Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Molybdenum-Catalyzed Deoxygenative Heterocyclization of 2-Nitroazobenzenes: A Novel Strategy for Catalytic Synthesis of 2-Aryl-2*H*-benzo[*d*][1,2,3]triazoles

Quanyun Liu, Haoke Chu,* Junju Mai, Haobing Yang, Mei-Hua Shen and Hua-Dong Xu*

School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China

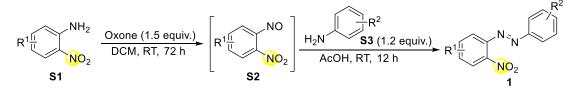
E-mail: chu@cczu.edu.cn *E-mail*: hdxu@cczu.edu.cn

Contents

1. General information	S2
2. Synthesis of the catalyst and starting materials	S2
3. General procedure	
4. Characterization of products	
5. Gram-scale synthesis of 2n and 2y	S10
6. Mechanistic study	S12
7. References	S13
8. NMR spectra of products	S14

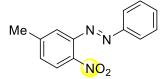
1. General information

All reactions were carried out under an atmosphere of nitrogen in flame-dried sealed tube with magnetic stirring, and monitored by thin layer chromatography (TLC) using silica gel plates. Toluene was freshly distilled from CaH₂. Flash column chromatography was performed on silica gel 60 (particle size 300-400 mesh ASTM) and eluted with petroleum ether/ethyl acetate. ¹H NMR spectra and ¹³C NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃ and ¹⁹F NMR spectra were recorded on a Bruker 300 MHz spectrometer in CDCl₃. All signals are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 ppm for ¹H NMR and 77.0 ppm for ¹³C NMR). The data are reported as follows: chemical shift (ppm; br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets), coupling constant (Hz), and integration.

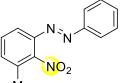

2. Synthesis of the catalyst and starting materials

2.1 Synthesis of MoO₂Cl₂(DMF)₂^[1]

Na₂MoO₄•2H₂O $\xrightarrow{\text{con. HCI}}$ $\xrightarrow{\text{DMF (2.1 equiv.)}}$ MoO₂Cl₂(DMF)₂

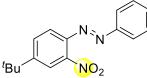

Concentrated HCl (8.3 mL, ca. 100 mmol) was added to a solution of Na₂MoO₄·2H₂O (2.42 g, 10 mmol) in distilled water (5 mL). The mixture was stirred at room temperature for 30 min resulting in a colorless solution with precipited NaCl. Et₂O (15 mL) was added and the mixture vigorously stirred for 5 min. The upper Et₂O layer was separated and dried over MgSO₄. The solution was collected by filtration and the MgSO₄ solid was washed with Et₂O (3×3 mL). The resulting solution was treated with a solution of DMF (1.54 g, 21 mmol) in Et₂O (10 mL) to result a suspension. The mixture was stirred for 5 min and the white solid filtered, washed with Et₂O (3×3 mL) and dried under vacuum to give the desired complex MoO₂Cl₂(DMF)₂ (3.15 g, 91% yield).

2.2 Synthesis of the starting materials 2-nitroazobenzenes (1)^[2]

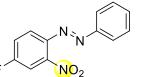

Oxone (7.5 mmol in 12 mL H₂O) was added dropwise to a solution of 2nitroaniline (S1, 5 mmol) in DCM (35 mL), and the mixture was stirred at room temperature for 72 h. After completion of the reaction (TLC monitoring), the organic layer was separated and washed twice by distilled water to remove the residual inorganic salts. The solvent was evaporated under reduced pressure to give the crude nitroso intermediate S2 without further purification. The freshly-prepared crude S2 was all dissolved by AcOH (15 mL) followed by the addition of aniline (S3, 6 mmol). The solution was stirred at room temperature for 12 h, and neutralized to pH \approx 7 by aqueous solution of NaHCO₃ dropped carefully. After extracted with ethyl acetate, the solvent was removed under reduced pressure. The product was purified by column chromatography to give substituted 2-nitroazobenzene **1** as an orange or red solid.

5-Methyl-2-nitroazobenzene (1b')

¹H NMR (400 MHz, CDCl₃) δ 7.96-7.92 (m, 2H), 7.89-7.86 (m, 1H), 7.54-7.52 (m, 3H), 7.37-7.33 (m, 2H), 2.47(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 145.9, 144.8, 144.6, 132.1, 130.7, 129.2, 124.3, 123.5, 118.5, 21.5.


3-Methyl-2-nitroazobenzene (1c')

Мe


¹H NMR (400 MHz, CDCl₃) δ 7.92-7.87 (m, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.52-7.44 (m, 4H), 7.38 (d, J = 7.6 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 150.6, 142.8, 133.3, 132.2, 130.2 129.1, 123.5, 114.5, 16.7.

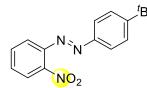
4-tert-Butyl-2-nitroazobenzene (1e)

¹H NMR (400 MHz, CDCl₃) *δ* 7.94-7.90 (m, 3H), 7.69-7.62 (m, 2H), 7.53-7.49 (m, 3H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) *δ* 154.9, 152.3, 147.6, 142.9, 132.0, 130.0, 129.1, 123.4, 120.7, 117.9, 35.2, 30.9.

4-Fluoro-2-nitroazobenzene (1h)

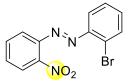
¹H NMR (400 MHz, CDCl₃) δ 7.92-7.90 (m, 2H), 7.78-7.75 (m, 1H), 7.62-7.61 (m, 1H), 7.53-7.52 (m, 3H), 7.39-7.35 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, *J* = 254.0 Hz), 152.1, 148.3 (d, *J* = 7.0 Hz), 141.5, 132.4, 129.2, 123.6, 120.2 (d, *J* = 3.0 Hz), 120.1 (d, *J* = 12.0 Hz), 111.5 (d, *J* = 27.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ - 106.5.

4-Trifluoromethyl-2-nitroazobenzene (1i)

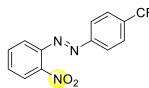

 NO_2

F₂C

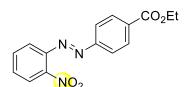
¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.96-7.92 (m, 3H), 7.76 (d, J = 8.3 Hz, 1H),


7.59-7.52 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 147.5, 146.8, 133.1, 132.1 (q, J = 34.0 Hz), 129.9 (q, J = 3.0 Hz), 129.3, 123.9, 121.7 (q, J = 4.0 Hz), 119.6; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.7.

4'-tert-Butyl-2-nitroazobenzene (1p)

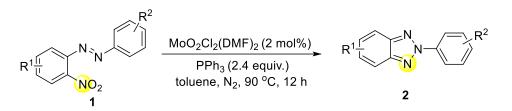

¹H NMR (400 MHz, CDCl₃) δ 7.92-7.86 (m, 3H), 7.67-7.63 (m, 2H), 7.55-7.51 (m, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 150.4, 147.3, 145.6, 133.0, 130.1, 126.2, 124.0, 123.4, 118.4, 35.1, 31.1.

2'-Bromo-2-nitroazobenzene (1r)



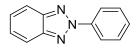
¹H NMR (400 MHz, CDCl₃) δ 7.96-7.94 (m, 1H), 7.80-7.67 (m, 4H), 7.62-7.58 (m, 1H), 7.42-7.35 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 149.4, 145.3, 133.9, 133.3, 133.2, 131.0, 128.2, 126.6, 124.1, 119.0, 118.5.

4'-Trifluoromethyl-2-nitroazobenzene (1v)

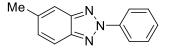


¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.0 Hz, 1H), 7.77 (d, J = 8.4 Hz, 2H), 7.71-7.59 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.9 (d, J = 1.0 Hz), 147.6, 145.0, 133.3 (q, J = 33.0 Hz), 133.2, 131.2, 126.4 (q, J = 4.0 Hz), 124.1, 123.7, 123.6 (q, J = 271.0 Hz), 118.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.7. **4'-Ethoxycarbonyl-2-nitroazobenzene (1w)**

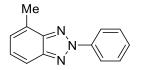
¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.4 Hz, 2H), 7.95-7.93 (m, 3H), 7.70-7.58 (m, 3H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 154.4, 147.6, 145.0, 133.1, 133.0, 131.0, 130.5, 124.0, 123.2, 118.1, 61.3, 14.2.


3. General procedure

Under nitrogen atmosphere, a sealed tube was charged with substituted 2nitroazobenzene 1 (0.2 mmol, 1.0 equiv.), $MoO_2Cl_2(DMF)_2$ (0.004 mmol, 2 mol%), PPh₃ (0.15 mmol, 1.5 equiv.) and 2.0 mL dry toluene were successively added. The reaction mixture was kept stirring at 90 °C for 12 h under nitrogen atmosphere. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to give the desired product 2.

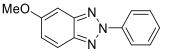

4. Characterization of products

2-Phenyl-2*H*-benzo[*d*][1,2,3]triazole (2a)

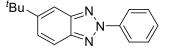

Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 100-102 °C. Yield: 95% (37.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 7.8 Hz, 2H), 7.96-7.92 (m, 2H), 7.56 (t, J = 8.1 Hz, 2H), 7.47-7.40 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.9, 140.2, 129.4, 128.9, 127.1, 120.5, 118.3.

5-Methyl-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2b)

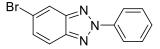
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 93 -95 °C. Yield: 82% (34.2 mg, from **1b**), 80% (33.6 mg, from **1b**'). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 7.9 Hz, 2H), 7.24 (d, J = 8.8 Hz, 1H), 7.58 (s, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 143.6, 140.3, 137.3, 130.1, 129.3, 128.6, 120.3, 117.7, 116.4, 22.1.


4-Methyl-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2c)

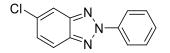
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 72-74 °C. Yield: 95% (39.7 mg, from 1c), 82% (34.3 mg, from 1c'). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 2H),


7.43 (t, J = 7.3 Hz, 1H), 7.30 (t, J = 7.0 Hz, 1H), 7.13 (d, J = 6.7 Hz, 1H), 2.72 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 144.8, 140.3, 129.2, 129.0, 128.6, 127.3, 126.0, 120.4, 115.4, 17.1. HRMS-ESI⁺ (m/z): found [M+H]⁺ 210.1028, calc'd [C₁₃H₁₂N₃]⁺ requires 210.1026.

5-Methoxyl-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2d)

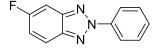

Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 100/1. White solid. Mp: 66-67 °C. Yield: 90% (40.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 7.7 Hz, 2H), 7.77 (d, *J* = 8.9 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 2H), 7.39 (t, *J* = 7.0 Hz, 1H), 7.09-7.07 (m, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.2, 145.8, 141.1, 140.2, 129.2, 128.3, 122.4, 120.0, 119.0, 94.5, 55.4.

5-tert-Butyl-2-phenyl-2H-benzo[d][1,2,3]triazole (2e)



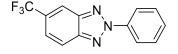
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 73-74 °C. Yield: 42% (21.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.0 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 3H), 7.43 (t, *J* = 7.3 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 145.4, 143.5, 140.4, 129.4, 128.6, 127.0, 120.4, 117.6, 112.7, 35.3, 31.0.

