylphenyl)sulfonamido)phenyl-4-(pyrimidin-2-yl)piperazine-1-carbod ithioate (4ai)

Following general procedure, thianthrenium salts $\mathbf{1 r}(109.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($43 \mu L, 3.0 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ai.
80.5 mg , yield 83%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.34$ (eluent petroleum ether/ethyl acetate $=4: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27$ (d, $J=110.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.00(\mathrm{~s}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 197.6, 161.2, 157.9, 144.2, 138.6, 138.2, 135.9, 129.8, 127.3, 126.9, 121.0, 110.8, 43.0, 21.6.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{2} \mathrm{~S}_{3}{ }^{+} 508.0912$, found 508.0905.

4-(2,2,2-trifluoroacetamido)phenyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carbod ithioate (4aj)

Following general procedure, thianthrenium salt $\mathbf{1 f}(98.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4aj.
$57.4 \mathrm{mg}, 74 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.53(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.56-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 206.3$, 192.6, $154.8(\mathrm{~d}, J=37.4 \mathrm{~Hz}), 138.2,137.1,127.7$, $120.8,115.4(\mathrm{t}, J=267.7 \mathrm{~Hz}), 59.8,57.2,48.4,47.4,29.4,27.0$.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+} 411.0425$, found 411.0433 .

Dibenzo[b,d]furan-3-yl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4ak)

Following general procedure, thianthrenium salt $\mathbf{1 1}(94.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ak.
$65.0 \mathrm{mg}, 80 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J$ $=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=88.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.04(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 198.6, 161.0, 157.8, 157.2, 156.6, 136.1, 129.9, 127.7, 125.4, 124.7, 123.6, 123.1, 121.0, 112.6, 111.8, 110.7, 50.7 (d, $J=122.2 \mathrm{~Hz}$), 43.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{OS}_{2}{ }^{+}$407.1000, found 407.0991.

4-bromo-2,5-dimethylphenyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithioate (4al)

Following general procedure, thianthrenium salt $\mathbf{1 g}(79.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one 3 ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4al.
54.4 mg , yield 71%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (eluent petroleum ether/ ethyl acetate $=9: 1, \mathrm{v} / \mathrm{v}$).
${ }^{\mathbf{1}} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.114-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 206.3,191.4,142.8,139.4,136.5,134.4,128.6,128.1,59.6$, 57.2, 48.4, 47.3, 29.5, 27.1, 22.3, 20.3.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrNOS}_{2}{ }^{+} 384.0091$, found 384.0091.

4-(4-bromophenoxy)phenyl (2-cyanoethyl)(methyl)carbamodithioate (4am)

Following general procedure, thianthrenium salt $1 \mathrm{~s}(109.9 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 3-(methylamino)propanenitrile ($76 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4am.
$60.9 \mathrm{mg}, 75 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $\left.=16: 1(\mathrm{v}: \mathrm{v})\right)$
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J$
$=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2H).
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 199.9, 159.2, 155.1, 138.7, 133.0, 124.8, 121.6, 118.7, 118.1, 116.9, 53.3, 41.8, 15.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaOS}_{2} 428.9707$, found 428.9710.

4-(4-bromophenoxy)phenyl-3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithioate (4an)

Following general procedure, thianthrenium salt $1 \mathrm{~s}(110.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4an.
$75.1 \mathrm{mg}, 84 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-$ $3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.88-1.81 (m, 1H).
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 206.3,193.4,159.2,155.1,138.8,133.0,124.0,121.7,118.6$, 116.9, 59.7, 57.0, 48.5, 47.4, 29.4, 27.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrNNaO}_{2} \mathrm{~S}_{2}{ }^{+}$469.9860, found 469.9869.

