Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information for

4,9- and 4,10- Substituted Pyrenes: Synthesis, Successful Isolation, and Optoelectronic Properties

Leibo Tan, Xiuli Zheng, Junqing Shi, Tianshi Qin,* Lei Ji*

Contents

Synthesis	
Electrochemistry	
Photophysics	
Theoretical studies	
¹ H and ¹³ C NMR spectra	
Cartesian coordinates of all optimized structures	

Synthesis

Figure S1. The gas chromatogram of 1,2,3,6,7,8-hexahydropyrene brominated with 2 eq of bromine.

Figure S2. The mass spectrum at 12.5 minutes of the gas chromatograph in Figure S1.

Figure S3. The mass spectrum at 14 minutes of the gas chromatograph in Figure S1.

Figure S5. The gas chromatogram of 1,2,3,6,7,8-hexahydropyrene brominated with 3 eq bromine.

Figure S7. The mass spectrum at 14 minutes of the gas chromatograph shown in Figure S5.

Figure S8. ¹H NMR spectrum (500 MHz, CDCl₃) of compound 1,2,3,6,7,8-hexahydropyrene brominated with 3 eq of bromine.

Figure S10. The separation of 1 and 2 on a Recycling Preparative SEC.

Figure S11. The separation of 3 and 6 by Recycling Preparative SEC.

Electrochemistry

Figure S12. Cyclic voltammograms (solid line) and differential pulse voltammetry (dashed lined) of compounds 1-5. The reduction potentials were measured in THF and the oxidation potentials were measured in dichloromethane.

Figure S13. Cyclic voltammograms of compound 1 in THF (black) and dichloromethane (red).

Figure S14. Cyclic voltammograms of compound 2 in THF (a and b) and dichloromethane (c).

Figure S15. Cyclic voltammograms of compound 3 in THF.

Figure S16. Cyclic voltammograms of compound 4 in THF.

Figure S17. Cyclic voltammograms of compound 5 in THF.

Photophysics

Figure S18. Absorption spectra of compounds 1-5 in hexane, toluene, DCM, THF and DMF.

Figure S19. Fluorescence spectra of compounds 1-5 in hexane, toluene, DCM, THF, and DMF.

Figure S20. The absorbance dependence of compounds 1-5 in hexane on concentrations (1 & 2 at 379 nm, 3 at 391 nm, 4 at 390 nm, and 5 at 385 nm). The slope of the fitted line (in red) is the molar extinction coefficient of the corresponding compound at designated wavelength.

Figure S21. Fluorescence decay of compounds 1-5 in hexane (excited at 293.6 nm).

Figure S22. Fluorescence decay of compounds 1-5 in THF (excited at 293.6 nm).

Theoretical studies

Excited State	$\triangle E / eV$	<i>l /</i> nm	Oscillator strength	Transitions	Contribution
S1	3.5430	349.94	0.3887	HOMO→LUMO	88%
S2	3.6126	343.20	0.0000	HOMO-1→LUMO	89%
52	2 2010	219 65	0.0625	HOMO-3→LUMO	26%
53 3.8910	3.8910	0 518.05	0.0623	HOMO→LUMO+1	44%
S4	4.2046	294.88	0.1505	HOMO-2→LUMO	71%
				HOMO-1→LUMO+1	45%
S5	4.5208	4.5208 274.25	0.0001	HOMO-1→LUMO+6	15%
				HOMO→LUMO+2	10%
				HOMO→LUMO+5	13%

Table S1. TD-DFT calculations results of compound 1 in gas phase.

 Table S2. TD-DFT calculations results of compound 2 in gas phase.