5-Bromo-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2f)

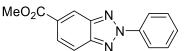


Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 118-121 °C. Yield: 72% (39.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 6.7 Hz, 2H), 8.08 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.52-7.44 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 143.5, 139.9, 130.9, 129.4, 129.2, 120.8, 120.7, 120.5, 119.6. **5-Chrolo-2-phenyl-2***H***-benzo[***d***][1,2,3]triazole (2g)**

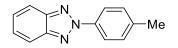
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 110-111 °C. Yield: 89% (41.2 mg, from 1g), 54% (24.6 mg, from 1g'). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 2H), 7.90 (s, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.54 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.34 (d, J = 9.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 143.4, 140.0, 132.9, 129.4, 129.2, 128.7, 120.5, 119.5, 117.3.


5-Fluoro-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2h)

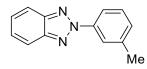
Eluent for column chromatographic purification: petroleum ether. White solid. Mp:

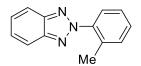

127-129 °C. Yield: 87% (36.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 2H), 7.90-7.87 (m, 1H), 7.55-7.49 (m, 3H), 7.44 (t, J = 7.4 Hz, 1H), 7.20 (td, J = 9.2 Hz, J = 2.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J = 245 Hz), 144.8 (d, J = 14.0 Hz), 142.1, 140.1, 129.4, 129.0, 120.4, 120.1 (d, J = 11.0 Hz), 118.7 (d, J = 29.0 Hz), 101.6 (d, J = 25.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -111.7.

5-Trifluoromethyl-2-phenyl-2*H*-benzo[*d*][1,2,3]triazole (2i)



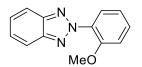
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 91-92 °C. Yield: 59% (31.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, *J* = 7.9 Hz, 2H), 8.29 (s, 1H), 8.05 (d, *J* = 9.0 Hz, 1H), 7.61-7.56 (m, 3H), 7.51 (t, *J* = 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 143.7, 139.9, 129.6, 129.5, 129.2 (q, *J* = 32.0 Hz), 125.4 (d, *J* = 271 Hz), 123.1 (d, *J* = 3.0 Hz), 120.8, 119.6, 117.1 (q, *J* = 5.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.5.


Methyl 2-phenyl-2*H*-benzo[*d*][1,2,3]triazole-5-carboxylate (2j)


Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 100/1. White solid. Mp: 124-126 °C. Yield: 49% (24.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.36 (d, *J* = 7.6 Hz, 2H), 8.06-8.03 (m, 1H), 7.95-7.93 (m, 1H), 7.56 (t, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.3 Hz, 1H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 146.7, 144.4, 140.0, 129.5, 129.5, 128.9, 127.0, 122.0, 120.7, 118.3, 52.4. **2-(***p***-Tolyl)-2***H***-benzo[***d***][1,2,3]triazole (2k)**

Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 106-108 °C. Yield: 73% (30.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.2 Hz, 2H), 7.94-7.92 (m, 2H), 7.42-7.40 (m, 2H), 7.35 (d, J = 8.1 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 139.1, 138.1, 130.0, 127.0, 120.4, 118.2, 21.2. **2-(***m***-Tolyl)-2***H***-benzo[***d***][1,2,3]triazole (2I)**

Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 96-97 °C. Yield: 92% (38.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.10-8.06 (m, 2H), 7.86-7.84 (m, 2H), 7.37-7.32 (m, 3H), 7.18 (d, *J* = 7.0 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.8, 140.1, 139.5, 129.7, 129.1, 127.0, 121.0, 118.2, 117.7, 21.4. **2-(***o***-Tolyl)-2***H***-benzo[***d***][1,2,3]triazole (2m)**

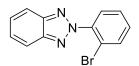


Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 93-94 °C. Yield: 98% (41.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.96 (m, 2H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.46-7.37 (m, 5H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 140.1, 133.2, 131.6, 129.4, 126.8, 126.5, 125.9, 118.3, 18.8.

2-(4-Methoxyphenyl)-2*H*-benzo[*d*][1,2,3]triazole (2n)

Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 120/1. White solid. Mp: 104-106 °C. Yield: 79% (35.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.0 Hz, 2H), 7.93-7.91 (m, 2H), 7.42-7.39 (m, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 144.8, 133.9, 126.8, 121.9, 118.1, 114.4, 55.6.

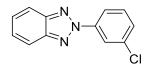
2-(2-Methoxyphenyl)-2*H*-benzo[*d*][1,2,3]triazole (20)



Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 150/1. White solid. Mp: 92-94 °C. Yield: 83% (37.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.95 (m, 2H), 7.66 (dd, J = 7.7 Hz, 1.6 Hz, 1H), 7.52-7.47 (m, 1H), 7.44-7.41 (m, 2H), 7.14-7.09 (m, 2H), 3.86 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 144.5, 130.9, 129.9, 127.4, 126.6, 120.4, 118.2, 112.4, 56.0.

2-(4-*tert*-Butylphenyl)-2*H*-benzo[*d*][1,2,3]triazole (2p)

Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 109-111 °C. Yield: 62% (31.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 2H), 7.95-7.93 (m, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.42-7.40 (m, 2H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 144.9, 138.0, 127.0, 126.3, 120.2, 118.3, 34.8, 31.3. **2-(4-Bromophenyl)-2***H***-benzo[***d***][1,2,3]triazole (2q)**


Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 165-167 °C. Yield: 65% (35.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.8 Hz, 2H), 7.92-7.90 (m, 2H), 7.67 (d, J = 8.9 Hz, 2H), 7.44-7.41 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 139.2, 132.5, 127.4, 122.8, 121.9, 118.3.

Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 100-103 °C. Yield: 94% (51.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 7.8 Hz, 1H), 7.53-7.40 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.2, 134.0, 131.1, 128.3, 128.0, 127.2, 118.7, 118.4. **2-(4-Chlorophenyl)-2H-benzo**[d][1,2,3]triazole (2s)

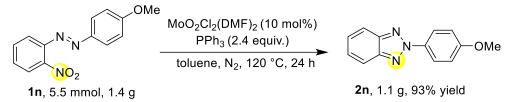
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 159-160 °C. Yield: 76% (35.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.8 Hz, 2H), 7.92-7.90(m, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.43-7.40 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 138.7, 134.7, 129.5, 127.4, 121.6, 118.3.

2-(3-Chlorophenyl)-2*H*-benzo[*d*][1,2,3]triazole (2t)

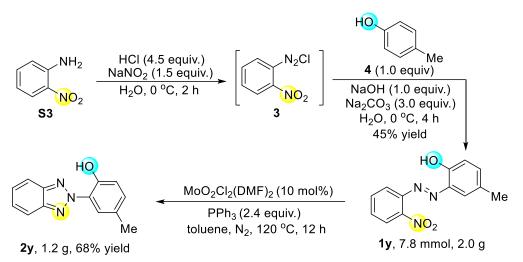
Eluent for column chromatographic purification: petroleum ether. White solid. Mp: 139-140 °C. Yield: 70% (32.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.26 (d, J = 8.0 Hz, 1H), 7.93-7.91 (m, 2H), 7.50-7.42 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 141.0, 135.2, 130.4, 128.8, 127.5, 120.7, 118.4, 118.3.

2-(4-Fluorophenyl)-2*H*-benzo[*d*][1,2,3]triazole (2u)

Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 120/1. White solid. Mp: 111-113 °C. Yield: 82% (35.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.24 (m, 2H), 7.85-7.83 (m, 2H), 7.35-7.33 (m, 2H), 7.16 (t, J = 8.2 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.6 (d, J = 248 Hz), 144.8, 136.4, 127.1, 122.2 (d, J = 9.0 Hz), 118.2, 116.1 (d, J = 23.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -112.2. **2-(4-Trifluoromethylphenyl)-2***H***-benzo[***d***][1,2,3]triazole (2v)**

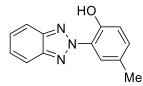

Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 150/1. White solid. Mp: 151-154 °C. Yield: 58% (30.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 8.4 Hz, 2H), 7.94-7.92 (m, 2H), 7.82 (d, J = 8.5 Hz, 2H), 7.46-7.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.2, 142.5, 130.6 (d, J = 33.0 Hz), 127.8, 126.7 (q, J = 4.0 Hz), 126.4 (q, J = 271 Hz), 120.6, 118.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.4. Ethyl 4-(2*H*-benzo[*d*][1,2,3]triazol-2-yl)benzoate (2w)

Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 20/1. White solid. Mp: 155-156 °C. Yield: 69% (36.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.8 Hz, 2H), 8.22 (d, J = 8.8 Hz, 2H), 7.94-7.91 (m, 2H), 7.44-7.42 (m, 2H), 4.42 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 145.1, 143.0, 130.8, 130.4, 127.6, 120.0, 118.4, 61.2, 14.2.


2-(4-Cyanphenyl)-2*H*-benzo[*d*][1,2,3]triazole (2x)

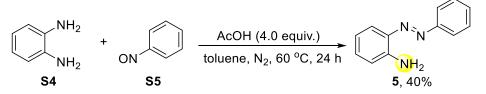
Eluent for column chromatographic purification: petroleum ether/ethyl acetate = 20/1. White solid. Mp: 216-218 °C. Yield: 76% (33.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 8.9 Hz, 2H), 7.93-7.89 (m, 2H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.47-7.44 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 142.9, 133.5, 128.1, 120.8, 118.5, 118.0, 112.3.

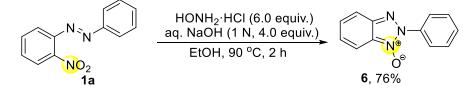
5. Gram-scale synthesis of 2n and 2y


Under nitrogen atmosphere, a sealed tube was charged with substituted 2nitroazobenzene **1n** (1.4 g, 5.5 mmol, 1.0 equiv.), MoO₂Cl₂(DMF)₂ (0.55 mmol, 10 mol%), PPh₃ (13.2 mmol, 2.4 equiv.) and 55 mL dry toluene were successively added. The reaction mixture was kept stirring at 120 °C for 12 h under nitrogen atmosphere. After completion of the reaction (monitored by TLC), the mixture was washed with aq. H₂O₂ to oxidize the residual PPh₃, and concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to give the desired product **2n** in 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.0 Hz, 2H), 7.93-7.91 (m, 2H), 7.42-7.39 (m, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1, 144.8, 133.9, 126.8, 121.9, 118.1, 114.4, 55.6.

2-Nitroaniline (**S3**, 5.5 g, 40 mmol) and concentrated hydrochloric acid (15 mL) was mixed to in a 500 mL beaker and the mixture was stirred and heated at 70 °C to form a suspension. The beaker was cooled to 0 °C for 15 min, and a solution of NaNO₂ (4.1 g, 60 mmol) in 8 mL of distilled water was added dropwise to the suspension with vigorous stirring. The reaction was kept at 0 °C for 2 h to give 2-nitrophenyldiazonium chloride (**3**). A small amount of urea was added to eliminate the redundant HNO₂. The mixture was then added slowly to a solution of *p*-cresol (**4**, 4.3 g, 40 mmol), NaOH (1.6 g, 40 mmol) and Na₂CO₃ (12.7 g, 120 mmol) in 120 mL of distilled water, and the solution began to turn red and a red solid precipitated. With stirred for 4 h, the suspension was filtered and the red solid was washed with water and dried. The crude product was recrystallized from ^{*i*}PrOH and washed with Et₂O twice to afford 4.6 g of pure **1y** in 45% yield.^[3]

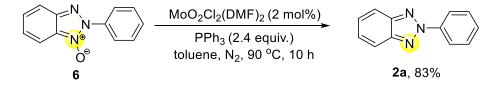
Under nitrogen atmosphere, a sealed tube was charged with 1y (7.8 mmol, 1.0 equiv.), MoO₂Cl₂(DMF)₂ (0.78 mmol, 10 mol%), PPh₃ (18.7 mmol, 2.4 equiv.) and 78 mL dry toluene were successively added. The reaction mixture was kept stirring at 120 °C for 12 h under nitrogen atmosphere. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-dichloromethane as eluent to give 1.2 g of 2y in 68% yield.