5-iodo-2-methoxyphenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4ao)

Following general procedure, thianthrenium salt $\mathbf{1 m}(107.2 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ao.
$58.5 \mathrm{mg}, 62 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=$ $8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 4 \mathrm{H}), 3.93(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 198.0, 161.1, 159.7, 157.9, 147.3, 138.7, 123.5, 111.0, 110.8, $85.9,56.5,50.6(\mathrm{~d}, J=145.4 \mathrm{~Hz}), 43.1$.
HRMS-ESI (m/z) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{IN}_{4} \mathrm{NaOS}_{2}{ }^{+}$494.9786, found 494.9786 .

4'-iodo-[1,1'-biphenyl]-4-yl 3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithioate (4ap)

Following general procedure, thianthrenium salt $\mathbf{1 h}(116.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ap.
$73.8 \mathrm{mg}, 77 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}$, $J=12.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=12.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H})$, $2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 206.3,192.8,142.0,139.5,138.0,137.4,129.5,129.1,127.7$, 94.0, 59.7, 57.2, 48.4, 47.4, 29.5, 27.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{INOS}_{2}{ }^{+}$479.9953, found 479.9956.

4-fluorophenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4aq)

Following general procedure, thianthrenium salt $\mathbf{1 u}(80.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 a q}$.
$50.8 \mathrm{mg}, 76 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.6,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ $(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=100.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 197.6(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 163.2(\mathrm{t}, J=211.1 \mathrm{~Hz}), 157.9,139.2$ (d, $J=9.1 \mathrm{~Hz}), 126.4(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 116.6,116.4,110.8,50.7(\mathrm{~d}, J=134.3 \mathrm{~Hz}), 43.0$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{FN}_{4} \mathrm{~S}_{2}{ }^{+} 335.0800$, found 335.0797.

4-chlorophenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4ar)

Following general procedure, thianthrenium salt $\mathbf{1 n}(82.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ar.
51.8 mg , 74%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=10: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 8.36(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 4 \mathrm{H}), 6.59(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28(\mathrm{~d}, J=105.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 196.9,161.2,157.9,138.3,136.8,129.5,129.4,110.8,50.7$ (d, $J=112.1 \mathrm{~Hz}$), 43.03.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{~S}_{2}{ }^{+} 351.0505$, found 351.0503 .

Ethyl 4-((4-(pyrimidin-2-yl)piperazine-1-carbonothioyl)thio)benzoate (4as)

Following general procedure, thianthrenium salt $\mathbf{1 x}(90.5 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4as.
$53.6 \mathrm{mg}, 69 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 8.37$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 8.11 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.60(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.09(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 4 \mathrm{H}), 1.40(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 196.2, 165.9, 161.1, 157.9, 136.9, 136.2, 131.8, 130.1, 110.8, 61.3, 50.7, 43.1, 14.4.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$ 389.1106, found 389.1096.

4-cyanophenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4at)

Following general procedure, thianthrenium salt $\mathbf{1 w}(81.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4at.
$39.6 \mathrm{mg}, 58 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=104.3 \mathrm{~Hz}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}(101 \mathrm{MHz}$, Chloroform- d) $\delta 195.0,161.0,157.9,137.6,136.9,132.5,118.3,113.8,110.9$, 50.8 (d, $J=85.9 \mathrm{~Hz}$), 43.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaS}_{2}$ 364.0667, found 364.0673.

4-cyanophenyl 4-(pyrimidin-2-yl)piperazine-1-carbodithioate (4au)

Following general procedure, thianthrenium salt $\mathbf{1 v}(89.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4au.
$41.5 \mathrm{mg}, 54 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=7.8$
$\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=97.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.03(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 196.1,161.1,157.9,140.5,133.8(\mathrm{q}, J=4.4 \mathrm{~Hz}), 132.2$, $131.4(\mathrm{q}, J=33.3 \mathrm{~Hz}), 129.5,126.9(\mathrm{q}, J=3.0 \mathrm{~Hz}), 123.6(\mathrm{q}, J=273.7 \mathrm{~Hz}), 110.8,50.8(\mathrm{~d}, J=106.1$ Hz), 43.0.

HRMS-ESI (m / z) $[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{NaS}_{2} 407.0588$, found 407.0594.