Excited State	$\triangle E / eV$	<i>l /</i> nm	Oscillator strength	Transitions	Contribution
S1	3.5706	347.24	0.1731	HOMO-1→LUMO	84%
S2	3.5887	345.48	0.2143	HOMO →LUMO	91%
				HOMO-3→LUMO	29%
S3	3.9280	3.9280 315.64	0.0995	HOMO-2→LUMO+1	13%
				HOMO→LUMO+1	49%
S4	4.1670	297.54	0.0607	HOMO-2→LUMO	82%
				HOMO-1→LUMO+1	43%
S5	1 5406	272.06	0.0072	HOMO-1→LUMO+6	12%
	4.3400	4.5406 273.06	0.0972	HOMO →LUMO+3	11%
				HOMO →LUMO+5	13%

Table S3. TD-DF	C calculations	results of	compound 3	in gas phase.
-----------------	----------------	------------	------------	---------------

Excited State	$\triangle E / eV$	<i>l /</i> nm	Oscillator strength	Transitions	Contribution
S1	3.4919	355.07	0.3485	HOMO →LUMO	82%
S2 3.6946	2 6046	46 335.58	0.0421	HOMO-1→LUMO	48%
	3.0940		0.0431	HOMO→LUMO+1	29%
				HOMO-3→LUMO	23%
S3	3.9734	.9734 312.03	0.0212	HOMO-2→LUMO	13%
				HOMO-1→LUMO+2	14%

				HOMO →LUMO+2	24%
				HOMO-3→LUMO	15%
S4	4.1197	300.95	0.0551	HOMO-2→LUMO	44%
				HOMO-2→LUMO+1	16%
				HOMO-1→LUMO	16%
S5	4.2242	293.51	0.1660	HOMO-1→LUMO+1	38%
				HOMO →LUMO+1	18%

Excited State	$\triangle E / eV$	<i>l</i> / nm	Oscillator strength	Transitions	Contribution
S 1	3.5104	353.19	0.3996	HOMO →LUMO	78%
S2	3.7052	334.63	0.0487	HOMO-1→LUMO HOMO →LUMO+1	48% 25%
	2.051.6	9716 312.18	0.0250	HOMO-4→LUMO HOMO-1→LUMO	26% 10%
S3	3.9716		0.0270	HOMO-1→LUMO+3 HOM0 →LUMO+3	14% 16%
				HOMO-3→LUMO	28%
S 4	1 1001	201.01	0.0752	HOMO-3→LUMO+1	11%
54	4.1081	.1081 301.81	0.0732	HOMO-2→LUMO	28%
				HOMO-2→LUMO+1	12%
S5	4.1785	296.72	0.7321	HOMO →LUMO+2	67%

Table S4. TD-DFT calculations results of compound 4 in gas phase.

Excited State	$\triangle E / eV$	<i>l</i> / nm	Oscillator strength	Transitions	Contribution
C 1	2 5176	240.49	0 1052	HOMO →LUMO	73%
51	3.3470	349.48	0.1932	HOMO →LUMO+1	10%
52	2 7227	222.05	0.2562	HOMO-1→LUMO	52%
52	3.7227	333.03	0.3303	HOMO →LUMO+1	26%
				HOMO-4→LUMO	26%
		317.68	0.0523	HOMO-1→LUMO	12%
S3	3.9027			HOMO-1→LUMO+1	10%
				HOMO-1→LUMO+3	11%
				HOMO →LUMO+3	11%
				HOMO-3→LUMO	29%
C 4	4 1 1 4 1	201.20	0.0(29	HOMO-3→LUMO+1	12%
54	4.1141	301.36	0.0638	HOMO-2→LUMO	30%
				HOMO-2→LUMO+1	12%
S5	4.1833	296.38	0.9432	HOMO →LUMO+2	68%

¹H NMR spectrum (500 MHz, CDCl₃) of **2**

DFT B3LYP/6-31G(d), gas phase, S_0 E(total): -1807.935273 hartree Imaginary Freq = 0 Dipole Moment = 0.028826 Debye

