Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Photocatalyst-Free Visible-Light-Promoted C(sp²)-P Coupling:

Efficient Synthesis of Aryl Phosphonates

Shiqi Xiang[‡], Min Li[‡], Zhen Xia, Chen Fang, Wen Yang^{*}, Wei Deng^{*} and Ze Tan^{*} State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China

E-mail: ztanze@gmail.com, yangwen@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn, weideng@hnu.edu.cn.

[‡]These authors contribute equally to this work

Contents

1. General Information	1
2. Experimental section	1
3. Characterization data of products	8
4. NMR spectrum	29

1. General Information

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Products were purified by column chromatography on 200-300 mesh silica gel, SiO₂. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were measured on a 400 MHz NMR spectrometer using CDCl₃ as the solvent. The chemical shifts are given in δ relative to TMS, and the coupling constants are given in Hertz. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; qui, quintet; sxt, sextet. The HRMS analyses were conducted using a TOF MS instrument with an EI source. Melting points were measured by a melting point instrument and were uncorrected.

2. Experimental section

2.1 General procedure for photochemical phosphorylation of aryl halides.

Aryl halide (0.5 mmol, 1.0 eq) **1** and potassium thioacetate **2** (1.0 mmol, 2,0 eq) were added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then trialkyl phosphite **3** (2.5 mmol, 5.0 eq) and CH₃CN (2.0 mL) were added. The mixture was placed on the magnetic stirrer under irradiation for 24h with white LEDs (4×23 w, 6500k) equipped with a cooling fan. When the reaction was completed, the reaction mixture was filtered and then the solvent was removed under reduced pressure. The residue was finally purified by silica gel column chromatography using hexane/ethyl acetate (10:1 to 1:1, v/v) as eluent to afford the pure product.

Larger-scale synthesis of 4aa. 4-Bromoacetophenone 1a (995.3 mg, 5.0 mmol) and potassium thioacetate 2 (1.14g, 10.0 mmol) were added to a 50 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3

times, and then triethyl phosphite **3a** (4.15g, 25.0 mmol) and CH₃CN (20.0 mL) were added. The mixture was placed on the magnetic stirrer under irradiation for 24h with white LEDs (4×23 w, 6500k) equipped with a cooling fan. When the reaction was completed, the reaction mixture was filtered and then the solvent was removed under reduced pressure. The residue was finally purified by silica gel column chromatography using hexane/ethyl acetate (10:1 to 1:1, v/v) as eluent to afford the pure product **4aa** (871.2 mg, 68% yield).

2.2 Optimization studies of the phosphonylation of aryl iodides

	^{−1} + ^O _{H₃C} − s ^Θ κ [⊕] + 2	White LEDs(2) solvent [0.25 N ₂ , 24 h	3W) M] 4aa
entry	solvent	ratio (1a/3a)	yield ^b (%)
1	CH ₃ CN	1:5	73
2	DMSO	1:5	44
3	DMF	1:5	36
4	DMA	1:5	30
5	THF	1:5	18
6	DCE	1:5	15
7	1,4-dioxane	1:5	trace

Table S1: Solvent selection of the phosphonylation of aryl iodides^a

^a Reaction conditions: 1a (0.5 mmol), 2 (1.0 mmol), 3a (2.5 mmol), solvent (2.0 mL), N₂, 24 h.

^b Isolated yield.

2.3 Mechanism experiments.

4-Bromoacetophenone **1a** (99.5 mg, 0.5 mmol), potassium thioacetate **2** (114.2 mg, 1.0 mmol) and TEMPO (234.4 mg, 1.5 mmol) were added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then triethyl phosphite **3a** (415.4 mg, 2.5 mmol) and CH₃CN (2.0 mL) were added. The mixture was placed on the magnetic stirrer under irradiation for 24h with white LEDs (4 × 23 w,

6500k) equipped with a cooling fan. When the reaction was completed, products **4aa** and TEMPO-bound adduct could not be detected.

2.4 UV-Vis absorption spectra.

A. The UV-Vis absorption spectra of DMSO solutions of 4-bromoacetophenone 1a (0.05 M), potassium thioacetate 2 (0.05 M), triethyl phosphite 3a (0.05 M) and their mixtures (0.05 M) are shown in Figure S2. A bathochromic shift can be observed, indicating the formation of an EDA complex.

Fig S1, UV-Vis spectra of 1a, 2, 3a and their mixtures for [0.05 M] solutions in DMSO

The following Fig S3 shows TLC analysis of UV-vis measure samples, and from left to right are 4-bromoacetophenone(1a), 4-bromoacetophenone/ potassium thioacetate/ triethyl phosphite(1a/2/3a) mixture in DMSO, co-spot of 1a/2/3a mixture and diethyl (4-acetylphenyl)phosphonate, diethyl (4-acetylphenyl)phosphonate, potassium thioacetate, respectively.