2-(2*H*-Benzo[*d*][1,2,3]triazol-2-yl)-4-methylphenol (Tinuvin-P, 2y)^[4]

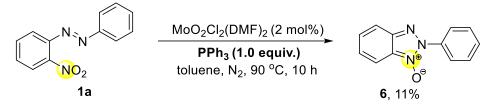

Eluent for column chromatographic purification: petroleum ether. Yellow solid. Mp: 122-124 °C. Yield: 73% (1.3 g). ¹H NMR (400 MHz, CDCl₃) δ 11.12 (s, 1H), 8.20 (s, 1H), 7.94-7.92 (m, 2H), 7.49-7.46 (m, 2H), 7.16-7.08 (m, 2H), 2.40 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 142.6, 131.1, 129.5, 127.5, 124.6, 120.9, 118.6, 117.5, 20.4.

6. Mechanistic study

Synthesis of 2-aminoazobenzene (5)^[5]



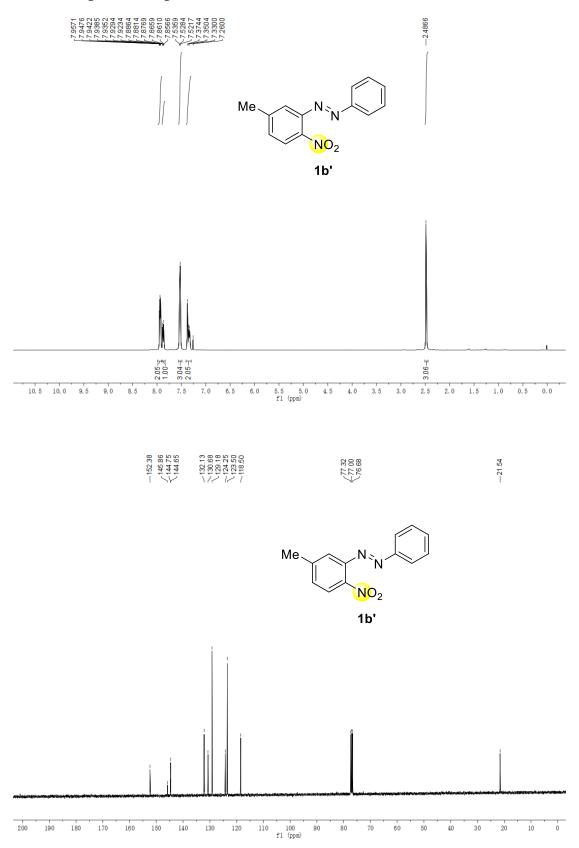
The solution of 1,2-phenylenediamine (S4, 1.6 g, 15.0 mmol) in dry toluene (100 mL) was degassed under a stream of N₂ for 15 min. Nitrosobenzene (S5, 1.6 g, 15.0 mmol) and acetic acid (3.4 mL, 60 mmol) were added and the mixture was stirred at 60 °C for 24 h. The solvent was evaporated under reduced pressure, and the concentrated solution was diluted with water and CH₂Cl₂. The separated organic phase was dried with MgSO₄ and concentrated. The residue purified through column chromatography (petroleum ether/ethyl acetate = 20/1) to give 1.2 g of 5 in 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.85 (m, 3H), 7.53-7.49 (m, 2H), 7.43 (t, *J*=7.3 Hz, 1H), 7.25-7.21 (m, 1H), 6.86-6.82 (m, 1H), 6.77 (d, *J* = 8.2 Hz, 1H), 5.91 (br, 2H). Synthesis of 2-phenyl-2*H*-benzo[*d*][1,2,3]triazole-1-oxide (6)^[6]

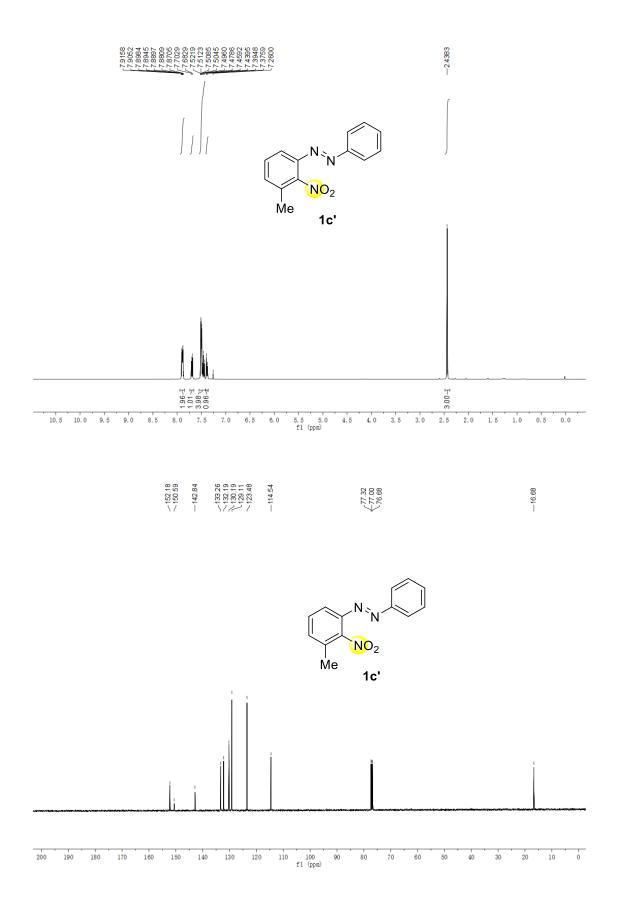

A mixture of 2-nitroazobenzene (**1a**, 681 mg, 3 mmol), EtOH (10 mL) and NaOH solution (1 N, 12 mL) heated at 90 °C was treated with powdered HONH₂·HCl (625 mg, 9 mmol). After 15 min, another HONH₂·HCl (625 mg, 9 mmol) was added, and then the reaction was maintained at 90 °C for 2 h. After completion of the reaction (monitored by TLC), the mixture was concentrated in vacuum and diluted with DCM and water. The organic phase was separated and concentrated followed by column chromatography to give 477 mg of **6** (76% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18-8.15 (m, 2H), 7.82-7.75 (m, 2H), 7.61-7.57 (m, 2H), 7.54-7.51 (m, 1H), 7.47-7.43 (m, 1H), 7.37-7.33 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 141.0, 135.1, 129.8, 129.1, 129.0, 126.4, 126.3, 123.4, 119.0, 113.9.

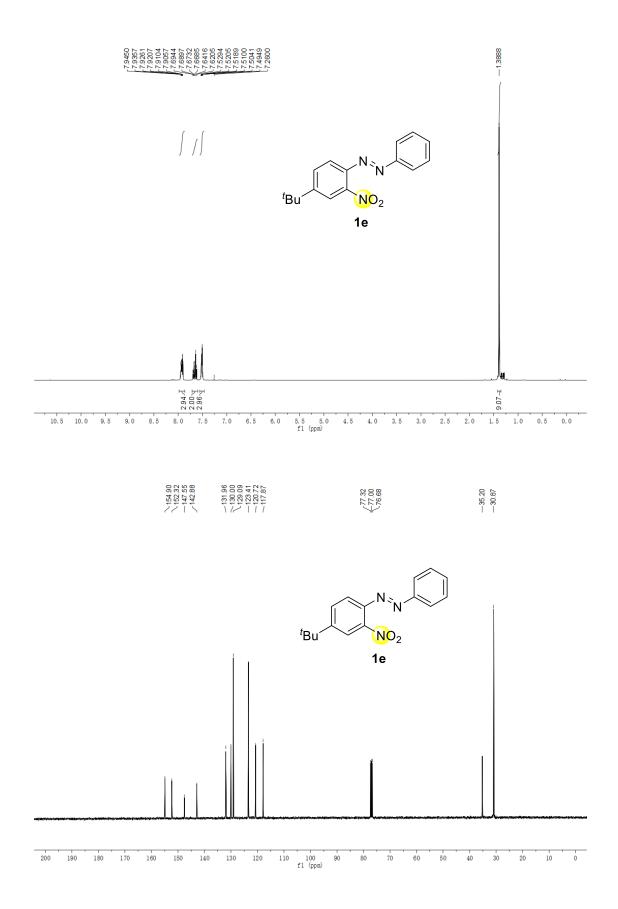
Controlled experiments

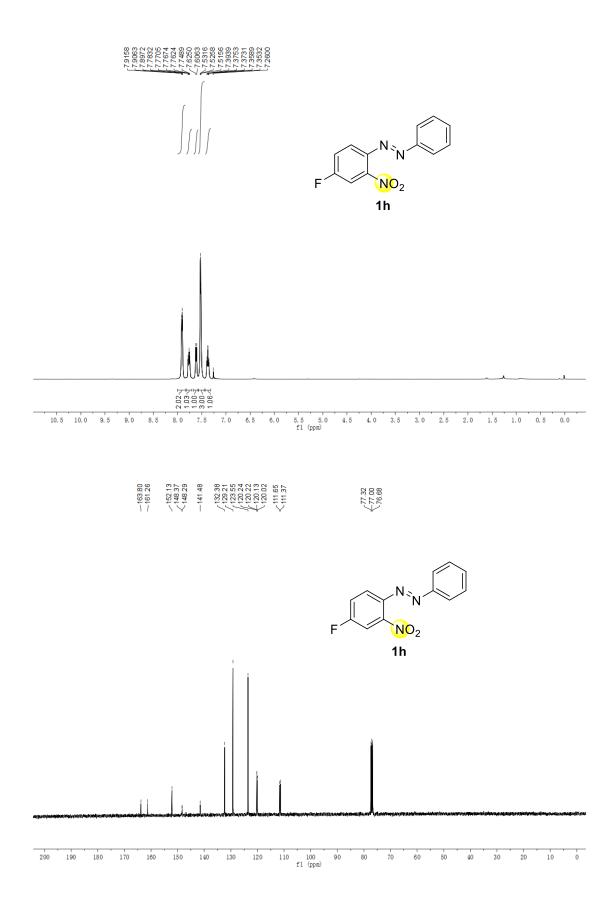
Under nitrogen atmosphere, a sealed tube was charged with **6** (0.2 mmol, 1.0 equiv.), $MoO_2Cl_2(DMF)_2$ (0.004 mmol, 2 mol%), PPh₃ (0.48 mmol, 2.4 equiv.) and 2 mL dry toluene were successively added. The reaction mixture was kept stirring at 90 °C for 12 h. After completion of the reaction (monitored by TLC), the mixture was washed with aq. H_2O_2 to oxidize the residual PPh₃, and concentrated in vacuum and the

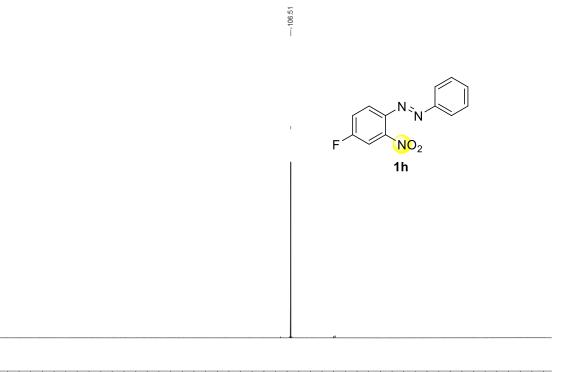
residue was purified by flash column chromatography on silica gel with petroleum ether-dichloromethane as eluent to give the product 2a in 83% yield.