Symbol	X / Å	Y / Å	Z / Å
С	1.0263	-2.6644	2.059
С	1.985	-1.8733	1.4297

С	1.6058	-0.801	0.6105
С	0.2226	-0.5358	0.4196
С	-0.7438	-1.3471	1.0675
С	-0.3288	-2.4067	1.8862
С	2.5764	0.0525	-0.0696
С	-0.22	0.5374	-0.4213
С	0.7464	1.3486	-1.0693
С	2.1403	1.0792	-0.868
С	0.3314	2.4082	-1.888
Н	1.084	3.0342	-2.3904
С	-1.0237	2.6659	-2.0608
С	-1.9824	1.8749	-1.4315
С	-1.6032	0.8026	-0.6122
С	-2.5738	-0.0509	0.068
С	-2.1377	-1.0777	0.8663
Н	-2.855	-1.7279	1.3952
Н	1.3475	-3.5003	2.6989
Н	3.051	-2.1022	1.5886
Н	-1.0814	-3.0327	2.3886
Н	2.8576	1.7295	-1.3968
Н	-1.3449	3.5017	-2.7008
Н	-3.0484	2.1038	-1.5904
Ν	3.9669	-0.2329	0.088
С	4.7628	-0.2067	-1.0885
С	6.0007	0.4682	-1.1451
С	4.332	-0.919	-2.2318
С	6.7793	0.4163	-2.2962
Н	6.3628	1.0371	-0.2741
C	5.1201	-0.9541	-3.375
Н	3.3658	-1.4473	-2.2208
C	6.3525	-0.2926	-3.4229
Н	7.7432	0.9476	-2.319
Н	4.7686	-1.5137	-4.2555
C	4.5693	0.104	1.329
C	5.7689	-0.5337	1.7211
C	3.9728	1.0209	2.221
C	6.3346	-0.2629	2.9606
H	6.2612	-1.2462	1.0408
Ċ	4.5497	1.2735	3.4609
H	3.0392	1.5358	1.9442
С	5.734	0.6385	3.8467
- H	7.269	-0.7685	3,2492
H	4.0664	1.9883	4.1445
С	7.1921	-0.354	-4.6403
	-		

Н	7.8485	-1.2603	-4.6065
Н	6.559	-0.4162	-5.5596
Н	7.8469	0.5483	-4.7224
С	6.3353	0.9038	5.1729
Н	5.9418	0.1727	5.9239
Н	7.4478	0.801	5.1358
Н	6.0871	1.9348	5.5266
Ν	-3.9643	0.2346	-0.0893
С	-4.7602	0.2082	1.0872
С	-5.9987	-0.4656	1.1432
С	-4.3287	0.9193	2.231
С	-6.7772	-0.4139	2.2944
Н	-6.3613	-1.0334	0.2718
С	-5.1168	0.9542	3.3743
Н	-3.3621	1.4468	2.2203
С	-6.3497	0.2937	3.4217
Н	-7.7416	-0.9443	2.3168
Н	-4.7648	1.5128	4.2552
С	-4.5669	-0.1008	-1.3305
С	-5.7661	0.5382	-1.7221
С	-3.9702	-1.0159	-2.2242
С	-6.3319	0.2691	-2.9618
Н	-6.2574	1.251	-1.0414
С	-4.5472	-1.2667	-3.4645
Н	-3.0357	-1.5301	-1.9489
С	-5.7323	-0.6326	-3.8486
Н	-7.2645	0.7774	-3.2512
Н	-4.062	-1.9783	-4.1502
С	-7.1893	0.3549	4.6391
Н	-7.845	1.2617	4.606
Н	-7.8447	-0.5469	4.7206
Н	-6.5561	0.416	5.5584
С	-6.3517	-0.9182	-5.1622
Н	-7.1125	-1.7327	-5.0575
Н	-6.8653	-0.0114	-5.5668
Н	-5.5845	-1.2504	-5.9043

DFT B3LYP/6-31G(d), gas phase, S_0 E(total): -1807.935286 hartree Imaginary Freq = 0 Dipole Moment = 0.114157 Debye