Fig S2, TLC analysis of UV-vis measure samples

Fig S3, UV-Vis spectra of 1a/2/3a mixture at different concentrations in DMSO

Fig S4, Plot of absorbance of 1a/2/3a mixture as a function of concentrations. Path length =1 cm.

To evaluate the stoichiometry of the EDA complex, a Job's plot was constructed using UV-Vis spectroscopy. Absorption of different molar ratios of 4-bromoacetophenone (1a) and potassium thioacetate (2) in DMSO at a constant total concentration (0.1 M) at 400 nm was measured. The absorbance values were plotted against the molar fraction of 1a in solution. Maximum absorbance was obtained for a 1:1 mixture, which indicates the stoichiometry of the EDA complex in solution.

Fig S5, Job's plot for the EDA complex between 1a and 2

The color changes in CH₃CN are shown in the following Fig S7. The CH₃CN solution of **2** appears bright yellow and the CH₃CN solution of **1a/2** mixture appears orange yellow. In addition, the solution of **1a/2/3a** in CH₃CN appears light yellow, while the solutions of **1a**, **3a**, **2/3a** and **1a/3a** are colorless. There are many white crystals (possibly undissolved potassium thioacetate) in the solutions of **2**, **1a/2**, **2/3a** and **1a/2/3a**.

Fig S6, color changes of 1a, 2, 3a and their mixtures in CH₃CN

B. The UV-Vis absorption spectra of 4-iodoacetophenone, potassium thioacetate **2**, triethyl phosphite **3a** and their mixtures were recorded for 0.05 M solutions in DMSO.

Fig S7, UV-Vis spectra of C₈H₇IO, 2, 3a and their mixtures for [0.05 M] solutions in DMSO

Fig S8, UV-Vis spectra of C₈H₇IO /2/3a mixture at different concentrations in DMSO

Fig S9, Job's plot for the EDA complex between C₈H₇IO and 2

2.5 Light on-off experiments.

4-Bromoacetophenone **1a** (99.5 mg, 0.5 mmol) and potassium thioacetate **2** (114.2 mg, 1.0 mmol) were added to a 10 mL Schlenk flask equipped with a high-vacuum PTFE valve-to-glass seal. The flask was evacuated and backfilled with nitrogen for 3 times, and then triethyl phosphite **3a** (415.4mg, 2.5 mmol) and CH₃CN (2.0 mL) were added. The mixture was placed on the magnetic stirrer under irradiation with white LEDs (4×23 w, 6500k) equipped with a cooling fan. After 3 h of light irradiation, an aliquot (0.1 mL) was removed by a syringe from each vial and directly analyzed by ¹H-NMR using 1,3,5-trimethoxybenzene as an internal standard to obtain the yield of the phosphonate ester **4aa**. Thereafter, the light was switched off with continuous stirring for 3 h. Once again, an analytical sample solution was prepared (as mentioned earlier) and analyzed similarly, and the light was switched on for 3 h. This cycle was repeated and the yield of **4aa** with respect to time was plotted (Fig S4). The nature of the graph indicates that the process is dependent on light.

Fig S10, on-off experiment

3. Characterization data of products

Diethyl (4-acetylphenyl)phosphonate (4aa). Colorless oil, 104 mg, yield: 81% for X=Br; 94 mg, yield: 73% for X=I; 10 mg, yield: 8% for X=Cl; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.94 (m, 2H), 7.93 – 7.86 (m, 2H), 4.19 – 4.00 (m, 4H), 2.60 (s, 3H), 1.29 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 139.9 (d, *J* = 3.2 Hz), 133.4 (d, *J* = 186.6 Hz), 132.1 (d, *J* = 10.1 Hz), 128.1 (d, *J* = 15.1 Hz), 62.5 (d, *J* = 5.5 Hz), 26.9, 16.4 (d, *J* = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.9. The spectral data were in accordance with the literature.¹

Diethyl (3-acetylphenyl)phosphonate (4ba). Yellow oil, 94 mg, Yield: 74%; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 13.8 Hz, 1H), 8.10 (d, *J* = 9.7 Hz, 1H), 7.99 – 7.93 (m, 1H), 7.57 – 7.52 (m,

1H), 4.18 - 4.03 (m, 4H), 2.60 (s, 3H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.2, 137.2 (d, J = 13.9 Hz), 136.0 (d, J = 9.9 Hz), 131.9 (d, J = 3.0 Hz), 131.7 (d, J = 10.6 Hz), 129.5 (d, J = 189.4 Hz), 129.0 (d, J = 14.8 Hz), 62.5 (d, J = 5.6 Hz), 26.7, 16.4 (d, J = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.2. The spectral data were in accordance with the literature.²