4-(4-bromophenoxy)phenyl-4-(benzo[d]isothiazol-3-yl)piperazine-1-carbodi

 thioate (4av)

Following general procedure, thianthrenium salt $\mathbf{1 s}(109.9 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and 3-(piperazin-1-yl)benzo[d]isothiazole ($65.8 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4av.
$74.7 \mathrm{mg}, 69 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=16: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.39(\mathrm{~m}$, $6 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=93.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) δ 198.3, 162.6, 159.0, 155.1, 152.9, 138.9, 132.9, 127.9, 127.6, $124.8,124.3,123.6,121.6,120.8,118.7,116.8,51.1,49.4$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{NaOS}_{3}{ }^{+} 563.9850$, found 563.9854 .

4-(4-bromophenoxy)phenyl-4-(dibenzo[b,f][1,4]thiazepin-11-yl)piperazine-1carbodithioate (4aw)

Following general procedure, thianthrenium salt $1 \mathrm{~s}(109.9 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 11 -(piperazin-1-yl)dibenzo[b,f][1,4]thiazepine ($110.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4aw.
$65.4 \mathrm{mg}, 53 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=20: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.55-7.31(\mathrm{~m}, 9 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 5 \mathrm{H}), 4.53-3.48(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 198.1,160.5,159.0,155.2,148.1,140.2,138.9,133.6,133.0$, $132.4,132.4,131.4,129.3,128.9,128.6,128.1,125.4,124.9,123.6,121.6,118.7,116.8,48.6$ (d, J $=397.9 \mathrm{~Hz}$).

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{OS}_{3}$ 618.0343, found 618.0346.

Methyl(S)-2-methoxy-4-((methyl(3-phenyl-3-(o-tolyloxy)propyl)carbamothioyl) thio)benzoate (4ax)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and (S)-N-methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine ($87.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ax.
$74.3 \mathrm{mg}, 75 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.85(\mathrm{dd}, J=23.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.12$ (dd, $J=7.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{q}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.3,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=30.0 \mathrm{~Hz}, 3 \mathrm{H})$, 2.37 (d, $J=11.4 \mathrm{~Hz}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 197.6(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 165.6,160.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 155.6$ $(\mathrm{d}, J=13.1 \mathrm{~Hz}), 142.6,141.0(\mathrm{~d}, J=49.5 \mathrm{~Hz}), 140.5,136.4(\mathrm{~d}, J=177.8 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=11.1$ $\mathrm{Hz}), 128.8(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 126.9,126.7,125.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 122.4(\mathrm{~d}, J$ $=13.1 \mathrm{~Hz}), 120.5(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{C}), 112.7,76.6,56.2,53.5(\mathrm{~d}, J=318.2 \mathrm{~Hz}), 52.1,42.3(\mathrm{~d}, J=$ $370.7 \mathrm{~Hz}), 35.9(\mathrm{~d}, J=119.2 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=6.1 \mathrm{~Hz})$.
HRMS-ESI (m/z) [M+Na] ${ }^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{4} \mathrm{~S}_{2} 518.1436$, found 518.1437.

Tert-butyl 2-((4S,6S)-2,2-dimethyl-6-(2-((((4-phenoxyphenyl)thio)carbonothioyl) amino)ethyl)-1,3-dioxan-4-yl)acetate (4ay)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and tert-butyl 2-((4S,6S)-6-(2-aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate ($55 \mu L$, $0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ay.
$72.4 \mathrm{mg}, 70 \%$. Light yellow oil.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.84(\mathrm{~m}$, $2 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 195.4,170.1,160.4,155.2,137.3,130.2,124.9,121.9,120.3$, $119.0,98.8,80.7,67.9,66.1,43.9,42.5,36.1,34.1,30.0,28.1,19.7$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NNaO}_{5} \mathrm{~S}_{2} 540.1854$, found 540.1853.
(2R,4S,5R)-2-(acetoxymethyl)-6-(2-(acetoxymethyl)-4-((3-oxo-8-azabicyclo[3.2.1] octane-8-carbonothioyl)thio)phenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4az)

