Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Selective a-oxidation of amides via visible-light-driven Iron-

catalysis

Shu-Hong Liu, Zhi-Chao Dong, Zhong-Lin Zang, Cheng-He Zhou and Gui-Xin Cai*

Contents

1. General Information	S2
2. Synthesis of Starting Materials	S3
3. Optimization of Reaction Conditions	S14
4. Experimental Procedures	S16
5. Mechanistic Studies	S19
6. References	S22
7. Experimental Spectra	S23

1. General Information

Reagents and solvents were obtained from commercial suppliers and used without further purification unless otherwise indicated. The reactions were detected by analytical thin layer chromatography (TLC) on Yinlong silica gel HSGF254 plates $(0.2 \pm 0.03 \text{ mm})$, appeared by ultraviolet light or by appropriate staining with alkaline potassium permanganate solutions. ¹H NMR spectra were obtained on Bruker Avance 600MR spectrometer at ambient temperature. The data marking mode as follows: chemical shift on the δ scale using residual proton solvent as internal standard [δ 7.26 (CDCl₃) ppm; TMS: 0.00 ppm], multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets), integration, and coupling constant (J) in hertz (Hz). The photochemical reactions were performed with 30 W blue LEDs (Leishi lighting). High resolution mass spectra were obtained on a Bruker impact II spectrometer. Mettler toledo electronic balance is used for reaction feeding, which model is ME204E/02 produced by Shanghai Mettler-Toledo Instrument Co., Ltd. Its maximum weighing is 220 g, and the actual scale is 0.1 mg. Electron paramagnetic Resonance Spectrometer is used for mechanistic study, which model is EMXplus-9.5/12 produced by Bruker. UV spectra were recorded at room temperature on a TU-2450 spectrophotometer (Puxi Analytic Instrument Ltd. of Beijing, China) equipped with 1.0 cm quartz cells.

2. Synthesis of Starting Materials

2.1 General procedure A for amide synthesis¹

$$\begin{array}{c} O \\ R^{1} \\ OH \end{array} + \begin{array}{c} H_{2}N-R^{2} \\ or \\ NH-R^{3} \\ R^{4} \end{array} \begin{array}{c} 1) \text{ oxalyl chloride (1.3 equiv)} \\ DMF (3 \text{ drops)}, DCM, r.t., 4h \\ 2) \text{ Et}_{3}N (1.0 \text{ equiv}) \\ DMAP (2 \text{ mol}\%) \\ DCM, 0 \ ^{\circ}C \text{ to } r.t., \text{ overnight} \end{array} \begin{array}{c} O \\ R^{1} \\ H \\ H \\ R^{2} \end{array} \begin{array}{c} O \\ R^{2} \\ H \\ R^{2} \end{array} \begin{array}{c} O \\ R^{1} \\ R^{2} \\ R^{4} \end{array}$$

To a 100 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar was added benzoic acid (1.0 equiv.). The flask was backfilled with N₂ three times before adding DCM (0.2 M) and cooling to 0 °C in an ice bath. Oxalyl chloride (1.3 equiv.) was then added followed by DMF (3-5 drops). The reaction was then allowed to warm to room temperature and stirred for 4 hours. The reaction was then concentrated under reduced pressure and the residue was then taken up in fresh DCM (0.2 M) and cooled to 0 °C. Et₃N (1.0 equiv.) was added dropwise followed by amine (1.0 equiv.) and DMAP (0.02 equiv.). The reaction was then allowed to warm to room temperature and stirred overnight. The reaction was then allowed to warm to room temperature and stirred overnight. The reaction was quenched with 10 mL H₂O and 25 mL DCM and the organics were washed with 1M HCl (25 mL × 2), 1M NaOH (25 mL × 2) and 25 mL brine, then dried with anhydrous Na₂SO₄. The solvent was removed by rotary evaporation and the crude reaction mixture was purified by silica gel chromatography, eluting with petroleum ether/EtOAc.