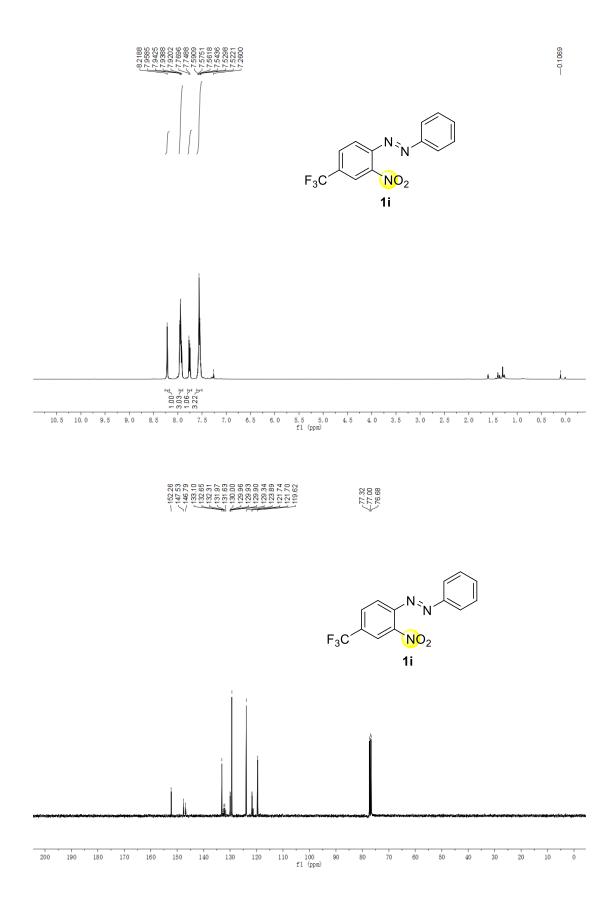


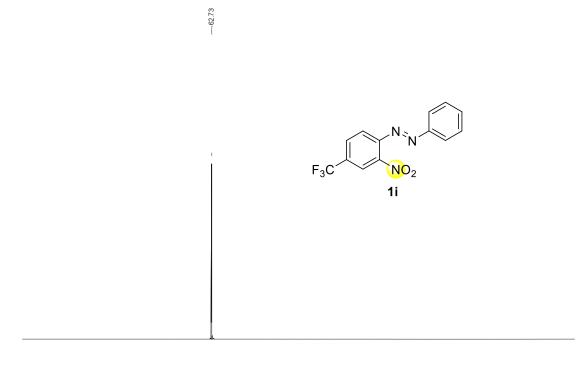

Under nitrogen atmosphere, a sealed tube was charged with 1a (0.2 mmol, 1.0 equiv.), MoO₂Cl₂(DMF)₂ (0.004 mmol, 2 mol%), PPh₃ (0.2 mmol, 1.0 equiv.) and 2 mL dry toluene were successively added. The reaction mixture was kept stirring at 90 °C for 10 h. A small amount of **6** could be detected by TLC. Then, the mixture was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as eluent to give 4.6 mg of **6** in 11% yield.

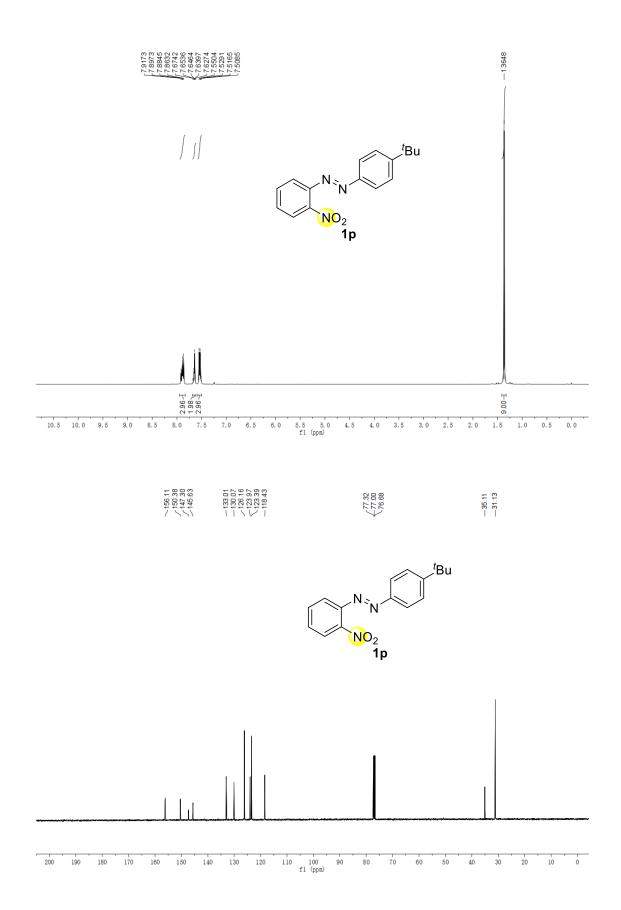

7. References

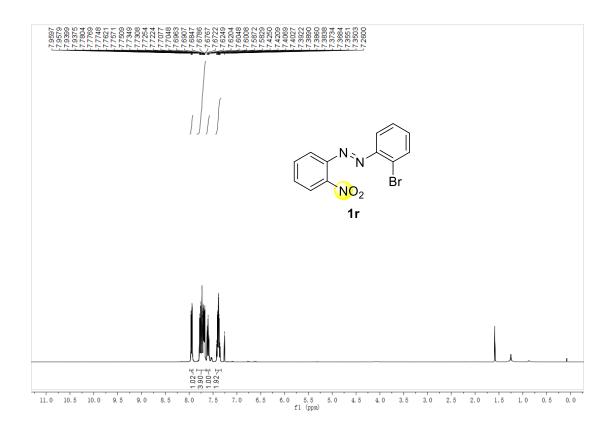

- R. Sanz, J. Escribano, R. Aguado, M. R. Pedrosa and F. J. Arnáiz, *Synthesis*, 2004, 1629.
- [2] T. V. Nykaza, T. S. Harrison, A. Ghosh, R. A. Putnik and A. T. Radosevich, J. Am. Chem. Soc., 2017, 139, 6839.
- [3] A. G. Koutsimpelis, C. G. Screttas and O. Igglessi-Markopoulou, *Heterocycles*, 2005, **65**, 1393.
- [4] J. Rosevear and J. F. K. Wilshire, Aust. J. Chem., 1985, 38, 1163.
- [5] N. Perur, M. Yahara, T. Kamei and N. Tamaoki, Chem. Commun., 2013, 49, 9935.
- [6] J. F. K. Wilshire, Aust. J. Chem., 1988, 41, 617.