Symbol	X / Å	Y / Å	Z / Å
2			

С	-0.00014	-3.1417	3.5814
С	1.21031	-2.69753	3.05276
С	1.23385	-1.79205	1.97821
С	-0.00005	-1.32799	1.43342
С	-1.234	-1.79202	1.97813
С	-1.21055	-2.6975	3.05268
С	2.45883	-1.29867	1.42547
С	0	-0.41665	0.33482
С	1.23859	0.0242	-0.23353
С	2.48035	-0.42729	0.37211
С	1.2115	0.84399	-1.3719
Н	2.14479	1.16439	-1.8194
С	0.0001	1.23834	-1.93313
С	-1.21135	0.84401	-1.37199
С	-1.23855	0.02423	-0.23361
С	-2.48037	-0.42723	0.37195
С	-2.45893	-1.29861	1.4253
Н	-3.39809	-1.63351	1.85666
Н	3.39796	-1.6336	1.85688
Н	-0.00018	-3.8425	4.41199
Н	2.15101	-3.04948	3.46873
Н	-2.15129	-3.04942	3.46859
Н	0.00014	1.86307	-2.82217
Н	-2.1446	1.16442	-1.81957
Ν	3.7275	0.01794	-0.16479
Ν	-3.72746	0.01803	-0.16505
С	-4.70768	-0.96045	-0.49703
С	-6.03626	-0.85198	-0.06252
С	-4.34506	-2.0755	-1.26967
С	-6.97203	-1.82692	-0.40674
Н	-6.33479	-0.0047	0.54639
С	-5.28564	-3.04938	-1.58891
Н	-3.31976	-2.17353	-1.61337
С	-6.62095	-2.9442	-1.17288
Н	-7.99621	-1.72068	-0.05522
Н	-4.97708	-3.90504	-2.18602
С	-4.08325	1.38896	-0.05492
С	-4.94217	1.98079	-0.999
С	-3.56237	2.19435	0.96682
С	-5.27127	3.32835	-0.90588
Н	-5.34612	1.37759	-1.80604
С	-3.88804	3.54929	1.03428
Η	-2.89916	1.76005	1.70767
С	-4.75145	4.14513	0.11008

Н	-5.93687	3.75986	-1.65092
Н	-3.46441	4.15147	1.83519
С	4.70758	-0.96058	-0.49707
С	6.03622	-0.85233	-0.06251
С	4.34486	-2.07544	-1.26985
С	6.97186	-1.82728	-0.40686
Н	6.33479	-0.00522	0.54661
С	5.28538	-3.04939	-1.58924
Н	3.31953	-2.17336	-1.61351
С	6.62066	-2.9444	-1.17326
Н	7.99604	-1.72124	-0.05524
Н	4.97672	-3.90496	-2.18643
С	4.08335	1.38882	-0.05462
С	4.94245	1.98062	-0.99856
С	3.56236	2.19425	0.96705
С	5.27161	3.32817	-0.90537
Н	5.34647	1.37742	-1.80557
С	3.8881	3.54916	1.03458
Н	2.89901	1.75998	1.70778
С	4.7517	4.14496	0.11052
Н	5.93735	3.75965	-1.65032
Н	3.46437	4.15135	1.83542
С	7.64338	-3.98723	-1.55945
Н	7.22192	-4.9982	-1.5203
Н	8.011	-3.8315	-2.58293
Н	8.51302	-3.95982	-0.89435
С	5.12628	5.60554	0.20468
Н	6.15307	5.73639	0.5722
Н	5.07116	6.09951	-0.77283
Н	4.46295	6.1442	0.88922
С	-5.1259	5.60575	0.20409
Н	-5.06926	6.09998	-0.77321
Н	-6.15319	5.73669	0.57014
Н	-4.46345	6.1441	0.88973
С	-7.64352	-3.98736	-1.55859
Н	-7.22512	-4.99915	-1.50825
Н	-8.51801	-3.95239	-0.90029
Н	-8.00286	-3.83886	-2.58606