Diethyl (4-propionylphenyl)phosphonate (4ca). Yellow oil, 134 mg, Yield: 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (dd, J = 8.1, 3.8 Hz, 2H), 7.85 (dd, J = 12.9, 7.9 Hz, 2H), 4.14 – 4.03 (m, 4H), 2.97 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.0 Hz, 6H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 139.8 (d, J = 3.3 Hz), 133.2 (d, J = 186.8 Hz), 132.2 (d, J = 10.1 Hz), 127.8 (d, J = 15.1 Hz), 62.5 (d, J = 5.6 Hz), 32.2, 16.4 (d, J = 6.3 Hz), 8.1. ³¹P NMR (162 MHz, CDCl₃) δ 17.0. The spectral data were in accordance with the literature.³

Diethyl (3-propionylphenyl)phosphonate (4da). Yellow oil, 97 mg, Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 13.8 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 7.97 (dd, *J* = 12.9, 7.5 Hz, 1H), 7.58 – 7.53 (m, 1H), 4.18 – 4.05 (m, 4H), 3.02 (q, *J* = 7.2 Hz, 2H), 1.31 (t, *J* = 7.1 Hz, 6H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 137.0 (d, *J* = 13.7 Hz), 135.9 (d, *J* = 10.0 Hz), 131.7 (d, *J* = 3.0 Hz), 131.3 (d, *J* = 10.6 Hz), 129.4 (d, *J* = 189.3 Hz), 129.0 (d, *J* = 15.0 Hz), 62.4 (d, *J* = 5.6 Hz), 32.0, 16.4 (d, *J* = 6.4 Hz), 8.1. ³¹P NMR (162 MHz, CDCl₃) δ 17.3; HRMS (EI) m/z: [M]⁺ calcd for C₁₃H₁₉O₄P 270.1021, found 270.1018.

Diethyl (4-butyrylphenyl)phosphonate (4ea). Yellow oil, 107 mg, Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 7.9, 4.1 Hz, 2H), 7.87 (dd, J = 12.7, 8.2 Hz, 2H), 4.19 – 4.02 (m, 4H), 2.93 (t, J = 7.2 Hz, 2H), 1.78 – 1.69 (m, 2H), 1.29 (t, J = 7.1 Hz, 6H), 0.97 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 140.0 (d, J = 3.3 Hz), 133.1 (d, J = 186.8 Hz), 132.0 (d, J = 10.0 Hz), 127.8 (d, J = 15.1 Hz), 62.5 (d, J = 5.5 Hz), 40.8, 17.6, 16.4 (d, J = 6.3 Hz), 13.8. ³¹P NMR (162 MHz, CDCl₃) δ 17.0. The spectral data were in accordance with the literature.³

Diethyl (4-pentanoylphenyl)phosphonate (4fa). Yellow oil, 147 mg, Yield: 99%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 3.8 Hz, 2H), 7.88 (dd, J = 12.9, 7.9 Hz, 2H), 4.18 – 4.05 (m, 4H), 2.96 (t, J = 7.3 Hz, 2H), 1.74 – 1.67 (m, 2H), 1.44 – 1.34 (m, 2H), 1.31 (t, J = 7.0 Hz, 6H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.8, 139.9 (d, J = 3.3 Hz), 133.1 (d, J = 186.8 Hz), 132.2 (d, J = 10.0 Hz), 127.8 (d, J = 15.1 Hz), 62.4 (d, J = 5.5 Hz), 40.8, 17.5, 16.3 (d, J = 6.3 Hz), 13.8. ³¹P NMR (162 MHz, CDCl₃) δ 17.0; HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₂₃O₄P 298.1334, found 298.1331.

Diethyl (4-(cyclopropanecarbonyl)phenyl)phosphonate (4ga). Colorless oil, 112 mg, Yield: 79%; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.3, 3.8 Hz, 2H), 7.90 (dd, J = 12.9, 7.9 Hz, 2H), 4.21 – 4.04 (m, 4H), 2.68 – 2.62 (m, 1H), 1.31 (t, J = 7.1 Hz, 6H), 1.27 – 1.23 (m, 2H), 1.09 – 1.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.4, 141.0 (d, J = 3.2 Hz), 133.0 (d, J = 186.6 Hz), 132.1 (d, J =10.0 Hz), 127.9 (d, J = 15.1 Hz), 62.5 (d, J = 5.5 Hz), 17.7, 16.4 (d, J = 6.4 Hz), 12.3. ³¹P NMR (162 MHz, CDCl₃) δ 17.1; HRMS (EI) m/z: [M]⁺ calcd for C₁₄H₁₉O₄P 282.1021, found 282.1026.