Following general procedure, thianthrenium salt $\mathbf{1 a a}(159.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4az.
$84.8 \mathrm{mg}, 61 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=2: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} H$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.49(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.30(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.17(\mathrm{~m}, 2 \mathrm{H}), 5.14-5.05$ (m, 3H), $4.29(\mathrm{dd}, J=12.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=12.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (dd, $J=16.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.34(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.11(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.02-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 206.2$, 192.9, 170.6, 170.6, 170.2, 169.4, 169.3, 155.9, 138.3, $137.8,127.0,124.3,115.6,98.7,72.5,72.2,70.8,68.2,61.8,60.6,59.7,57.0,48.4,47.4,29.4,27.0$, 21.0, 20.7, 20.6 (3C).

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NNaO}_{13} \mathrm{~S}_{2} 718.1604$, found 718.1613.

Isopropyl-2-(4-(4-chlorobenzoyl)-2-(((1R,5S)-3-oxo-8-azabicyclo[3.2.1]octane-8-carbonothioyl)thio)phenoxy)-2-methylpropanoate (4ba)

Following general procedure, thianthrenium salt $\mathbf{1 a c}(132.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4ba.
$63.7 \mathrm{mg}, 57 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.91(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 1 \mathrm{H})$, $3.15-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.03-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 7 \mathrm{H}), 1.22(\mathrm{dd}, J=6.3,4.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 206.5,193.4,191.6,172.7,160.2,141.5,138.7,135.9,133.8$, $131.4,130.3,128.7,120.8,115.7,69.6,59.6,57.5,48.3,47.3,29.5,27.2,25.3,24.8,21.6$ (d, $J=$ 2.0 Hz).

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClNNaO}_{5} \mathrm{~S}_{2}{ }^{+}$582.1152, found 582.1158.

4-(4-(2-(pyridin-2-yloxy)propoxy)phenoxy)phenyl-3-oxo-8-azabicyclo[3.2.1] octane-8-carbodithioate (4bb)

Following general procedure, thianthrenium salt $\mathbf{1 a b}$ ($107.2 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 b b}$.
$56.2 \mathrm{mg}, 54 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=6: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.16(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=$ $9.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=9.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=16.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.2$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H})$,
$1.49(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) $\delta 206.4,193.9,163.1,160.8,155.9,148.9,146.7,138.9,138.6$, $122.6,121.7,117.5,116.8,115.9,111.7,71.0,69.4,59.7,57.0,48.4,47.4,29.4,27.0,17.0$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{+}$543.1388, found 543.1381.

4'-chloro-6-(2-chloronicotinamido)-[1,1'-biphenyl]-3-yl(1R,5S)-3-oxo-8-azab icyclo[3.2.1]octane-8-carbodithioate (4bc)

Following general procedure, thianthrenium salt $\mathbf{1 z}(128.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bc.
$80.1 \mathrm{mg}, 74 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=3: 1(\mathrm{v}: \mathrm{v})$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 8.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37$ $(\mathrm{s}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 6 \mathrm{H}), 5.55(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=12.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=16.1,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58-2.35(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 206.2,192.7,162.5,151.5,146.5,140.3,138.7,137.3,136.4$, $135.0,134.9,132.2,130.9,130.8,129.5,126.1,123.0,121.8,59.7,57.1,48.4,47.4,29.4,27.0$. HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+}$564.0350, found 564.0343.

Ethyl-2-(4-chloro-2-((3-oxo-8-azabicyclo[3.2.1]octane-8-carbonothioyl)thio) phenoxy)-2-methylpropanoate (4bd)

Following general procedure, thianthrenium salt $\mathbf{1 t}(91.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$
equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bd.
$58.2 \mathrm{mg}, 66 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.40$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- $d) \delta 7.48(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.09(\mathrm{~m}$, $1 \mathrm{H}), 3.01-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.58(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) δ 206.5, 191.5, 173.7, 155.2, 138.1, 131.5, 126.3, 122.7, 117.8, 80.0, 61.7, 59.6, 57.5, 48.4, 47.3, 29.5, 27.2, 25.3, 24.7, 14.1.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClNNaO}_{4} \mathrm{~S}_{2}{ }^{+} 464.0733$, found 464.0735 .