DFT B3LYP/6-31G(d), gas phase, S_0 E(total): -1935.314857 hartree Imaginary Freq = 0 Dipole Moment = 0.298436 Debye

Symbol	X / Å	Y / Å	Z / Å
C	1.5689	1.2105	-3.1287
С	2.5032	0.7759	-2.1907
С	2.0934	0.2793	-0.9457
С	0.7036	0.2132	-0.6557
С	-0.2383	0.662	-1.6177
С	0.208	1.1598	-2.8492
С	3.0357	-0.1862	0.0686
С	0.23	-0.3025	0.5949
С	1.1682	-0.7492	1.5598
С	2.5693	-0.6711	1.2643
С	0.7161	-1.2521	2.7875
Н	1.4449	-1.5996	3.5349
С	-0.6473	-1.3119	3.0571
С	-1.5756	-0.8773	2.1151
С	-1.163	-0.3724	0.874
С	-2.1008	0.0913	-0.1235
С	-1.6381	0.5981	-1.3024
Н	-2.3446	0.976	-2.0617
Н	1.9148	1.5984	-4.0988
Н	3.5745	0.8321	-2.442
Н	-0.5245	1.5102	-3.5917
Н	3.2659	-1.0341	2.0388
Н	-0.9968	-1.7094	4.022
Н	-2.6523	-0.9445	2.3416
В	-3.6389	0.0349	0.0825
Ν	4.432	-0.1569	-0.2315
С	5.1829	-1.3154	0.1027
С	6.4188	-1.2423	0.7797
С	4.7078	-2.5868	-0.2949
С	7.1531	-2.3961	1.0319
Н	6.8144	-0.2685	1.1088
С	5.4519	-3.7289	-0.0284
Н	3.7416	-2.6762	-0.8157
С	6.6828	-3.6506	0.633
Н	8.1163	-2.317	1.559
Н	5.0663	-4.7101	-0.3453
С	5.0797	1.1064	-0.2207
С	6.2964	1.2763	-0.9212
С	4.512	2.2277	0.4218
С	6.9072	2.5226	-0.9743
Н	6.7654	0.4171	-1.4258
С	5.1342	3.4694	0.351

Н	3.5647	2.1286	0.9751
С	6.3368	3.6337	-0.3426
Н	7.853	2.6369	-1.526
Н	4.6713	4.3332	0.8525
С	-4.3534	-1.2638	0.537
С	-5.1409	-1.296	1.704
С	-4.2284	-2.4381	-0.2274
С	-5.7703	-2.4821	2.0952
С	-4.8719	-3.6146	0.1742
С	-5.6415	-3.6485	1.3374
Н	-6.3812	-2.4973	3.0109
Н	-4.7656	-4.5233	-0.4378
С	-4.4335	1.3229	-0.2636
С	-5.259	1.3779	-1.4007
С	-4.3066	2.4674	0.5428
С	-5.9515	2.5534	-1.7081
С	-5.0082	3.6349	0.2238
С	-5.836	3.6866	-0.8992
Н	-6.5966	2.5868	-2.5993
Н	-4.9007	4.5223	0.8659
С	7.0033	4.9541	-0.3973
Н	7.5608	5.0809	-1.3579
Н	6.2587	5.7832	-0.3087
Н	7.7339	5.049	0.4456
С	7.4753	-4.8733	0.8933
Н	8.1214	-5.1055	0.009
Н	8.1374	-4.741	1.7842
Н	6.8071	-5.7507	1.0766
С	-6.5896	4.9198	-1.2233
Н	-6.7185	5.0307	-2.3282
Н	-7.6057	4.8792	-0.7553
Н	-6.0622	5.8259	-0.8359
С	-5.3946	0.216	-2.3127
Н	-4.5079	0.1608	-2.9948
Н	-5.4523	-0.7417	-1.7349
Н	-6.3137	0.3024	-2.9428
С	-3.4444	2.4785	1.7511
Н	-4.0752	2.5592	2.6723
Н	-2.8297	1.5453	1.827
Н	-2.7502	3.3551	1.7241
С	-6.3028	-4.9012	1.7695
Н	-7.2693	-4.6843	2.2876
Н	-6.5109	-5.5675	0.8965
Н	-5.6404	-5.4549	2.4823