Ethyl 4-(diethoxyphosphoryl)benzoate (4ha). Colorless oil, 103 mg, Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 8.1, 3.8 Hz, 2H), 7.87 (dd, J = 13.0, 7.9 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.21 – 4.03 (m, 4H), 1.39 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 133.9 (d, J = 3.3 Hz), 133.1 (d, J = 186.5 Hz), 131.8 (d, J = 10.1 Hz), 129.4 (d, J = 15.1 Hz), 62.4 (d, J = 5.6 Hz), 61.5, 16.3 (d, J = 6.3 Hz), 14.3. ³¹P NMR (162 MHz, CDCl₃) δ 17.1. The spectral data were in accordance with the literature.¹

Diethyl (1-oxo-2,3-dihydro-1H-inden-4-yl)phosphonate (4ia). Colorless oil, 90 mg, Yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 13.7, 7.4 Hz, 1H), 7.92 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.50

-7.46 (m, 1H), 4.26 -4.07 (m, 4H), 3.37 (t, *J* = 5.9 Hz, 2H), 2.72 (t, *J* = 8.0, 1.7 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 206.2, 158.0 (d, *J* = 10.2 Hz), 138.9 (d, *J* = 10.7 Hz), 137.8 (d, *J* = 12.6 Hz), 127.8 (d, *J* = 3.2 Hz), 127.4 (d, *J* = 13.9 Hz), 127.0 (d, *J* = 189.5 Hz), 62.4 (d, *J* = 5.6 Hz), 36.0, 26.3 (d, *J* = 2.3 Hz), 16.4 (d, *J* = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.2; HRMS (EI) m/z: [M]⁺ calcd for C₁₃H₁₇O₄P 268.0864, found 268.0862.

Diethyl (1-oxo-2,3-dihydro-1H-inden-5-yl)phosphonate (4ja). Colorless oil, 114 mg, Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 13.5 Hz, 1H), 7.81 – 7.70 (m, 2H), 4.20 – 4.03 (m, 4H), 3.16 (t, J = 7.0 Hz, 2H), 2.69 (t, J = 8.0 Hz, 2H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 154.6 (d, J = 16.1 Hz), 139.9 (d, J = 2.9 Hz), 135.0 (d, J = 183.8 Hz), 130.6 (d, J = 10.2 Hz), 130.3 (d, J = 10.5 Hz), 123.7 (d, J = 15.9 Hz), 62.5 (d, J = 5.6 Hz), 36.3, 25.8 (d, J = 1.5 Hz), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.1; HRMS (EI) m/z: [M]⁺ calcd for C₁₃H₁₇O₄P 268.0864, found 268.0863.

Diethyl (5-oxo-5,6,7,8-tetrahydronaphthalen-1-yl)phosphonate (4ka). Colorless oil, 90 mg, Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 7.4 Hz, 1H), 8.08 (dd, *J* = 14.2, 7.6 Hz, 1H), 7.40 – 7.35 (m, 1H), 4.21 – 4.04 (m, 4H), 3.26 (t, *J* = 6.2 Hz, 2H), 2.65 (t, *J* = 6.6 Hz, 2H),

2.17 – 2.06 (m, 2H), 1.32 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 147.8 (d, J = 11.4 Hz), 138.7 (d, J = 10.2 Hz), 133.6 (d, J = 13.9 Hz), 131.7 (d, J = 3.0 Hz), 127.7 (d, J = 186.0 Hz), 126.3 (d, J = 15.2 Hz), 62.3 (d, J = 5.8 Hz), 38.8, 28.1 (d, J = 3.8 Hz), 22.7, 16.4 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.7; HRMS (EI) m/z: [M]⁺ calcd for C₁₄H₁₉O₄P 282.1021, found 282.1018.

Diethyl (1-oxo-1,3-dihydroisobenzofuran-5-yl)phosphonate (4la). White solid, m.p. 64.8-66.2 °C, 94 mg, Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.91 (m, 3H), 5.36 (s, 2H), 4.24 – 4.07 (m, 4H), 1.33 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 146.3 (d, J = 16.8 Hz), 135.2 (d, J = 185.4 Hz), 132.1 (d, J = 10.5 Hz), 129.0 (d, J = 2.6 Hz), 125.9 (d, J = 11.0 Hz), 125.8 (d, J = 17.1 Hz), 69.7 (d, J = 2.4 Hz), 62.7 (d, J = 5.6 Hz), 16.3 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.0; HRMS (EI) m/z: [M]⁺ calcd for C₁₂H₁₅O₅P 270.0657, found 270.0659.