2.2 General procedure B for amide synthesis²

To a stirring of benzylamine (1.0 equiv.), Et₃N (1.1 equiv.) in CH₂Cl₂ (45 mL), was added acid chloride (1.1 equiv.) at 0 °C (ice/water bath). The reaction mixture was stirred at 0 °C for 10 minutes. Then, the reaction mixture was stirred at room temperature overnight. After the completion, the mixture was washed with saturated NaHCO₃ solution (3 times) and brine, and dried with anhydrous Na₂SO₄. The solvent was removed by rotary evaporation and the crude reaction mixture was purified by silica gel chromatography, eluting with petroleum ether/EtOAc.

2.3 General procedure C for amide synthesis³

To a stirring of aminoacetonitrile sulfate (5 mmol) and triethylamine (11 mmol) in CH_2Cl_2 (10 mL), was added benzoyl chloride (11 mmol) at 0 °C (ice/water bath). The reaction mixture was stirred at 0 °C for 1h. Then, the reaction mixture was stirred at room temperature for 2 h. After the completion, the solvent was removed by rotary evaporation and the crude reaction mixture was purified by silica gel chromatography, eluting with petroleum ether/EtOAc.

N-benzylbenzamide (1a) [1485-70-7]: 1a was purchased from Bide Pharmaceutical.

N-(4-chlorobenzyl)benzamide $(1b)^4$: According to the procedure A, the title compound 1b was obtained as white solid (0.55 g, isolated yield: 55%). R_f = 0.50 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point:142-144 °C (reported melting point: 142-143 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.31 (t, J = 7.5 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.78 (s, 1H), 4.46 (d, J = 4.9 Hz, 2H).

N-(4-bromobenzyl)benzamide $(1c)^4$: According to the procedure A, the title compound 1c was obtained as white solid (0.65 g, isolated yield: 56%). R_f = 0.30 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 141-143 °C (reported melting point: 141-142 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.17 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 4.53 (d, J = 5.7 Hz, 2H).

N-(4-(trifluoromethyl)benzyl)benzamide (1d)⁵: According to the procedure A, the title compound 1d was obtained as white solid (0.55 g, isolated yield: 48%). $R_f = 0.30$ (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 132-133 °C (reported melting point: 132-134 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 7.3 Hz, 2H), 7.56 (d, J = 8.1 Hz, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 4H), 6.86 (s, 1H), 4.65 (d, J = 5.9 Hz, 2H).

1e

N-(4-methylbenzyl)benzamide (1e)⁴ : According to the procedure A, the title compound 1e was obtained as white solid (0.65 g, isolated yield: 72%). $R_f = 0.55$ (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 137-139 °C (reported melting point: 137-138 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 2H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.25 (d, *J* = 7.7 Hz, 2H), 7.16 (d, *J* = 7.7 Hz, 2H), 6.46 (s, 1H), 4.59 (d, *J* = 5.4 Hz, 2H), 2.35 (s, 3H).

N-(3-chlorobenzyl)benzamide (1f)⁶ : According to the procedure A, the title compound 1f was obtained as white solid (1.17 g, isolated yield: 48%). $R_f = 0.45$ (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 140-141 °C (reported melting point: 139-140 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (d, *J* = 7.3 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.34 (s, 1H), 7.28 (d, *J* = 4.6 Hz, 2H), 7.23 (d, *J* = 4.1 Hz, 1H), 7.17 (s, 1H), 4.59 (d, *J* = 5.9 Hz, 2H).

1g

N-(3-bromobenzyl)benzamide $(1g)^7$: According to the procedure A, the title compound 1g was obtained as white solid (0.71 g, isolated yield: 65%). R_f = 0.45 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 117-119 °C (reported melting point: 117-118 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, *J* = 7.9 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.46 (s, 1H), 7.40 (t, *J* = 8.5 Hz, 3H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.83 (s, 1H), 4.56 (d, *J* = 5.7 Hz, 2H)

1h

N-(3-methoxybenzyl)benzamide $(1h)^7$: According to the procedure A, the title compound 1h was obtained as white solid (1.95 g, isolated yield: 81%). R_f = 0.50 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 137-139 °C (reported melting point: 137-138 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.71 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.9 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.81 (s, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.49 (s, 1H), 4.52 (d, *J* = 5.6 Hz, 2H), 3.71 (s, 3H).