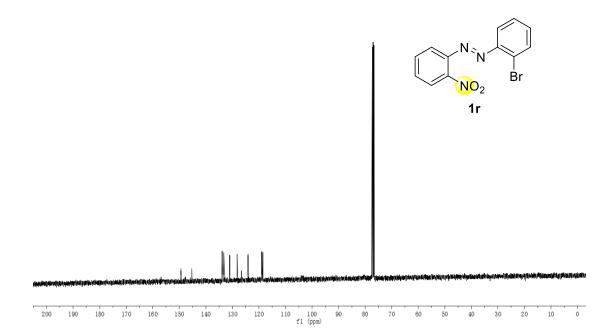

8. NMR spectra of products

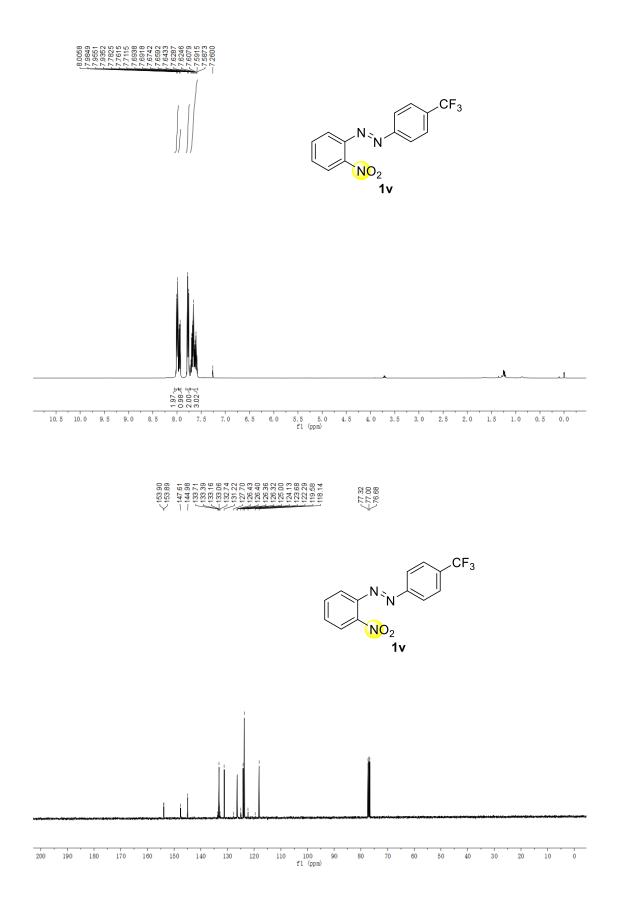


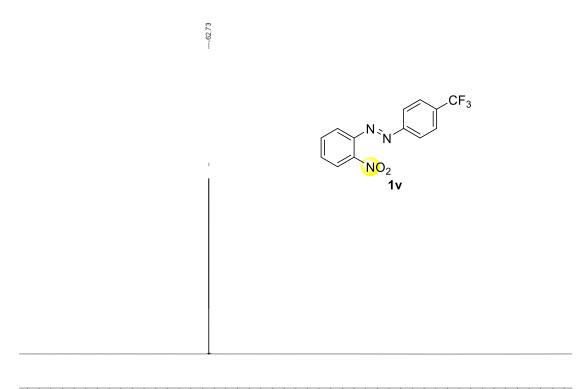


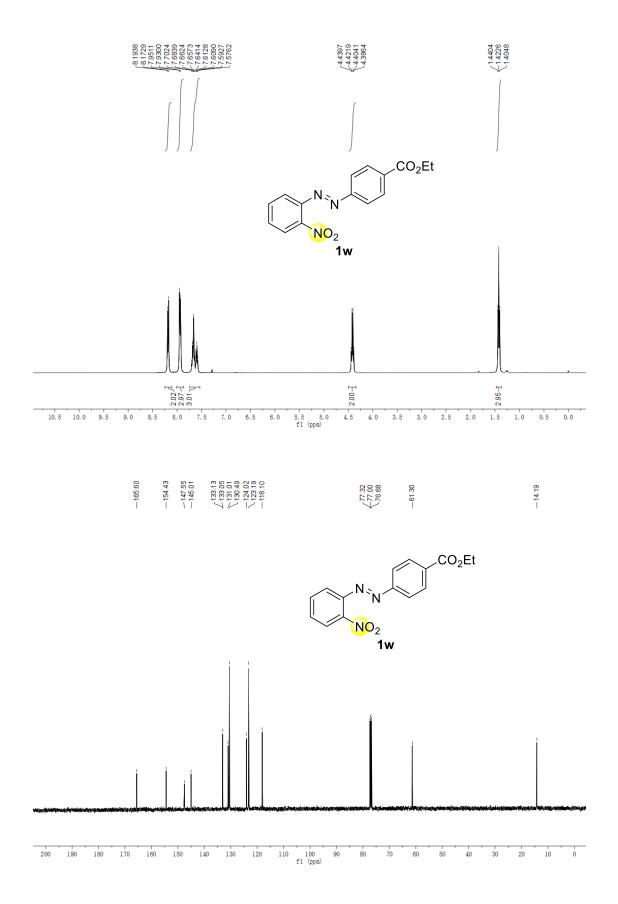


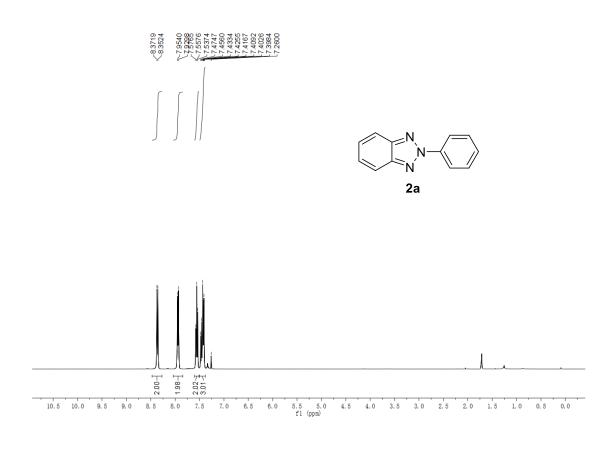

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

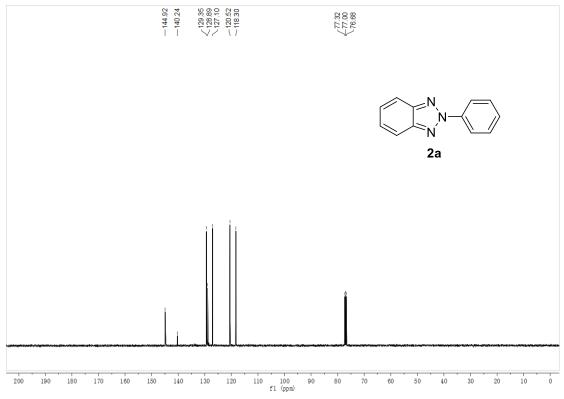

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

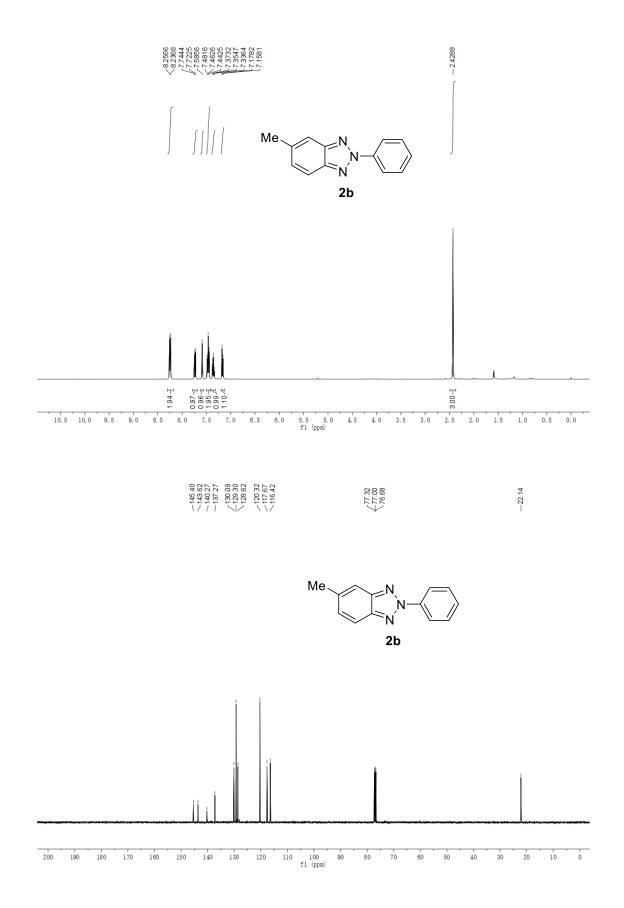


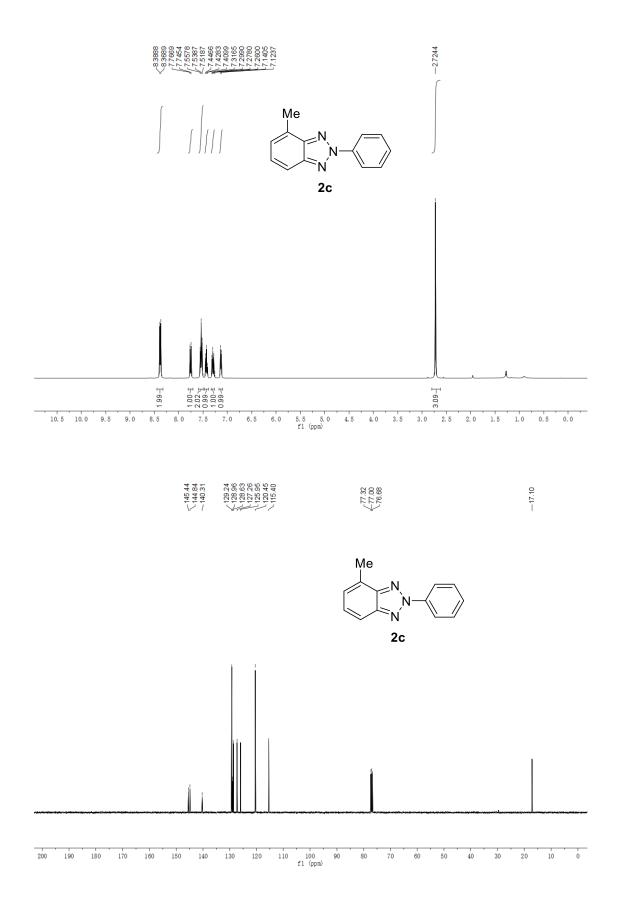


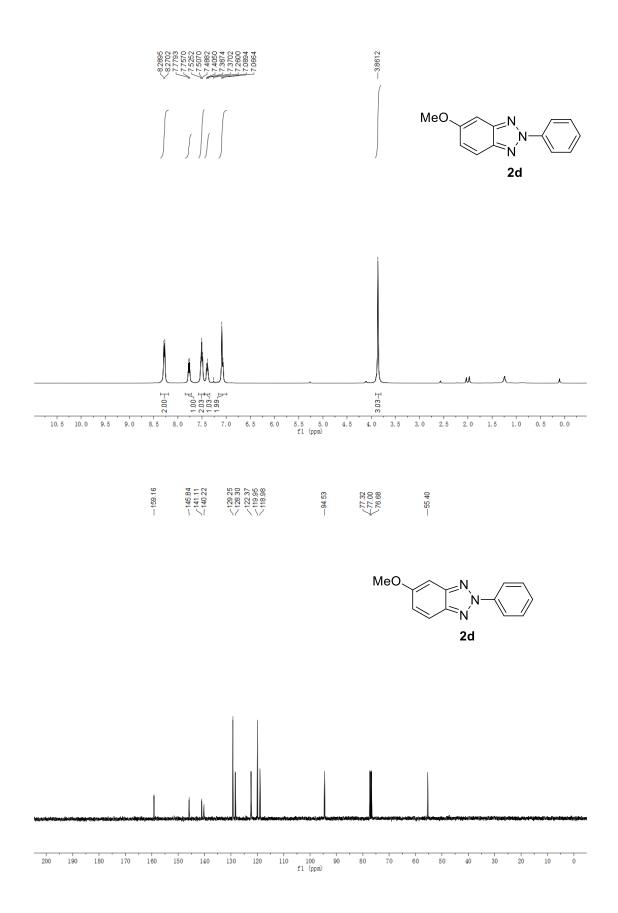


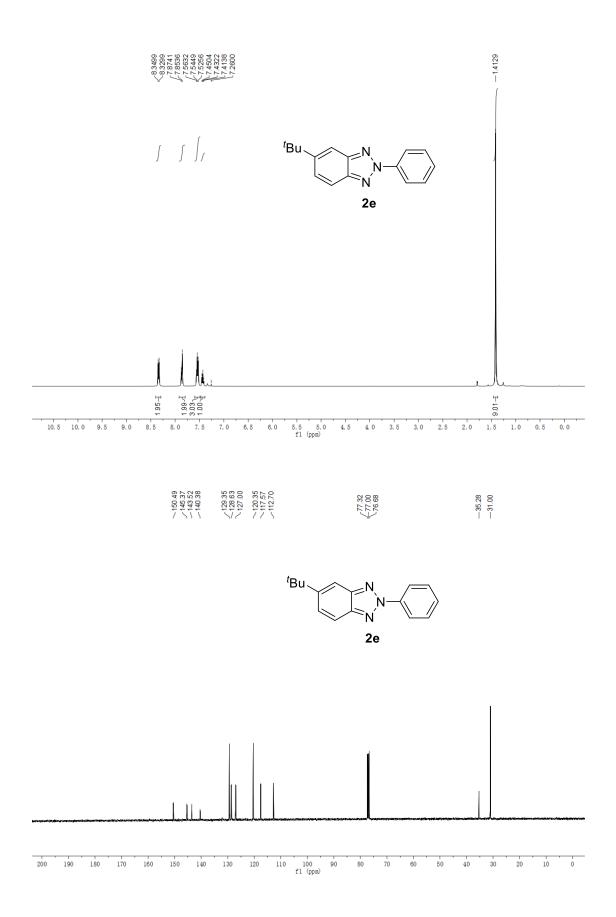


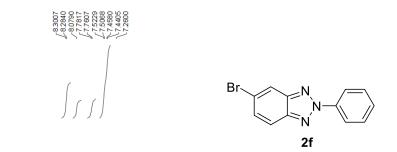



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)