Diethyl (2-cyanophenyl)phosphonate (4ma). Colorless oil, 65 mg, Yield: 54% for X=Br; 63 mg, yield: 53% for X=I; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, *J* = 14.2, 7.4 Hz, 1H), 7.83 – 7.76 (m, 1H), 7.72 – 7.61 (m, 2H), 4.30 – 4.13 (m, 4H), 1.36 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.6 (d, *J* = 3.3 Hz), 134.5 (d, *J* = 5.9 Hz), 132.5 (d, *J* = 2.7 Hz), 132.3 (d, *J* = 187.8

Hz), 132.3 (d, J = 14.1 Hz), 115.9 (d, J = 249.9 Hz), 63.2 (d, J = 6.0 Hz), 16.3 (d, J = 6.3 Hz). ³¹P

NMR (162 MHz, CDCl₃) δ 12.6. The spectral data were in accordance with the literature.¹

Diethyl (4-(phenylsulfonyl)phenyl)phosphonate (4na). Colorless oil, 138 mg, Yield: 78%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 3.6 Hz, 2H), 7.91 (dd, J = 13.0, 7.9 Hz, 4H), 7.60 – 7.54 (m, 1H), 7.49 (t, J = 7.5 Hz, 2H), 4.21 – 3.99 (m, 4H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (d, J = 3.5 Hz), 140.7, 134.2 (d, J = 187.2 Hz), 133.7, 132.6 (d, J = 10.2 Hz), 129.5, 127.9, 127.5 (d, J = 15.1 Hz), 62.6 (d, J = 5.6 Hz), 16.3 (d, J = 6.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 15.5; HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₁₉O₅PS 354.0691, found 354.0694.

Diethyl (4-benzoylphenyl)phosphonate (40a). Yellow oil, 156 mg, Yield: 98% for X=Br; 92 mg, yield: 58% for X=I; 11 mg, yield: 7% for X=Cl; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dd, *J* = 12.9, 7.9 Hz, 2H), 7.82 (dd, *J* = 8.1, 3.9 Hz, 2H), 7.77 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.20 – 4.06 (m, 4H), 1.32 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.0, 140.9 (d, *J* = 3.2 Hz), 136.8, 133.0, 132.5 (d, *J* = 187.0 Hz), 131.7 (d, *J* = 10.0 Hz), 130.1, 129.6 (d, *J* = 15.0 Hz), 128.5, 62.4 (d, *J* = 5.5 Hz), 16.4 (d, *J* = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.0. The spectral data were in accordance with the literature.⁴

Diethyl (4-(2-aminobenzoyl)phenyl)phosphonate (4pa). Yellow solid, m.p. 122.7-124.3 °C, 118 mg, Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (dd, J = 13.1, 7.8 Hz, 2H), 7.69 (dd, J = 8.0, 3.9 Hz, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.34 – 7.27 (m, 1H), 6.76 (d, J = 8.3 Hz, 1H), 6.59 (t, J = 7.6 Hz, 1H), 6.28 (s, 2H), 4.29 – 4.06 (m, 4H), 1.36 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 151.4, 143.8 (d, J = 3.2 Hz), 134.8, 134.5, 131.6 (d, J = 10.0 Hz), 130.9 (d, J = 187.7 Hz), 128.7 (d, J = 15.1 Hz), 117.3, 117.1, 115.6, 62.4 (d, J = 5.5 Hz), 16.4 (d, J = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.5; HRMS (EI) m/z: [M]⁺ calcd for C₁₇H₂₀NO₄P 333.1130, found 333.1133.

Diethyl (4-(4-fluorobenzoyl)phenyl)phosphonate (4qa). Colorless oil, 121 mg, Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 13.0, 7.9 Hz, 2H), 7.88 – 7.76 (m, 4H), 7.16 (t, J = 8.5 Hz, 2H), 4.23 – 4.07 (m, 4H), 1.34 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 165.7 (d, J = 255.3 Hz), 140.8 (d, J = 3.2 Hz), 133.0 (d, J = 3.0 Hz), 132.8 (d, J = 9.4 Hz), 132.6 (d, J = 187.1 Hz), 131.8 (d, J = 10.0 Hz), 129.5 (d, J = 15.0 Hz), 115.7 (d, J = 21.9 Hz), 62.5 (d, J = 5.5 Hz), 16.4 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.9; HRMS (EI) m/z: [M]⁺ calcd for C₁₇H₁₈FO₄P 336.0927, found 336.0930.

Diethyl (4-(4-chlorobenzoyl)phenyl)phosphonate (4ra). Colorless oil, 123 mg, Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dd, J = 12.4, 7.5 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.55 (dd, J = 8.4, 1.2 Hz, 2H), 7.27 (dd, J = 8.4, 1.3 Hz, 2H), 4.03 – 3.89 (m, 4H), 1.15 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.7, 140.5 (d, J = 3.2 Hz), 139.6, 135.0, 132.8 (d, J = 187.3 Hz), 131.8 (d, J = 10.1 Hz), 131.5, 129.5 (d, J = 15.0 Hz), 128.9, 62.5 (d, J = 5.5 Hz), 16.3 (d, J = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.8; HRMS (EI) m/z: [M]⁺ calcd for C₁₇H₁₈ClO₄P 352.0631, found 352.0628.