N-(2-chlorobenzyl)benzamide (1i)⁶ : According to the procedure A, the title compound 1i was obtained as white solid (2.01 g, isolated yield: 82%). $R_f = 0.40$ (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 140-141 °C (reported melting point:

140-142 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.78 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.43 - 7.34 (m, 4H), 7.24 - 7.19 (m, 2H), 6.89 (s, 1H), 4.69 (d, *J* = 6.0 Hz, 2H).

N-benzyl-4-chlorobenzamide $(1j)^{13}$: 1j was obtained from Cai's group.

N-benzyl-4-(trifluoromethyl)benzamide $(1k)^7$: According to the procedure A, the title compound 1k was obtained as white solid (1.49 g, isolated yield: 89%). $R_f = 0.25$ (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 169-172 °C (reported melting point: 167-168 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.1 Hz, 2H), 7.65 (d, *J* = 6.7 Hz, 2H), 7.33 (s, 5H), 6.76 (s, 1H), 4.62 (s, 2H).

N-benzyl-4-methylbenzamide (11)⁶ : According to the procedure A, the title compound 11 was obtained as white solid (0.90 g, isolated yield: 80%). $R_f = 0.45$ (silica

gel, petroleum ether/EtOAc = 3:1). Melting Point: 133-134 °C (reported melting point: 134-135 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.68 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 4.4 Hz, 4H), 7.27 (dq, *J* = 8.7, 4.0 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 6.62 (s, 1H), 4.60 (d, *J* = 5.7 Hz, 2H), 2.37 (s, 3H).

N-benzyl-2-chlorobenzamide $(1m)^8$: According to the procedure A, the title compound 1m was obtained as white solid (1.71 g, isolated yield: 86%). R_f = 0.45 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 104-105 °C (reported melting point: 104-105 °C).

¹**H** NMR (600 MHz, CDCl₃) δ 7.59 (dd, J = 7.6, 1.4 Hz, 1H), 7.37 – 7.32 (m, 5H), 7.31 (dd, J = 7.8, 1.6 Hz, 1H), 7.29 – 7.25 (m, 2H), 6.66 (s, 1H), 4.60 (d, J = 5.7 Hz, 2H).

1n

N-benzylacetamide $(1n)^4$: According to the procedure **B**, the title compound 1n was obtained as white solid (0.67 g, isolated yield: 91%). R_f = 0.25 (silica gel, petroleum ether/EtOAc = 5:1). Melting Point: 60-61 °C (reported melting point: 67-68 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (t, *J* = 7.3 Hz, 2H), 7.26 (t, *J* = 6.8 Hz, 3H), 6.21 (s, 1H), 4.38 (d, *J* = 5.7 Hz, 2H), 1.98 (s, 3H).

N-(4-methylbenzyl)acetamide $(10)^9$: According to the procedure **B**, the title compound 10 was obtained as white solid (0.47 g, isolated yield: 58%). R_f = 0.25 (silica

gel, petroleum ether/EtOAc = 5:1). Melting Point: 110-111 °C (reported melting point: 110-113 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.12 (q, *J* = 8.0 Hz, 4H), 6.30 (s, 1H), 4.31 (d, *J* = 5.6 Hz, 2H), 2.31 (s, 3H), 1.95 (s, 3H).

N-(4-methoxybenzyl)acetamide $(1p)^9$: According to the procedure **B**, the title compound 1p was obtained as white solid (0.50 g, isolated yield: 28%). R_f = 0.60 (silica gel, petroleum ether/EtOAc = 5:1). Melting Point: 96-97 °C (reported melting point: 96-97 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.15 (d, *J* = 8.3 Hz, 2H), 6.81 (d, *J* = 8.4 Hz, 2H), 6.36 (s, 1H), 4.27 (d, *J* = 5.2 Hz, 2H), 3.74 (s, 3H), 1.93 (s, 3H).