С	-5.3237	-0.0944	2.5548
Н	-4.3727	0.1577	3.0897
Н	-5.6152	0.7883	1.9303
Н	-6.1194	-0.2593	3.3225
С	-3.4287	-2.4896	-1.4773
Н	-2.4871	-3.0689	-1.3023
Н	-4.007	-2.9984	-2.2885
Н	-3.1499	-1.4668	-1.8345

DFT B3LYP/6-31G(d), gas phase, S_0 E(total): -2318.794595 hartree Imaginary Freq = 0 Dipole Moment = 0.796406 Debye

Symbol	X / Å	Y / Å	Z / Å
С	-1.884	-3.0484	1.3034
С	-0.5258	-2.7483	1.2873
С	-0.0838	-1.5205	0.7759
С	-1.0264	-0.5866	0.2761
С	-2.4144	-0.8965	0.3018
С	-2.8168	-2.1369	0.8165
С	1.3124	-1.1938	0.743
С	-0.5629	0.6642	-0.2483
С	0.8215	0.9851	-0.2709
С	1.7682	0.0027	0.2502
С	1.2213	2.2282	-0.78
Н	2.2879	2.5029	-0.8041
С	0.2826	3.135	-1.268
С	-1.0728	2.8255	-1.2591
С	-1.5093	1.5948	-0.7506
С	-2.9031	1.2487	-0.7294
С	-3.3572	0.0698	-0.2149
Н	-3.6125	1.9839	-1.1475
Н	2.0124	-1.9443	1.1474
Н	-2.2259	-4.0132	1.7077
Н	0.2065	-3.4714	1.6764
Н	-3.89	-2.3872	0.8494
Н	0.6205	4.1042	-1.6652
Н	-1.8086	3.5435	-1.6515
Ν	3.1584	0.3309	0.2628
В	-4.8916	-0.1698	-0.208
С	3.865	0.0927	1.4692
С	5.1341	-0.5251	1.4891

С	3.3085	0.5239	2.6961
С	5.8203	-0.6887	2.6866
Н	5.5943	-0.8787	0.5528
С	4.0056	0.3501	3.8842
Н	2.3144	0.9976	2.7145
С	5.2702	-0.2548	3.8993
Н	6.8132	-1.165	2.6779
Н	3.5532	0.6892	4.8294
С	3.8566	0.3005	-0.9703
С	5.0666	1.0185	-1.1135
С	3.3452	-0.3836	-2.0949
С	5.7261	1.0485	-2.3351
Н	5.4933	1.5561	-0.2521
С	4.0153	-0.3397	-3.3118
Н	2.4027	-0.9489	-2.0181
С	5.2131	0.3728	-3.4511
Н	6.6697	1.6092	-2.4249
Н	3.593	-0.8714	-4.1789
С	5.9141	0.4108	-4.7319
С	5.9946	-0.738	-5.5326
С	6.516	1.5965	-5.1781
С	6.6649	-0.6998	-6.7533
Н	5.5315	-1.6753	-5.1893
С	7.1835	1.6303	-6.4006
Н	6.4524	2.5057	-4.5616
С	7.2602	0.4833	-7.1904
Н	6.7249	-1.6068	-7.3726
Н	7.6497	2.5659	-6.7431
Н	7.788	0.5118	-8.1545
С	5.9974	-0.4299	5.1539
С	5.9838	0.5776	6.1296
С	6.7189	-1.6073	5.3995
С	6.6791	0.4092	7.3251
Н	5.4268	1.5083	5.9444
С	7.411	-1.772	6.5974
Н	6.7307	-2.4072	4.6439
С	7.3935	-0.765	7.5622
Н	6.6647	1.2064	8.0828
Н	7.9716	-2.7003	6.7817
Н	7.9409	-0.8964	8.5067
С	-5.6476	0.1355	-1.5289
С	-5.4627	-0.6876	-2.6533
С	-6.4957	1.2524	-1.6332
С	-6.1296	-0.4049	-3.8503