Diethyl [1,1'-biphenyl]-4-ylphosphonate (4sa). Colorless oil, 106 mg, Yield: 73% for X=Br; 101 mg, yield: 70% for X=I; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, *J* = 12.7, 7.8 Hz, 2H), 7.68 (dd, *J* = 8.1, 3.9 Hz, 2H), 7.62 – 7.56 (m, 2H), 7.49 – 7.42 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 4.23 – 4.04 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3 (d, *J* = 3.2 Hz), 140.0, 132.4 (d, *J* = 10.1 Hz), 129.0, 128.2, 127.3, 127.2 (d, *J* = 15.2 Hz), 126.9 (d, *J* = 190.0 Hz), 62.2 (d, *J* = 5.4 Hz), 16.4 (d, *J* = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.0. The spectral data were in accordance with the literature.¹

Diethyl (4-fluoronaphthalen-1-yl)phosphonate (4ta). Colorless oil, 107 mg, Yield: 76%; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 8.5 Hz, 1H), 8.27 – 8.12 (m, 2H), 7.67 – 7.57 (m, 2H), 7.18 (t, J = 9.0 Hz, 1H), 4.25 – 4.01 (m, 4H), 1.29 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.4 (d, J = 4.1 Hz), 160.8 (d, J = 4.1 Hz), 135.5 (t, J = 10.0 Hz), 134.7 (dd, J = 12.3, 5.3 Hz), 128.5, 126.7 (dd, J = 4.4, 2.5 Hz), 124.1 (dd, J = 15.8, 14.0 Hz), 121.2 (d, J = 6.4 Hz), 120.8 (dd, J = 186.8, 4.4 Hz), 108.6 (dd, J = 20.2, 17.6 Hz), 62.3 (d, J = 5.4 Hz), 16.4 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.3; HRMS (EI) m/z: [M]⁺ calcd for C₁₄H₁₆FO₃P 282.0821, found 282.0823.

Diethyl (4'-acetyl-[1,1'-biphenyl]-4-yl)phosphonate (4ua). White solid, m.p. 96.5-97.4 °C, 121 mg, Yield: 73%; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 7.90 (dd, *J* = 13.0, 7.8 Hz, 2H), 7.74 – 7.66 (m, 4H), 4.23 – 4.05 (m, 4H), 2.63 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 144.5, 143.8 (d, *J* = 3.1 Hz), 136.6, 132.5 (d, *J* = 10.2 Hz), 129.1, 127.5, 127.5, 127.3, 62.3 (d, *J* = 5.4 Hz), 26.8, 16.4 (d, *J* = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.4; HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₂₁O₄P 332.1177, found 332.1174.

Methyl 4'-(diethoxyphosphoryl)-[1,1'-biphenyl]-4-carboxylate (4va). White solid, m.p. 81.6-82.4 °C, 143 mg, Yield: 82%; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.1 Hz, 2H), 7.90

(dd, J = 13.0, 7.9 Hz, 2H), 7.74 – 7.63 (m, 4H), 4.22 – 4.05 (m, 4H), 3.93 (s, 3H), 1.33 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 144.1 (d, J = 39.9 Hz), 132.4 (d, J = 10.1 Hz), 130.2, 129.8, 128.0 (d, J = 189.4 Hz), 127.4, 127.3, 62.2 (d, J = 5.4 Hz), 52.2, 16.4 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.4; HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₂₁O₅P 348.1127, found 348.1125.

Diethyl (4-phenylnaphthalen-1-yl)phosphonate (4wa). White solid, 106 mg, Yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 8.6 Hz, 1H), 8.29 (dd, J = 16.2, 7.3 Hz, 1H), 7.94 (d, J = 8.5 Hz, 1H), 7.62 (t, J = 7.7 Hz, 1H), 7.52 – 7.44 (m, 7H), 4.28 – 4.10 (m, 7.2 Hz, 4H), 1.35 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 145.8 (d, J = 3.6 Hz), 140.0, 134.3 (d, J = 8.9 Hz), 133.2 (d, J = 11.3 Hz), 132.0 (d, J = 12.9 Hz), 129.9, 128.4, 127.9, 127.3, 127.0, 127.0 (d, J = 4.5 Hz), 126.4, 125.7 (d, J = 16.5 Hz), 123.9 (d, J = 183.8 Hz), 62.3 (d, J = 5.2 Hz), 16.5 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.4; HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₂₁O₃P 340.1228, found 340.1230.