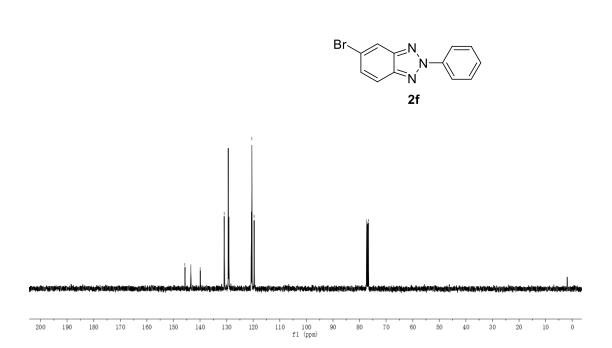

S25

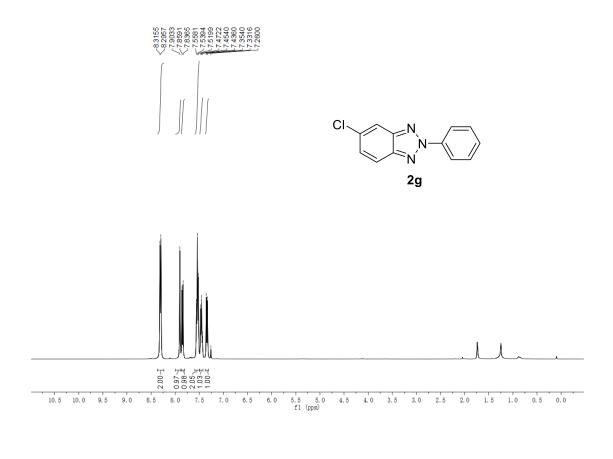


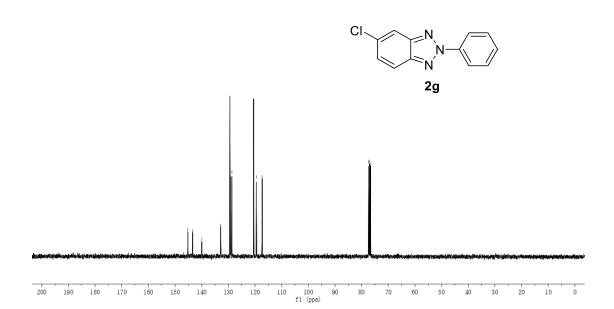


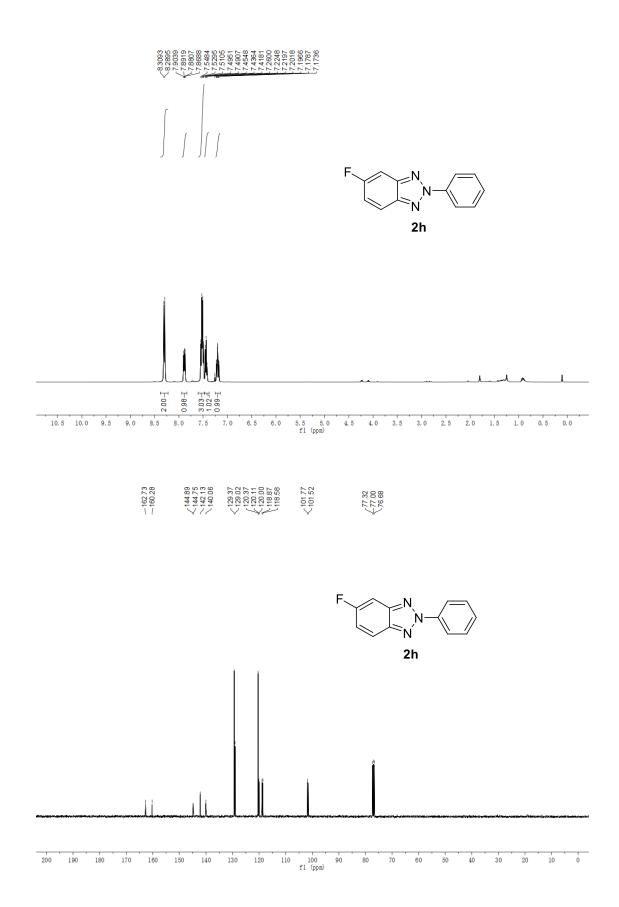


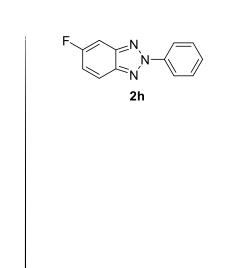
S29

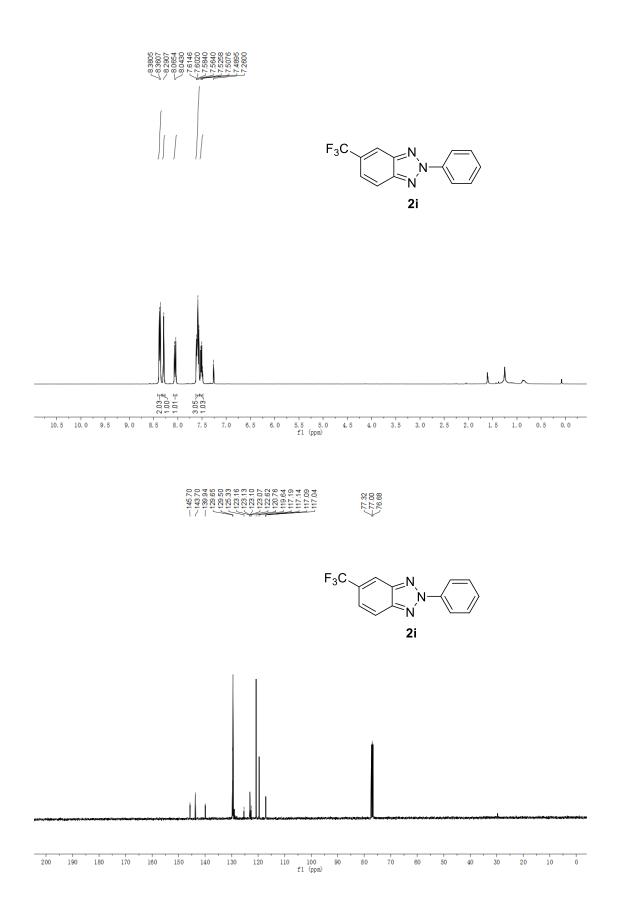


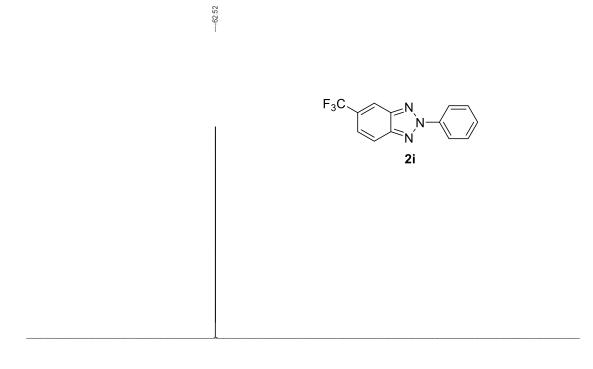


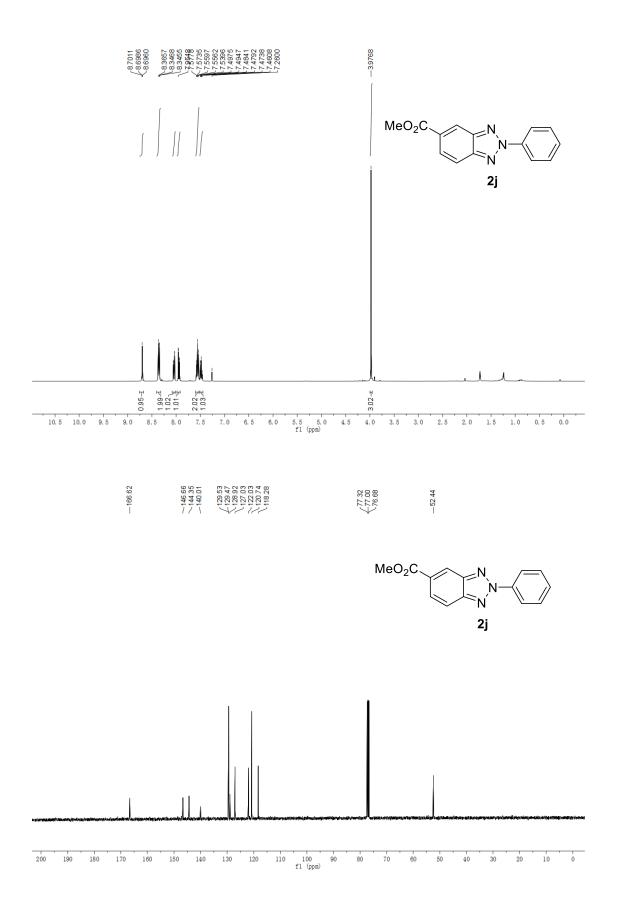


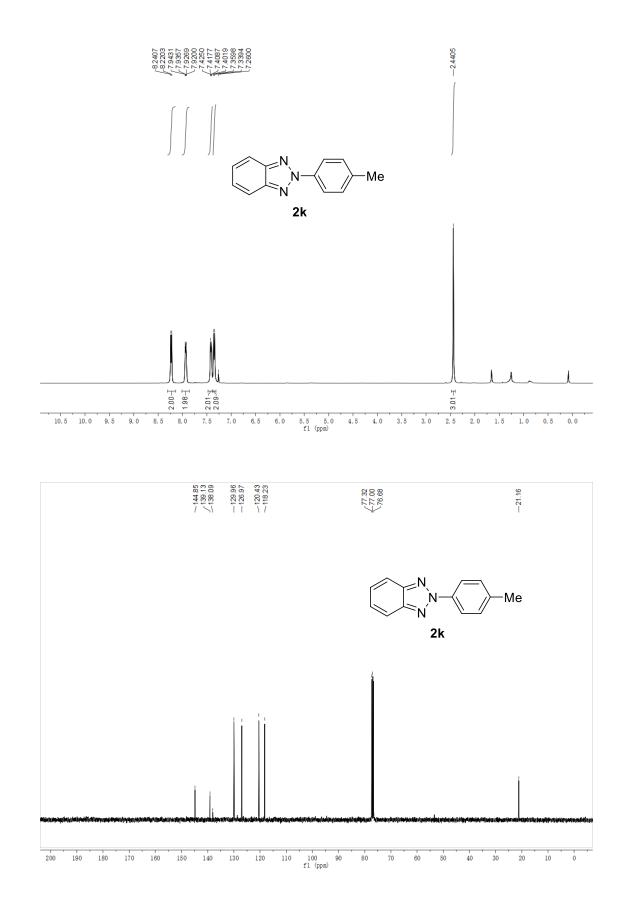


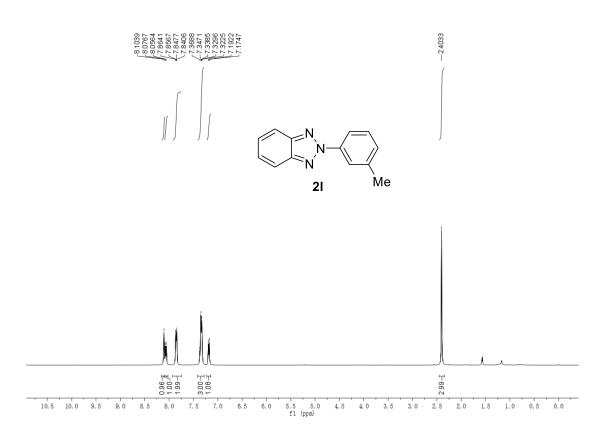


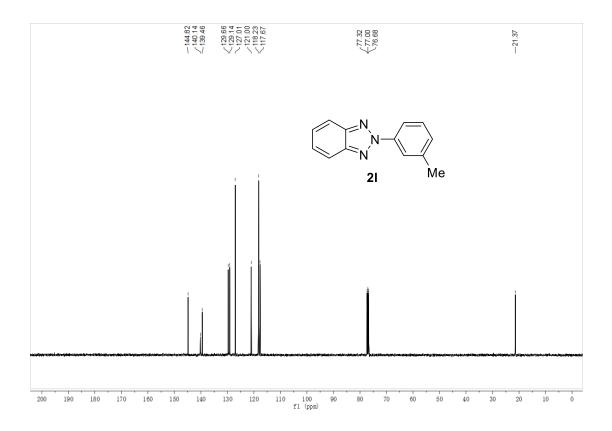


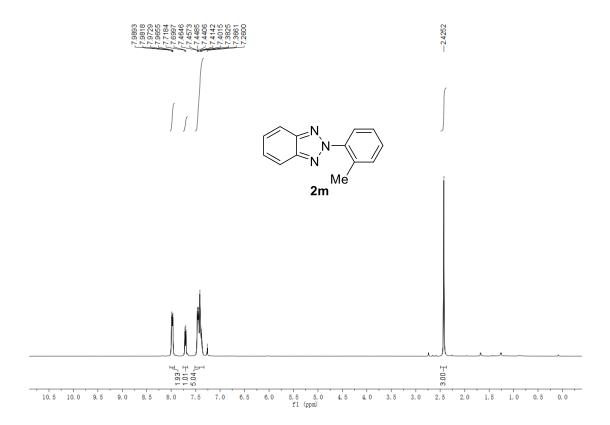


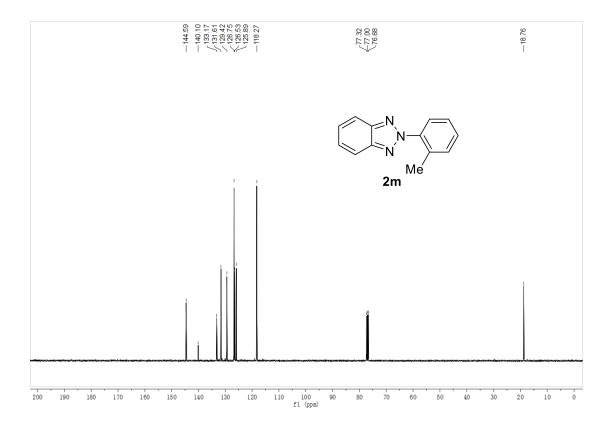

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

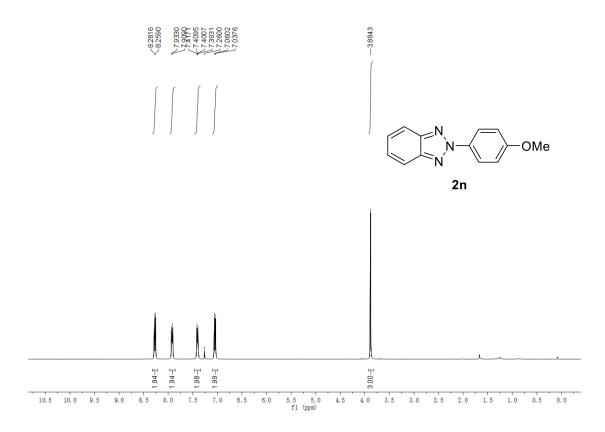

---111.68