С	-7.1529	1.5235	-2.8375
С	-6.9797	0.6979	-3.9512
Н	-5.9768	-1.0597	-4.7215
Н	-7.8161	2.3991	-2.9095
С	-5.6404	-0.6176	1.0736
С	-5.5739	0.1702	2.2372
С	-6.4018	-1.8019	1.1002
С	-6.2483	-0.2256	3.3981
С	-7.0627	-2.1869	2.271
С	-6.9917	-1.4059	3.4271
Н	-6.1877	0.4046	4.2985
Н	-7.6529	-3.1162	2.2821
С	-7.6858	-1.8314	4.6642
Н	-7.9387	-0.9518	5.3058
Н	-8.631	-2.3779	4.424
Н	-7.0259	-2.5167	5.2543
С	-4.8061	1.4398	2.2928
Н	-3.8841	1.2995	2.9119
Н	-4.4958	1.7826	1.2742
Н	-5.4228	2.247	2.7613
С	-6.5234	-2.6777	-0.0912
Н	-6.7974	-2.0755	-0.9949
Н	-5.5526	-3.1952	-0.3003
Н	-7.3073	-3.4601	0.06
С	-6.6924	2.1811	-0.4935
Н	-5.8234	2.8839	-0.4196
Н	-7.6215	2.7887	-0.6234
Н	-6.7714	1.6188	0.4719
С	-4.5743	-1.876	-2.6124
Н	-3.9918	-1.9219	-1.6569
Н	-5.1814	-2.8125	-2.6986
Н	-3.8501	-1.8485	-3.4644
С	-7.6962	0.9834	-5.2156
Н	-8.7018	0.4916	-5.2028
Н	-7.8471	2.0828	-5.3501
Н	-7.1278	0.5939	-6.0957

DFT B3LYP/6-31G(d), gas phase, S_0 E(total): -2318.794324 hartree Imaginary Freq = 0 Dipole Moment = 0.878698 Debye

	Symbol	X / Å	Y / Å	Z / Å
--	--------	-------	-------	-------

С	-0.6857	-2.0768	0.2409
С	0.4506	-1.2961	0.4342
С	0.3905	0.0965	0.291
С	-0.8502	0.7034	-0.0484
С	-2.0086	-0.1008	-0.2435
С	-1.8999	-1.4906	-0.0968
С	1.5562	0.9546	0.4919
С	-0.9432	2.1265	-0.1892
С	0.1985	2.9397	0.0202
С	1.4438	2.3154	0.358
С	0.092	4.3308	-0.1173
Н	0.978	4.9618	0.0486
С	-1.125	4.9127	-0.4628
С	-2.2522	4.1234	-0.6747
С	-2.1772	2.7303	-0.5403
С	-3.3191	1.887	-0.7537
С	-3.2593	0.5331	-0.5984
Н	-4.2639	2.3751	-1.0484
Н	-0.6211	-3.1692	0.3594
Н	1.3981	-1.7908	0.7001
Н	-2.7919	-2.1232	-0.2362
Н	-1.1959	6.0057	-0.5697
Н	-3.2094	4.5906	-0.9509
В	-4.5716	-0.2705	-0.8131
С	-5.3779	0.0516	-2.0999
С	-4.8758	-0.3199	-3.3592
С	-6.5987	0.7463	-2.0302
С	-5.5927	-0.0146	-4.5212
С	-7.3021	1.0468	-3.201
С	-6.8083	0.6684	-4.452
Н	-5.1894	-0.3163	-5.4997
Н	-8.2589	1.5872	-3.1365
С	-5.0903	-1.2819	0.2413
С	-5.3391	-0.8568	1.5591
С	-5.331	-2.6285	-0.0928
С	-5.8106	-1.7623	2.5166
С	-5.794	-3.5221	0.8785
С	-6.0364	-3.0993	2.1876
Н	-6.0032	-1.4119	3.5421
Н	-5.9758	-4.5735	0.6078
С	-6.5145	-4.0583	3.21
Н	-7.0957	-3.5364	4.0095
Н	-7.1681	-4.8398	2.7499