OSP OEt

Diethyl naphthalen-1-ylphosphonate (4xa). Colorless oil, 74 mg, Yield: 71%; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 8.5 Hz, 1H), 8.23 (dd, *J* = 16.3, 7.0 Hz, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.56 – 7.48 (m, 2H), 4.25 – 4.02 (m, 4H), 1.29 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 134.7 (d, *J* = 9.2 Hz), 133.6 (d, *J* = 3.7 Hz), 133.5, 132.7 (d, *J* = 10.9 Hz), 128.8 (d, *J* = 2.0 Hz), 127.4, 126.7 (d, *J* = 4.2 Hz), 126.4, 124.6 (d, *J* =

182.6 Hz), 124.5 (d, J = 16.7 Hz), 62.2 (d, J = 5.2 Hz), 16.3 (d, J = 6.6 Hz). ³¹P NMR (162 MHz,

CDCl₃) δ 19.2. The spectral data were in accordance with the literature.¹

Methyl 6-(diethoxyphosphoryl)-2-naphthoate (4ya). White solid, m.p. 68.7-70.1 °C, 156 mg, Yield: 97%; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.44 (d, *J* = 15.4 Hz, 1H), 8.11 (d, *J* = 8.7 Hz, 1H), 8.01 (dd, *J* = 8.6, 3.8 Hz, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.81 (t, *J* = 9.7 Hz, 1H), 4.26 – 4.06 (m, 4H), 3.97 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 134.3 (d, *J* = 16.6 Hz), 134.0 (d, *J* = 2.7 Hz), 133.6 (d, *J* = 10.0 Hz), 130.7, 129.7 (d, *J* = 14.2 Hz), 129.5, 129.2, 129.0, 127.3 (d, *J* = 9.7 Hz), 126.2, 62.4 (d, *J* = 5.4 Hz), 52.4, 16.4 (d, *J* = 6.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 18.0; HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₁₉O₅P 322.0970, found 322.0968.

Diethyl (4-cyanonaphthalen-1-yl)phosphonate (4za). Colorless oil, 131 mg, Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 9.5 Hz, 1H), 8.33 – 8.21 (m, 2H), 7.94 (dd, J = 7.3, 3.2 Hz, 1H), 7.77 – 7.70 (m, 2H), 4.26 – 4.07 (m, 4H), 1.30 (t, J = 6.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 132.6 (d, J = 8.9 Hz), 132.4 (d, J = 5.9 Hz), 132.3 (d, J = 7.7 Hz), 131.0 (d, J = 181.5 Hz), 130.9 (d, J = 16.6 Hz), 128.9 (d, J = 1.5 Hz), 127.5 (d, J = 4.1 Hz), 125.9 (d, J = 1.4 Hz), 117.0 (d, J = 1.7 Hz), 115.2 (d, J = 3.9 Hz), 62.8 (d, J = 5.5 Hz), 16.3 (d, J = 6.3 Hz). ³¹P NMR

(162 MHz, CDCl₃) δ 16.0; HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₁₆NO₃P 289.0868, found 289.0866.

Diethyl (8-chloronaphthalen-1-yl)phosphonate (4ab). Colorless oil, 85 mg, Yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (dd, J = 17.6, 7.3 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 7.4 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.41 (t, J = 7.8 Hz, 1H), 4.27 – 4.14 (m, 4H), 1.37 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 137.5 (d, J = 7.3 Hz), 136.3 (d, J = 11.7 Hz), 134.7 (d, J = 3.5 Hz), 131.5 (d, J = 9.0 Hz), 131.0, 130.8 (d, J = 5.6 Hz), 128.8 (d, J = 2.3 Hz), 126.3, 124.8 (d, J = 16.0 Hz), 124.0 (d, J = 187.5 Hz), 62.5 (d, J = 6.3 Hz), 16.3 (d, J = 6.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 19.2; HRMS (EI) m/z: [M]⁺ calcd for C₁₄H₁₆ClO₃P 298.0526, found 298.0527.

Diethyl (6-cyanopyridin-3-yl)phosphonate (4ac). Colorless oil, 105 mg, Yield: 88%; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 6.1 Hz, 1H), 7.73 (dd, J = 13.3, 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 3.73 – 3.61 (m, 4H), 0.83 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.2 (d, J = 12.2 Hz), 140.7 (d, J = 8.5 Hz), 136.7 (d, J = 2.4 Hz), 129.1 (d, J = 188.6 Hz), 128.0 (d, J = 12.0 Hz), 116.6 (d, J = 2.3 Hz), 63.3 (d, J = 5.8 Hz), 16.4 (d, J = 6.2 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 12.6; HRMS (EI) m/z: [M]⁺ calcd for C₁₀H₁₃N₂O₃P 240.0664, found 240.0567.