N-(4-chlorobenzyl)acetamide $(1q)^9$: According to the procedure **B**, the title compound 1q was obtained as white solid (1.04 g, isolated yield: 71%). R_f = 0.10 (silica gel, petroleum ether/EtOAc = 5:1). Melting Point: 106-108 °C (reported melting point: 107-108 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.24 (d, *J* = 8.3 Hz, 2H), 7.14 (d, *J* = 8.3 Hz, 2H), 6.50 (s, 1H), 4.30 (d, *J* = 5.8 Hz, 2H), 1.95 (s, 3H).

N-(3-chlorobenzyl)acetamide (1r)⁹: According to the procedure **B**, the title compound 1r was obtained as white solid (1.27 g, isolated yield: 69%). $R_f = 0.10$ (silica gel,

petroleum ether/EtOAc = 5:1). Melting Point: 128-129 °C (reported melting point: 127-128 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.21 (d, *J* = 5.9 Hz, 3H), 7.10 (d, *J* = 5.7 Hz, 1H), 6.52 (s, 1H), 4.32 (d, *J* = 5.9 Hz, 2H), 1.97 (s, 3H).

N-(2-chlorobenzyl)acetamide (1s)⁹: According to the procedure **B**, the title compound 1s was obtained as white solid (0.54 g, isolated yield: 37%). $R_f = 0.10$ (silica gel, petroleum ether/EtOAc = 5:1). Melting Point: 72-73 °C (reported melting point: 72-73 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.34 (q, *J* = 4.7 Hz, 2H), 7.23 – 7.18 (m, 2H), 6.21 (s, 1H), 4.48 (d, *J* = 6.0 Hz, 2H), 1.98 (s, 3H).

N-(3,4-dichlorobenzyl)acetamide (1t)¹⁰ : According to the procedure **B**, the title compound 1t was obtained as white solid (1.21 g, isolated yield: 70%). $R_f = 0.10$ (silica gel, petroleum ether/EtOAc = 5:1). Melting Point: 95-96 °C (reported melting point: 97-98 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 7.07 – 7.03 (m, 1H), 6.61 (s, 1H), 4.29 (d, *J* = 6.0 Hz, 2H), 1.97 (s, 3H).

N-benzylpivalamide $(1u)^8$: According to the procedure **B**, the title compound 1u was obtained as white solid (0.96 g, isolated yield: 50%). R_f = 0.55 (silica gel,

petroleum ether/EtOAc = 5:1). Melting Point: 81-82 °C (reported melting point: 81-83 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.25 (t, *J* = 7.3 Hz, 2H), 7.18 (t, *J* = 5.7 Hz, 3H), 5.93 (s, 1H), 4.35 (d, *J* = 5.1 Hz, 2H), 1.15 (s, 9H).

1v

N-benzylmethanesulfonamide $(1v)^{11}$: According to the procedure **B**, the title compound 1v was obtained as white solid (0.64 g, isolated yield: 43%). R_f = 0.45 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 62-63 °C (reported melting point: 62-63°C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.35 (d, *J* = 6.5 Hz, 4H), 7.31 (d, *J* = 6.5 Hz, 1H), 5.08 (s, 1H), 4.29 (s, 2H), 2.82 (s, 3H).

N-benzylbenzenesulfonamide $(1w)^4$: According to the procedure **B**, the title compound 1w was obtained as white solid (1.81 g, isolated yield: 92%). R_f = 0.45 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 85-86 °C (reported melting point: 85-87 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.21 (q, *J* = 6.3 Hz, 3H), 7.17 – 7.13 (m, 2H), 5.29 (t, *J* = 6.3 Hz, 1H), 4.09 (d, *J* = 6.3 Hz, 2H).

N-methylbenzamide (1x) [613-93-4]: 1x was purchased from Bide Pharmaceutical.

4-fluoro-*N***-methylbenzamide (1y) [701-49-5]: 1y** was purchased from Bide Pharmaceutical.

N-butyrylhexanamide $(1z)^{13}$: 1z was obtained from Cai's group.