Н	-5.6417	-4.57	3.6892
С	-5.1231	0.5464	1.9937
Н	-4.1945	0.6124	2.6153
Н	-5.0111	1.2383	1.1218
Н	-5.9847	0.9001	2.6132
С	-5.0985	-3.1462	-1.4636
Н	-5.5829	-2.4801	-2.2225
Н	-4.0022	-3.1886	-1.6881
Н	-5.5163	-4.1762	-1.5834
С	-7.1555	1.2006	-0.7326
Н	-7.0045	0.4253	0.0614
Н	-6.6431	2.1415	-0.406
Н	-8.2501	1.411	-0.8147
С	-3.5914	-1.0499	-3.5027
Н	-3.0407	-1.1099	-2.5293
Н	-3.7808	-2.0926	-3.8636
Н	-2.9338	-0.5359	-4.2473
С	-7.5565	1.0019	-5.6859
Н	-8.6583	1.0022	-5.4973
Н	-7.263	2.0205	-6.0459
Н	-7.3369	0.2673	-6.4993
Н	2.3117	2.9768	0.5183
N	2.796	0.3482	0.8615
С	3.4937	0.9224	1.9543
C	4.884	1.1642	1.9164
С	2.791	1.2276	3.1435
C	5.5415	1.6759	3.0288
Н	5.4613	0.9437	1.0045
С	3.4623	1.7413	4.2449
Н	1.7036	1.0613	3.1995
С	4.8446	1.9712	4.2073
Н	6.6282	1.8481	2.9804
Н	2.8963	1.9757	5.1602
C	5.5426	2.5086	5.3724
C	5.207	2.076	6.6637
C	6.5574	3.464	5.2155
C	5.8748	2.589	7.7737
H	4.4173	1.3215	6.7978
Ċ	7.221	3.9755	6.3287
H	6.8241	3.8156	4.2075
С	6.8822	3.5395	7.6094
H	5.6063	2.2411	8.782
H	8.0135	4.7265	6.1953
H	7.4075	3.9437	8.4866

С	3.52	-0.3426	-0.1419
С	4.4817	-1.3131	0.2236
С	3.2661	-0.1337	-1.5153
С	5.1512	-2.0415	-0.7507
Н	4.7058	-1.4932	1.2869
С	3.9417	-0.8744	-2.4779
Н	2.5202	0.612	-1.8336
С	4.8929	-1.8356	-2.1131
Н	5.9	-2.7892	-0.4457
Н	3.7206	-0.7028	-3.5431
С	5.6019	-2.6074	-3.1305
С	6.0346	-1.9936	-4.3152
С	5.8594	-3.9724	-2.9363
С	6.7118	-2.7315	-5.2837
Н	5.8437	-0.9218	-4.475
С	6.5352	-4.7066	-3.9086
Н	5.5179	-4.4658	-2.014
С	6.9633	-4.0887	-5.0834
Н	7.0496	-2.2403	-6.2081
Н	6.7297	-5.7773	-3.7482
Н	7.4972	-4.6696	-5.8492