Methyl-5-(2,5-dimethyl-4-((4-(pyrimidin-2-yl)piperazine-1-carbonothioyl) thio)phenoxy)-2,2-dimethylpentanoate (4be)

Following general procedure, thianthrenium salt $\mathbf{1 y}(95.8 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 2-(piperazin-1-yl)pyrimidine ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4be.
$69.3 \mathrm{mg}, 69 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{t}, J$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=79.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 4 \mathrm{H}), 3.97(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}$, $3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{dd}, J=4.5,1.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 198.2, 178.3, 160.9, 159.1, 157.8, 143.0, 139.4, 125.3, 120.1, $112.9,110.7,67.9,51.8,50.5,43.2,42.1,37.1,25.2,25.1,21.1,15.7$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}$525.1970, found 525.1971.

4-phenoxyphenyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carbodithioate (4bf)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.5 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-one ($38 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 b f}$.
$52.4 \mathrm{mg}, 71 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.32(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.87$ $-1.80(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 206.4, 193.6, 159.8, 155.8, 138.7, 130.0, 124.4, 123.4, 120.1, 118.5, 59.7, 57.0, 48.4, 47.4, 29.5, 27.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NNaO}_{2} \mathrm{~S}_{2}{ }^{+}$392.0755, found 392.0764.

4-phenoxyphenyl(S)-methyl(3-phenyl-3-(o-tolyloxy)propyl)carbamodithioate (4bg)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}, 3.0$ equiv.) and (S)- N -methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine ($76.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product $\mathbf{4 b g}$.
$61.9 \mathrm{mg}, 62 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.38$ (petroleum ether/ethyl acetate $=10: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.38-7.21(\mathrm{~m}, 9 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 3 \mathrm{H})$, $6.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.22(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $30.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- d) $\delta 198.0(\mathrm{~d}, J=18.2 \mathrm{~Hz}$), 159.5, $156.0,155.6(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 141.1$ (d, $J=49.5 \mathrm{~Hz}), 138.7(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 130.0,128.8(\mathrm{~d}, J=20.2 \mathrm{~Hz}), 127.9(\mathrm{~d}, J$ $=26.3 \mathrm{~Hz}), 126.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 126.7,125.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 124.2,120.6(\mathrm{~d}, J$ $=18.2 \mathrm{~Hz}), 120.0,118.5(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 77.0(\mathrm{~d}, J=67.7 \mathrm{~Hz}), 53.5(\mathrm{~d}, J=315.1$ $\mathrm{Hz}), 42.3(\mathrm{~d}, J=362.6 \mathrm{~Hz}), 35.9(\mathrm{~d}, J=117.2 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=5.1 \mathrm{~Hz})$.
HRMS-ESI (m/z) [M+K] calculated for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{KNO}_{2} \mathrm{~S}_{2}{ }^{+}$538.1277, found 538.1279.

4-phenoxyphenyl methyl(phenyl)carbamodithioate (4bh)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.5 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and N-methylaniline ($38 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bh.
$53.4 \mathrm{mg}, 76 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.44$ (petroleum ether/ethyl acetate $=8: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} H$ NMR (400 MHz , Chloroform- d) $\delta 7.54-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform- d) δ 200.1, 159.3, 155.9, 144.9, 138.4, 129.9, 129.9, 129.2, 127.0, 125.9, 124.2, 120.1, 118.4, 46.7.

HRMS-ESI (m/z) [M+Na] calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NNaOS}_{2}{ }^{+}$374.0649, found 374.0646.