N-hexylbutyramide $(1aa)^{12}$: According to the procedure A, the title compound 1aa was obtained as colorless oil (0.72 g, isolated yield: 35%). R_f = 0.40 (silica gel, petroleum ether/EtOAc = 3:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 – 7.11 (m, 10H), 4.63 (d, J = 152.1 Hz, 2H), 2.94 (d, J = 104.0 Hz, 3H).

N, N-dimethylbenzamide (1ab) [611-74-5]: 1ab was purchased from Bide Pharmaceutical.

N, N-dimethylbenzamide (1ac)¹³: 1ac was obtained from Cai's group.

ethyl benzoylglycinate (1ad) [1499-53-2]: 1ad was purchased from Bide Pharmaceutical.

N-(cyanomethyl)benzamide $(1ae)^3$: According to the procedure C, the title compound 1ae was obtained as colorless solid (0.56 g, isolated yield: 70%). R_f = 0.10 (silica gel, petroleum ether/EtOAc = 3:1). Melting Point: 81-82 °C (reported melting point: 81-83 °C).

¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 7.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 6.59 (s, 1H), 4.40 (d, J = 5.8 Hz, 2H).

3. Optimization of Reaction Conditions

3.1 Screening of catalyst

	O Fe(NO ₃) ₃ •9H ₂ O (8 mol%) NaBrO ₃ (2.0 equiv.) NaBrO ₃ (2.0 equiv.) 1a MeCN (2.0 mL) 0 ₂ , RT, 12 h 30 W Blue LEDs	O O N H Za
Entry	Variation from the standard conditions ^a	Yield $(\%)^b$
1	None	94
2	Fe(acac) ₃ instead of Fe(NO ₃) ₃ ·9H ₂ O	trace
3	Fe(OTf) ₃ instead of Fe(NO ₃) ₃ ·9H ₂ O	54
4	Fe ₂ (SO ₄) ₃ instead of Fe(NO ₃) ₃ ·9H ₂ O	56
5	FeBr ₃ instead of Fe(NO ₃) ₃ ·9H ₂ O	58
6	CuBr ₂ instead of Fe(NO ₃) ₃ ·9H ₂ O	30
7	Cu(NO ₃) ₂ ·H ₂ O instead of Fe(NO ₃) ₃ ·9H ₂ O	71

^{*a*}Reaction conditions: **1a** (0.2 mmol), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%), NaBrO₃ (0.4 mmol, 2.0 equiv.) in CH₃CN (2.0 mL) in the presence of O₂ at room temperature with 30 W blue LEDs (λ = 455 nm, at a distance of 4-5 cm) irradiation for 12 h. ^{*b*}Isolated yield.

3.2 Screening of solvents

Estar	$\begin{array}{c} Fe(NO_3)_3 \cdot 9H_2O \ (8 \ mol\%) \\ NaBrO_3 \ (2.0 \ equiv.) \\ MeCN \ (2.0 \ mL) \\ O_2, \ RT, \ 12 \ h \\ 30 \ W \ Blue \ LEDs \end{array}$	
Entry	variation from the standard conditions	Y leid (%)
1	None	94
2	H ₂ O: MeCN =1:1	91
3	DCM instead of MeCN	16
4	MeOH instead of MeCN	n.p. ^c
5	Acetone instead of MeCN	29
6	CCl ₄ instead of MeCN	28

^{*a*}Reaction conditions: **1a** (0.2 mmol), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%), NaBrO₃ (0.4 mmol, 2.0 equiv.) in CH₃CN (2.0 mL) in the presence of O₂ at room temperature with 30 W blue LEDs (λ = 455 nm, at a distance of 4-5 cm) irradiation for 12 h. ^{*b*}Isolated yield. ^{*c*}n.p. = no product.