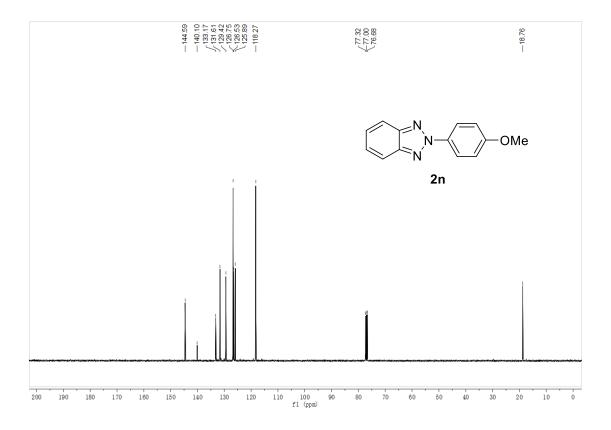


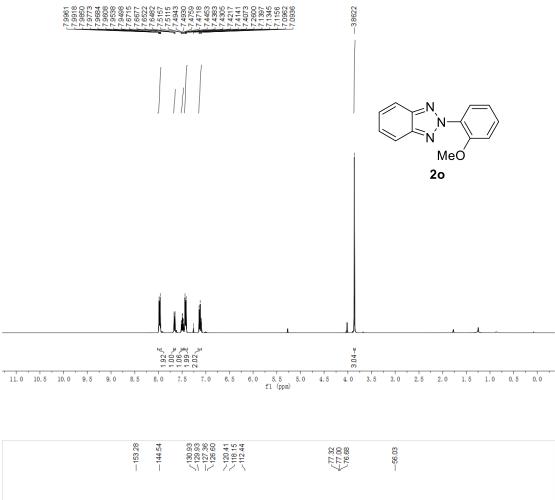


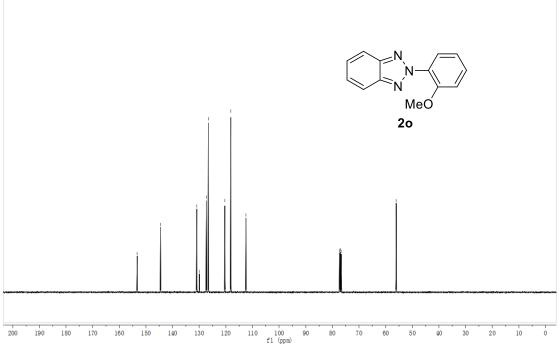

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

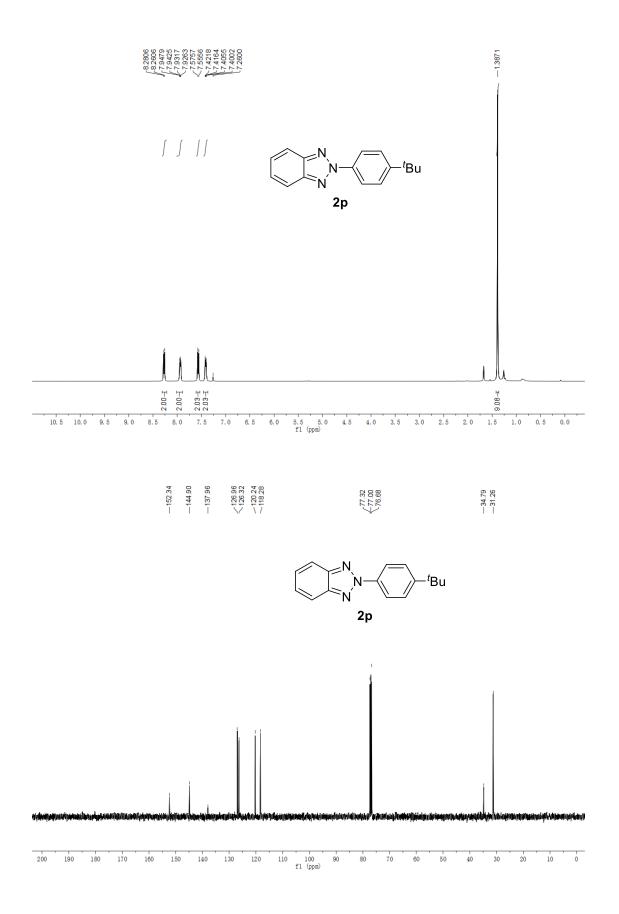


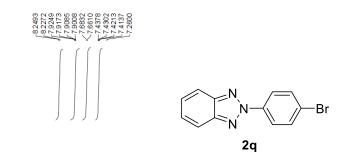


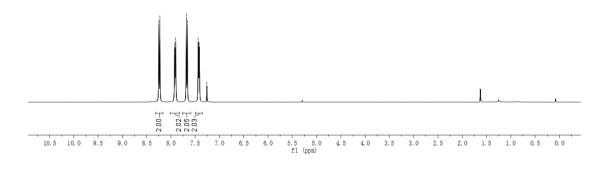


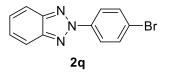


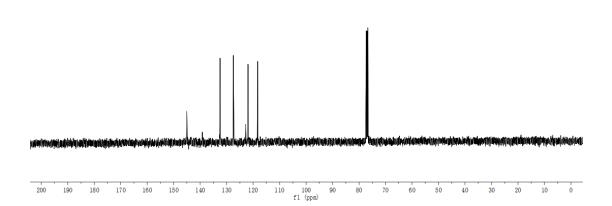


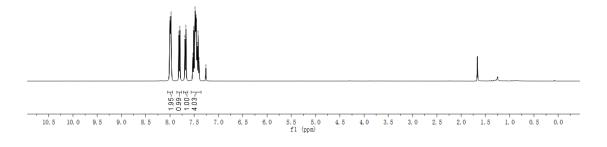


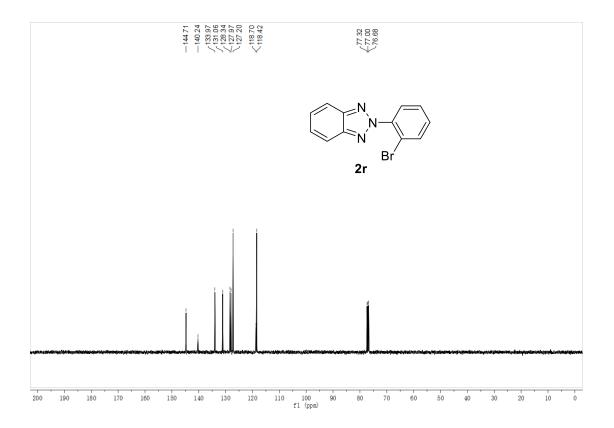


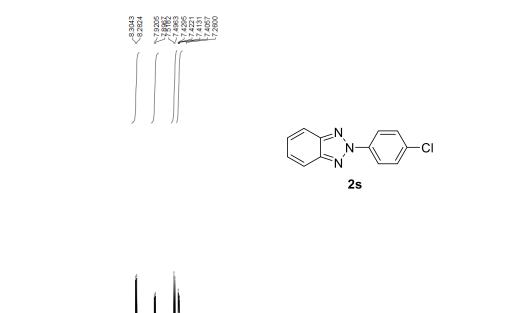


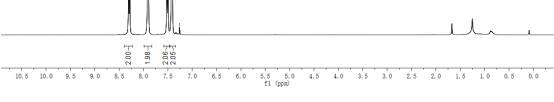


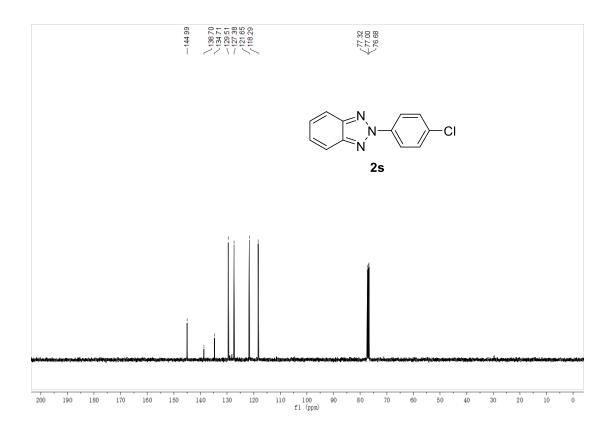


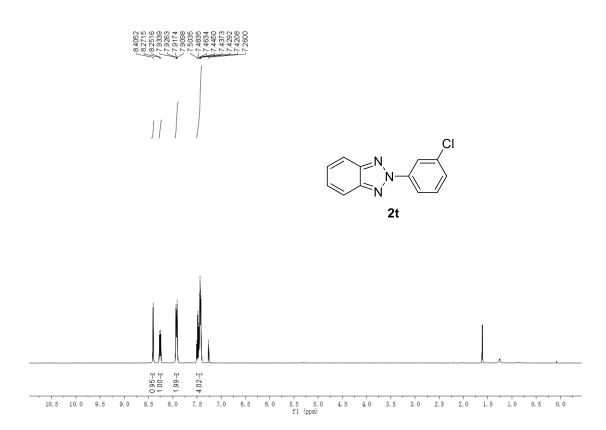