Methyl-5-((3-hydroxy-8-azabicyclo[3.2.1]octane-8-carbonothioyl)thio)-2-methoxy benzoate (4bi)

Following general procedure, thianthrenium salt $\mathbf{1 b}(93.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and 8 -azabicyclo[3.2.1]octan-3-ol ($35 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bi.
$47.7 \mathrm{mg}, 65 \%$. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.32$ (petroleum ether/ethyl acetate $=5: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05$ (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.86-4.83(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.98-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 189.9,165.6,160.7$, 142.6, 140.6, 121.6, 120.4, 112.6, 64.8, 60.4, 58.3, 56.2, 52.1, 39.4, 37.9, 28.2, 26.2.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{4} \mathrm{~S}_{2}{ }^{+} 390.0810$, found 390.0805 .

4-phenoxyphenyl dimethylcarbamodithioate (4bj)

Following general procedure, thianthrenium salt $\mathbf{1 a}(94.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathbf{C S}_{2}(36 \mu L, 0.6 \mathrm{mmol}$, 3.0 equiv.) and dimethylamine ($10 \mu L, 0.3 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bj.
38.7 mg , yield 67%. Yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (eluent petroleum ether/ ethyl acetate $=10: 1, \mathrm{v} / \mathrm{v}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform- d) $\delta 198.1,159.5,156.0,138.7,130.0,125.0,124.2,120.0,118.5$, 45.8, 42.0.

HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NNaOS}_{2}{ }^{+}$312.0493, found 312.0487.

Methyl 2-methoxy-5-((morpholine-4-carbonothioyl)thio)benzoate (4bk)

Following general procedure, thianthrenium salt $\mathbf{1 b}(234.0 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathbf{C S}_{\mathbf{2}}(90 \mu L, 1.5 \mathrm{mmol}$, 3.0 equiv.) and morpholine ($66.3 \mu L, 0.75 \mathrm{mmol}, 1.5$ equiv.) were used to afford the desired product 4bk.
$36.6 \mathrm{mg}, 56 \%$. Light yellow solid.
$\mathrm{R}_{\mathrm{f}}=0.36$ (petroleum ether/ethyl acetate $=9: 1(\mathrm{v}: \mathrm{v})$)
${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) δ 198.1, 165.5, 160.8, 142.6, 140.6, 121.6, 120.6, 112.7, 66.3, $56.2,52.2,51.4(\mathrm{~d}, J=86.9 \mathrm{~Hz})$.
HRMS-ESI $(\mathrm{m} / \mathrm{z})[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NNaO}_{4} \mathrm{~S}_{2} 350.0497$, found 350.0490.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 a}$.
$\stackrel{+}{\infty}$

$\stackrel{\circ}{\circ} \mathrm{m}$
$\stackrel{8}{\circ} \stackrel{0}{\circ}$
1

$\stackrel{0}{\infty}$

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 a}$.

$\stackrel{\circ}{8} \stackrel{9}{\square}$
$\underbrace{\sim}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 c}$.

$\stackrel{\text { J }}{\substack{\text { + }}}$

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 c}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 d}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 d}$.

$\stackrel{-}{\infty} \mathscr{C}$
 10

$\stackrel{\circ}{\stackrel{\circ}{\circ}}$
ソ
ヘNNNNNNNーテー

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$ ，Chloroform－d ）of compound $\mathbf{4 e}$ ．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 e}$ ．

 ir
 i
 $\xrightarrow{1}$

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 f}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 f}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 g}$.

$\begin{aligned} & \underset{\sim}{\overleftarrow{ }} \\ & \stackrel{\otimes}{\circ} \\ & \stackrel{1}{2} \end{aligned}$				

${ }^{13} \mathbf{C}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 g}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 h}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 h}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 i}$.

${ }^{13}$ C NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 i}$.


```
ソNNNNNNNNNN
```


\qquad

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4} \mathbf{j}$.


```
N~/~%
```


${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) of compound $\mathbf{4 k}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $4 \mathbf{1}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound $4 \mathbf{I}$.