3.3 Screening of oxidant

$\begin{array}{c} & Fe(NO_3)_3 \\ \hline \\ N \\ H \\ \hline \\ 1a \\ \end{array} \begin{array}{c} Fe(NO_3)_3 \\ \hline \\ NaBrO_3 \\ \hline \\ MeCl \\ O_2, F \\ 30 W \end{array}$	9H ₂ O (8 mol%) (2.0 equiv.) V (2.0 mL) T, 12 h Blue LEDs	
Variation from the standard conditions ^{<i>a</i>}		Yield $(\%)^b$
None		94
1 eq. NaBrO ₃		88
Air instead of	55	
	Fe(NO ₃) ₃ • NaBrO ₃ MeCh 1a O ₂ , R 30 W Variation from the standar None 1 eq. NaBrO Air instead of 0	Fe(NO ₃) ₃ •9H ₂ O (8 mol%) NaBrO ₃ (2.0 equiv.) MeCN (2.0 mL) O ₂ , RT, 12 h 30 W Blue LEDs Variation from the standard conditions ^a None 1 eq. NaBrO ₃ Air instead of O ₂

^{*a*}Reaction conditions: **1a** (0.2 mmol), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%), NaBrO₃ (0.4 mmol, 2.0 equiv.) in CH₃CN (2.0 mL) in the presence of O₂ at room temperature with 30 W blue LEDs (λ = 455 nm, at a distance of 4-5 cm) irradiation for 12 h. ^{*b*}Isolated yield.

4. Experimental Procedures

4.1 The photos of the photochemical reactor

Figure S1. Reaction setup for standard conditions (0.2 mmol scale)

Basic Information						
Sample	30W Blue Light source					
Sample Information	Blue light source	Testing Date	2023.07.22			
Tester	Shu-Hong Liu	Amblent Temperature	25°C			
Testing Result						
Setup photo	100% 0 0 0 0 0 0 0 0 0 0 0 0 0	547 700 740 750	0.80 0.60 0.40 0.20 0.20 0.20 0.40 0.60 0.60 0.60 0.60 0.60 0.60 0.6			
Chromaticity Coordinates	x=0.1440 y=0.0381 u=0.1818 v=0.1082					
Temperature	>25000K	Peak Wavelength	455nm			
SDCM	0	Main Wavelength	461nm			
Color Shift	0.000000 duv	Wavelength Width	0nm			
Red Ratio	0	Color Purty	98.00%			
Luminous Flux	1.661e3lux	Radiant Flux	3.489e4w/m2			
Rendering FluxRa=53.0R1=23.0R2=56.0R3=99.0R4=86.0R5=6.0R6=67.0R7=52.0R8=38.0R9=99.0R10=99.0R11=99.0R12=99.0R13=45.0R14=34.0						

4.2 Report of spectroradiometric analysis for light source

4.3 General procedure for α-oxidation of amide

Amide (0.2 mmol, 1.0 equiv.), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%, 6.2 mg), NaBrO₃ (0.4 mmol, 2.0 equiv. 60.3 mg) and CH₃CN (2.0 mL) were placed in a dry 10 mL reaction flask in an air atmosphere. The reaction mixture was irradiated with 30W blue LEDs ($\lambda = 455$ nm, at a distance of 4-5 cm, 1000 rpm stir rate) at room temperature in the presence of O₂ for 12 h. After completion of the reaction, the organic solvent was removed under vacuum, the mixture was purified directly by silica gel column chromatography (petroleum ether/EtOAc) to give the desired products **2a-2aa**.

5. Mechanistic Studies

5.1 Other functional groups exploration

 $R^1 = R^2 = H; R^1 = Me, R^2 = H; R^1 = R^2 = Me$

Other substrates including benzylamine, *N*-methylbenzylamine and *N*,*N*dimethylbenzylamine were tested (0.2 mmol, 1.0 equiv.), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%, 6.2 mg), NaBrO₃ (0.4 mmol, 2.0 equiv. 60.3 mg) and CH₃CN (2.0 mL) were placed in a dry 10 mL reaction flask in an air atmosphere. The reaction mixture was irradiated with 30W blue LEDs ($\lambda = 455$ nm, at a distance of 4-5 cm, 1000 rpm stir rate) at room temperature in the presence of O₂ for 12 h. After completion of the reaction, the organic solvent would be monitored by TLC and all the substrates were not tolerated.