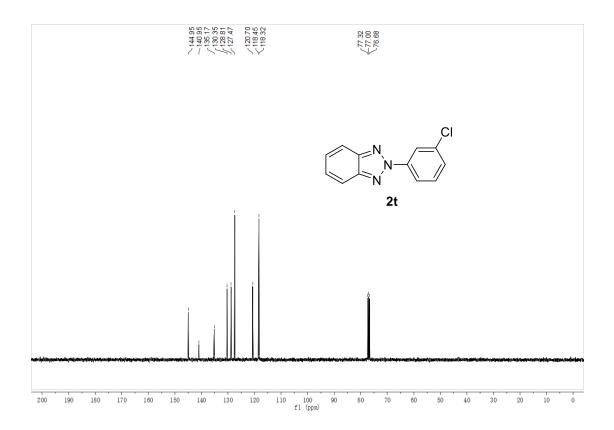


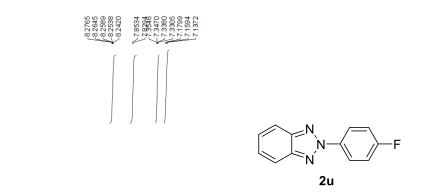


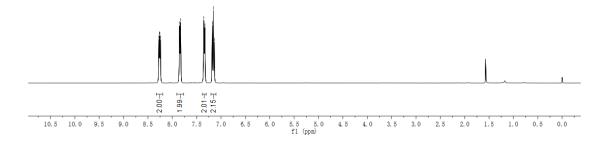


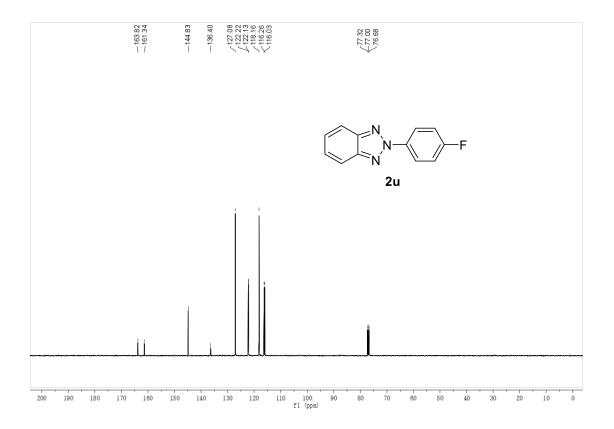


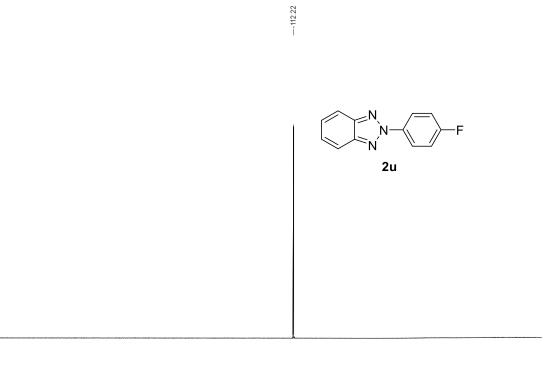


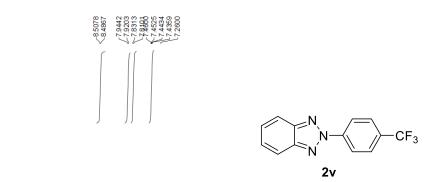


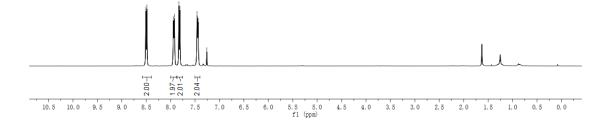


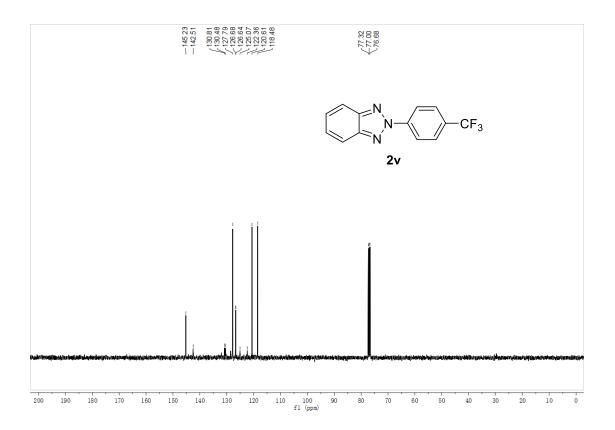


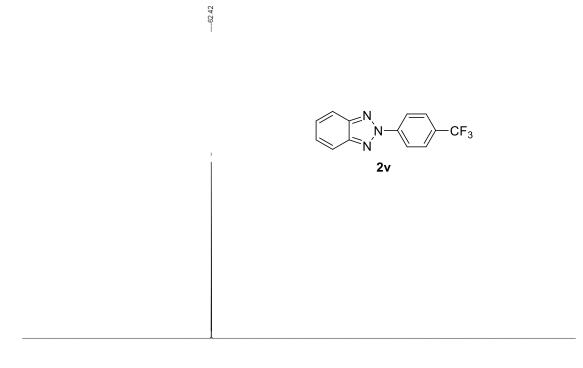




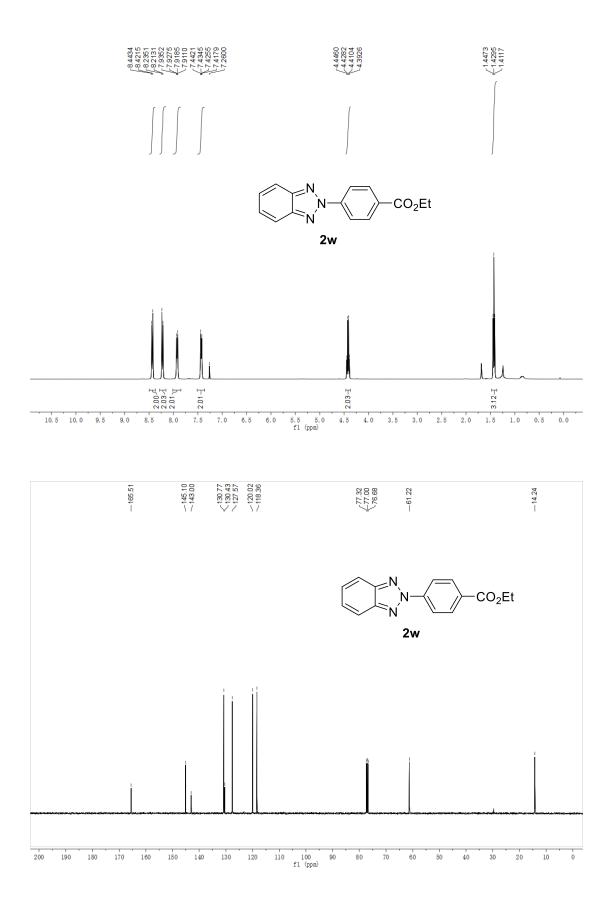


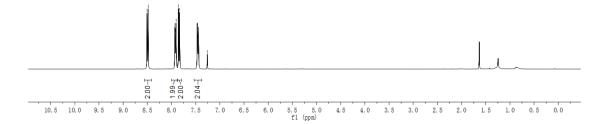


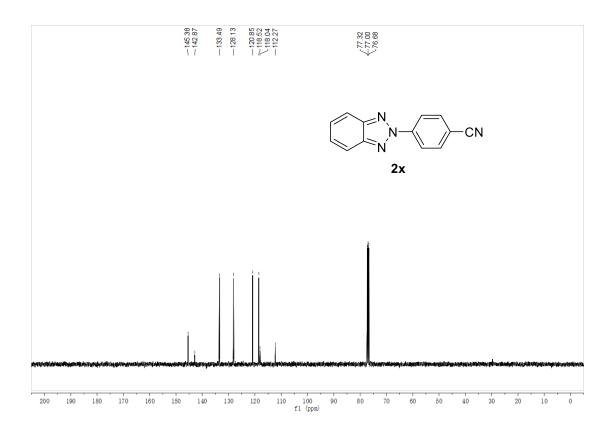


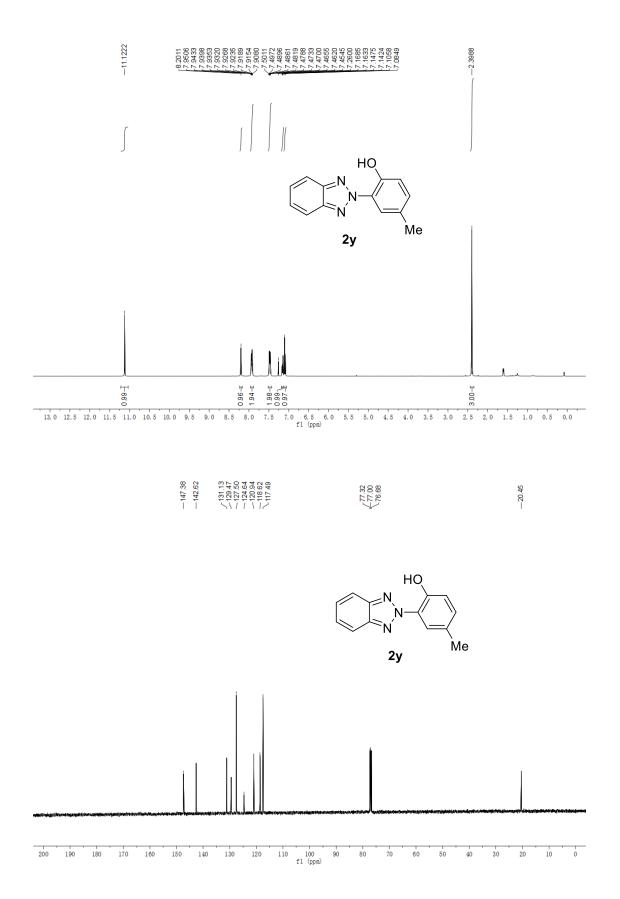


10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)








10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