\qquad
\qquad

	$\begin{aligned} & \text { T } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\frac{T}{\tau}$	$\begin{aligned} & \text { T } \\ & \underset{\sim}{\circ} \end{aligned}$								$\begin{aligned} & T \\ & \stackrel{0}{5} \stackrel{T}{N} \\ & \stackrel{\sim}{N} \end{aligned}$		$\stackrel{T}{N}$				
8． 5	8.0	7.5	7.0	6.5	6.0	5． 5	5.0	4.5	． 0	3.5	3.0	2． 5	2.0	1.5	1.0	0.5	0.0

${ }^{1} \mathbf{H}$ NMR（400 MHz，Chloroform－d ）of compound $\mathbf{4 m}$ ．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 m}$ ．

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 n}$.

Bi
$\stackrel{\text { ®® }}{\infty}$

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound $\mathbf{4 n}$.

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 0}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 0}$.

$$
\begin{aligned}
& \text { viNNNNN~N }
\end{aligned}
$$

ำ
$\stackrel{\infty}{\infty}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 p}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 p}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 q}$.

$\begin{array}{r}\sim \\ \% \\ \stackrel{\circ}{\circ} \\ \hline\end{array}$			응둗	

 (a)

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 r}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 r}$.

MM Noldran whel \qquad

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 s}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4s.

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$ ，Chloroform－d）of compound $\mathbf{4 t}$ ．
$\stackrel{\ominus}{\stackrel{\circ}{\circ}}$
$\stackrel{n}{\circ} N$
$\stackrel{N}{\circ}$
$\stackrel{O}{6}$
1

パッガゥ

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 t}$ ．

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 u}$.

> 용응
> $\stackrel{1}{6} \circ 1$

${ }^{13} \mathbf{C}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 u}$.

$\stackrel{\circ}{\div}$

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$ ，Chloroform－d ）of compound $\mathbf{4 v}$ ．

$\stackrel{\infty}{\infty}$

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 v}$ ．
$\underbrace{\infty}_{\substack{0 \\ \infty \\ \infty \\ \infty}}$
-

	$\begin{aligned} & \stackrel{\top}{\top} \\ & \stackrel{1}{\circ} \end{aligned}$	$\stackrel{\rightharpoonup}{4}$			$\stackrel{\uparrow}{\stackrel{T}{\infty}} \underset{\substack{0}}{ }$		$\begin{aligned} & \stackrel{T}{1} \\ & \stackrel{1}{N} \end{aligned}$		\%								
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	${ }^{1.5}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 w}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 w}$.

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 x}$.

$\stackrel{\infty}{\infty}$

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 x}$.

${ }^{1} \mathbf{H}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 y}$ ．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 y}$ ．

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 z}$.

${ }^{13} \mathbf{C}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 z}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 a} \mathbf{a}^{\mathbf{\prime}}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b}$ '.

$\stackrel{\omega}{\stackrel{\omega}{\circ}} \stackrel{\sim}{\omega}$

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b}$ '.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 c}$ '.
$\tilde{0}$
$\stackrel{0}{6}$
\vdots

$\stackrel{\infty}{\infty}$

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 c}$ '.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform- d) of compound $\mathbf{4 d}$ '.

$\bar{\sim}$	98		
$\stackrel{\text { ®® }}{ }$	$\stackrel{\circ}{\circ} \stackrel{\text { \% }}{\sim}$		$\stackrel{\square}{9}$
1	1 \|	\cdots	1

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $4 \mathbf{d}^{\prime}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $4 \mathbf{e}^{\mathbf{\prime}}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4} \mathbf{e}^{\mathbf{\prime}}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 f}{ }^{\mathbf{\prime}}$ ．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound $\mathbf{4 f}$＇．

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 g} \mathbf{\prime}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 g} \mathbf{g}$.


```
ダプN
```


${ }^{1} \mathbf{H}$ NMR（ 400 MHz ，Chloroform－d ）of compound 4aa．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound 4aa．

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 a b}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform-d) of compound 4ab.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4ac.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4ac.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 a d}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound 4 ad.