5.2 Radical inhibition and trapping experiments

N-benzoylbenzamide (0.2 mmol, 1.0 equiv. 42.2 mg), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%, 6.2 mg), NaBrO₃ (0.4 mmol, 2.0 equiv. 60.3 mg), (2,6-di-tert-butyl-4methylphenol) BHT (0.4 mmol, 2.0 equiv. 44.0 mg) and CH₃CN (2.0 mL) were placed in a dry 10 mL reaction flask in an air atmosphere. The reaction mixture was irradiated with 30W blue LEDs ($\lambda = 455$ nm, at a distance of 4-5 cm, 1000 rpm stir rate) at room temperature in the presence of O₂ for 12 h. After completion of the reaction, the organic solvent would be monitored by TLC and the product **2a** was only given trace amount.

N-benzoylbenzamide (0.2 mmol, 1.0 equiv. 42.2mg), Fe(NO₃)₃·9H₂O (0.016 mmol, 8 mol%, 6.2 mg), NaBrO₃ (0.4 mmol, 2.0 equiv. 60.3mg), 2,6-di-tert-butyl-4methylphenol (BHT) (0.4 mmol, 2.0 equiv. 44.0 mg) and CH₃CN (2.0 mL) were placed in a dry 10 mL reaction flask in an air atmosphere. The reaction mixture was irradiated with 30W blue LEDs (λ = 455 nm, at a distance of 4-5 cm, 1000 rpm stir rate) at room temperature in the presence of O₂ for 3 h. After completion of the reaction, the organic solvent would be monitored by Mass spectrometry (HRMS) and the hydroxyl radical (HO·) intermediate **3** and the hydroperoxyl radical (HOO·) intermediate **4** were verified.

Figure S2. Mass spectrometry (HRMS) data of the radical trapping experiment (with BHT).

5.3 Electron paramagnetic resonance (EPR) experiments

Fe(NO₃)₃·9H₂O (0.04 mmol, 16.2 mg), H₂O (1.0 mL) and CH₃CN (1.0 mL) were placed in a 10 mL reaction flask and the mixture solution was stirred well. 1 mL of the mixture solution was transferred into another 10 mL dry reaction flask and DMPO (5,5-Dimethyl-1-pyrroline-*N*-oxide, 10 μ L) was added as radical capturer. The mixture was irradiated with blue LEDs at room temperature for 30 min. Then the organic solvent would be monitored by electron paramagnetic resonance (EPR) instrument and the result showed that the hydroxyl radical was captured.

5.4 UV-vis absorption experiments

According to the test condition 1(Fe cat. + 1a + NaBrO₃ + MeCN + O₂ + irr. 30 min.), Fe(NO₃)₃·9H₂O (0.2 mmol, 80.2 mg), *N*-benzoylbenzamide 1a (0.2 mmol, 42.2 mg), NaBrO₃ (0.2 mmol, 30.1 mg) and CH₃CN (2.0 mL) were placed in a dry 10 mL reaction flask and the reaction mixture (c = 0.1 mol/L) was irradiated with 30W blue LEDs (λ = 455 nm, at a distance of 4-5 cm, 1000 rpm stir rate) at room temperature in the presence of O₂ for 30 min. Then 20 µL of the stirred mixture was transferred to the colorimetrical cylinder followed the 10 mL isochoric process using additional CH₃CN. The solvent (c = 0.02 mmol/L) would be monitored by UV-vis absorption spectrophotometer. Other test conditions were operated similarly.

Figure S3. UV-vis absorption spectra

6. References

- 1. W. J. Yue, C. S. Day and R. Martin, J. Am. Chem. Soc., 2021, 143, 6395.
- 2. Y. Hu, L. Zhou and W. Lu, Synthesis, 2017, 49, 4007.
- 3. C. Jöst, C. Nitsche, T. Scholz, L. Roux and C. D. Klein, J. Med. Chem., 2014, 57, 7590.
- 4. B. Sardar, R. Jamatia, A. Samanta and D. Srimani, J. Org. Chem., 2022, 87, 5556.
- J. Wang, J. Ren, Y.-P. Zhu, X.-Q. Sun, P. F. Hu, X. Mu and B. B. Zeng, *Tetrahedron Lett.*, 2023, 116, 154312.
- 6. Y. He, L. Zeng, M. Li, L. Gu, S. Zhang and G. Li, J. Org. Chem., 2022, 87, 12622.
- 7. J. P. Hibbard, J. G. Yam, E. B. Alsalek and A. Bahamonde, J. Org. Chem., 2022, 87, 12036.
- M. Boyle, K. Livingstone, M. C. Henry, J. M. L. Elwood, J. D. Lopez-Fernandez and C. Jamieson, Org. Lett., 2022, 24, 334.
- 9. S. N. Rao, D. C. Mohan and S. Adimurthy, Org. Lett., 2013, 15, 1496.
- 10. S. Ghosh, A. Purkait and C. K. Jana, Green Chem., 2020, 22, 8721.
- 11. Z. Lin, L. Huang and G. Yuan, Chem. Commun., 2021, 57, 3579.
- 12. L. Ren, X. Li and N. Jiao, Org. Lett., 2016, 18, 5852.
- H. H. Chang, X. X. He, Z. L. Zang, C. H. Zhou and G. X. Cai, *Asian J. Org. Chem.*, 2022, 11, e202200500.

7. Experimental Spectra

N-(4-bromobenzyl)benzamide (1c) ¹H NMR (600 MHz, CDCl₃):

N-(4-methylbenzyl)benzamide (1e) ¹H NMR (600 MHz, CDCl₃):

N-(3-bromobenzyl)benzamide (1g) ¹H NMR (600 MHz, CDCl₃):

N-(3-methoxybenzyl)benzamide (1h) ¹H NMR (600 MHz, CDCl₃):

N-(2-chlorobenzyl)benzamide (1i) ¹H NMR (600 MHz, CDCl₃):

S27

N-benzylacetamide (1n) ¹H NMR (600 MHz, CDCl₃):

N-(4-methoxybenzyl)acetamide (1p) ¹H NMR (600 MHz, CDCl₃):

N-(3-chlorobenzyl)acetamide (1r) ¹H NMR (600 MHz, CDCl₃):

N-(3,4-dichlorobenzyl)acetamide (1t) ¹H NMR (600 MHz, CDCl₃):

N-benzylmethanesulfonamide (1v) ¹H NMR (600 MHz, CDCl₃):

N-hexylbutyramide (1aa) ¹H NMR (600 MHz, CDCl₃):

N-(cyanomethyl)benzamide (1 ae) ¹H NMR (600 MHz, CDCl₃):

N-benzoylbenzamide (2a) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-4-chlorobenzamide (2b) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-4-(trifluoromethyl)benzamide (2d) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-4-methylbenzamide (2e) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-3-chlorobenzamide (2f) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-3-bromobenzamide (2g)¹H NMR (600 MHz, CDCl₃):

N-benzoyl-3-methoxybenzamide (2h) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-2-chlorobenzamide (2i) ¹H NMR (600 MHz, CDCl₃):

N-acetyl-4-methylbenzamide (2k) ¹H NMR (600 MHz, CDCl₃):

N-acetyl-4-chlorobenzamide (2m) ¹H NMR (600 MHz, CDCl₃):

N-acetyl-2-chlorobenzamide (20) ¹H NMR (600 MHz, CDCl₃):

N-pivaloylbenzamide (2q) ¹H NMR (600 MHz, CDCl₃):

N-(phenylsulfonyl)benzamide (2s) ¹H NMR (600 MHz, CDCl₃):

4-fluoro-N-formylbenzamide (2u) ¹H NMR (600 MHz, CDCl₃):

N-benzoyl-*N*-methylbenzamide (2w) ¹H NMR (600 MHz, CDCl₃):

N-acetyl-N-ethylbenzamide (2y) ¹H NMR (600 MHz, CDCl₃):

ethyl 2-benzamido-2-oxoacetate (2z) ¹H NMR (600 MHz, CDCl₃):

benzoylcarbamoyl cyanide (2aa) ¹H NMR (600 MHz, CDCl₃):