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4ae.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4ae.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) of compound 4af.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4af.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) of compound 4ag.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4ag.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4ah.

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4ai.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform-d) of compound 4ai.

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4aj.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform-d) of compound 4aj.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4ak.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4al.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4al.
N-
N-

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4am.
$\stackrel{\infty}{\infty}$
$\stackrel{j}{\infty}$
$\stackrel{\rightharpoonup}{1}$

$\stackrel{\sim}{\sim}$
$\stackrel{H}{8}$

${ }^{13}$ C NMR (400 MHz, Chloroform-d) of compound 4am.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4an.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform-d) of compound 4an.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4ao.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound 4ao.

${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- d) of compound 4ap.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4ap.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4aq.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4ar.

옹․․․․․․

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform-d) of compound 4ar.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4as.

$\bar{\sim}$	¢	¢
$\stackrel{\text { ® }}{-}$	¢¢¢¢¢¢	
I	Ti	「T゙

$\stackrel{\oplus}{\sim}$
$\stackrel{10}{\stackrel{1}{\sim}} \stackrel{+}{\square}$

${ }^{13}$ C NMR (400 MHz , Chloroform-d) of compound 4as.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4at.

${ }^{13}$ C NMR (400 MHz , Chloroform- d) of compound 4at.


```
め~NNNNNNNツツ!
```


${ }^{1} \mathbf{H}$ NMR（400 MHz，Chloroform－d ）of compound 4au．

${ }^{13} \mathbf{C}$ NMR（ 400 MHz ，Chloroform－d ）of compound 4au．

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound 4av.

${ }^{13}$ C NMR (400 MHz , Chloroform- d) of compound 4av.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4aw.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound 4aw.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4ax.

${ }^{13} \mathbf{C}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4ax.

\qquad

\qquad 4 ull \qquad
 \qquad 1

${ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound 4ay.

\%	$\stackrel{\circ}{\circ}$							
$\stackrel{\leftrightarrow}{\sim}$	$\stackrel{-}{-}$	$\stackrel{\square}{\odot}$			$\stackrel{\infty}{\infty}$	$\stackrel{N}{8}$	$\begin{aligned} & 68 \\ & 0 \\ & 0 \end{aligned}$	
-	F			- -)	∞	$1!$	\लハग

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound 4ay.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform-d) of compound $\mathbf{4 a z}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$ ，Chloroform－d ）of compound $\mathbf{4 b a}$ ．

${ }^{13} \mathbf{C}$ NMR（400 MHz，Chloroform－d ）of compound $\mathbf{4 b a}$ ．

	$\begin{aligned} & \text { T' } \\ & \hline 6 \\ & \hline \end{aligned}$						$\begin{aligned} & \text { T' } \\ & \underset{\sim}{N} \\ & 0 \end{aligned}$							$\begin{aligned} & \text { T' } \\ & \\ & \end{aligned}$			
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{array}{r} \text { 4. } 5 \\ \text { f1 } \end{array}$	$(\mathrm{ppm}){ }^{4.0}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 b b}$.

$\begin{aligned} & \text { y } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\sim}{2} \end{aligned}$				$\begin{aligned} & \text { BN } \\ & \text { 둥 } \end{aligned}$			

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound $\mathbf{4 b b}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 b c}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b c}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b d}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b d}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4} \mathbf{b e}$.

${ }^{13} \mathbf{C}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $4 \mathbf{b e}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 b f}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) of compound $\mathbf{4 b g}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz, Chloroform- d) of compound $\mathbf{4 b g}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b h}$.
N

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4} \mathbf{b h}$.

${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4} \mathbf{b i}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b i}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b j}$.

${ }^{13} \mathbf{C}$ NMR (400 MHz , Chloroform- d) of compound $\mathbf{4 b j}$.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$ ，Chloroform－d ）of compound $\mathbf{4 b k}$ ．

${ }^{13} \mathbf{C}$ NMR（400 MHz，Chloroform－d ）of compound $\mathbf{4 b k}$ ．