Diisopropyl (4-acetylphenyl)phosphonate (4af). Colorless oil, 90 mg, Yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 8.4, 2.6 Hz, 2H), 7.86 (dd, J = 13.2, 7.7 Hz, 2H), 4.74 – 4.59 (m, 2H), 2.58 (s, 3H), 1.32 (d, J = 6.2 Hz, 6H), 1.17 (d, J = 5.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 139.6 (d, J = 3.2 Hz), 134.9 (d, J = 187.2 Hz), 132.0 (d, J = 10.0 Hz), 127.9 (d, J = 15.0 Hz), 71.2 (d, J = 5.8 Hz), 26.8, 24.0 (d, J = 4.0 Hz), 23.8 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.6. The spectral data were in accordance with the literature.⁵

Diisopropyl (4-propionylphenyl)phosphonate (4ag). Colorless oil, 127 mg, Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.2, 3.7 Hz, 2H), 7.89 (dd, J = 12.8, 8.0 Hz, 2H), 4.77 – 4.64 (m, 2H), 3.01 (q, J = 7.2 Hz, 2H), 1.36 (d, J = 6.2 Hz, 6H), 1.22 (t, J = 5.9 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 139.5 (d, J = 3.1 Hz), 134.7 (d, J = 187.3 Hz), 132.0 (d, J = 9.9 Hz), 127.6 (d, J = 15.0 Hz), 71.2 (d, J = 5.7 Hz), 32.1, 24.0 (d, J = 4.0 Hz), 23.8 (d, J = 4.8 Hz), 8.1. ³¹P NMR (162 MHz, CDCl₃) δ 14.7; HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₂₃O₄P 298.1334, found 298.1332.

Diisopropyl (4-(cyclopropanecarbonyl)phenyl)phosphonate (4ah). Colorless oil, 140 mg, Yield: 90%; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 7.7, 2.9 Hz, 2H), 7.90 (dd, J = 12.9, 7.9

Hz, 2H), 4.75 - 4.64 (m, 2H), 2.68 - (m, 1H), 1.36 (d, J = 6.2 Hz, 6H), 1.24 (q, J = 3.9 Hz, 2H), 1.20 (d, J = 6.1 Hz, 6H), 1.06 (dd, J = 7.7, 3.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 200.3, 140.6 (d, J = 3.2 Hz), 134.5 (d, J = 187.2 Hz), 131.9 (d, J = 10.0 Hz), 127.6 (d, J = 15.0 Hz), 71.2 (d, J = 5.6 Hz), 24.0 (d, J = 4.0 Hz), 23.8 (d, J = 4.8 Hz), 17.6, 12.1. ³¹P NMR (162 MHz, CDCl₃) δ 14.8; HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₂₃O₄P 310.1334, found 310.1337.

Diisopropyl (1-oxo-2,3-dihydro-1H-inden-4-yl)phosphonate (4ai). Colorless oil, 88 mg, Yield: 60%; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 13.8, 7.4 Hz, 1H), 7.88 (dd, J = 7.8, 1.8 Hz, 1H), 7.47 – 7.42 (m, 1H), 4.82 – 4.68 (m, 2H), 3.35 (t, J = 6.2 Hz, 2H), 2.69 (t, J = 6.5 Hz, 2H), 1.37 (d, J = 6.2 Hz, 6H), 1.22 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 157.8 (d, J = 10.0Hz), 138.7 (d, J = 11.0 Hz), 137.6 (d, J = 12.6 Hz), 129.3, 127.5 (d, J = 3.3 Hz), 127.2 (d, J = 13.9Hz), 71.2 (d, J = 5.8 Hz), 36.0, 26.2 (d, J = 2.2 Hz), 24.1 (d, J = 4.1 Hz), 23.9 (d, J = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.9; HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₂₁O₄P 296.1177, found 296.1175.

Diisopropyl (1-oxo-2,3-dihydro-1H-inden-5-yl)phosphonate (4aj). Colorless oil, 92 mg, Yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 13.4 Hz, 1H), 7.82 – 7.71 (m, 2H), 4.78 – 4.64 (m, 2H), 3.17 (t, *J* = 6.5 Hz, 2H), 2.71 (t, *J* = 6.5 Hz, 2H), 1.36 (d, *J* = 6.2 Hz, 6H), 1.22 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 206.4, 154.5 (d, *J* = 16.1 Hz), 139.6 (d, *J* = 2.8 Hz), 136.6 (d, *J* = 184.5 Hz), 130.4 (d, *J* = 10.1 Hz), 130.3 (d, *J* = 10.3 Hz), 123.5 (d, *J* = 15.7 Hz), 71.3 (d, J = 5.7 Hz), 36.3, 25.8 (d, J = 1.4 Hz), 24.0 (d, J = 4.0 Hz), 23.9 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.9; HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₂₁O₄P 296.1177, found 296.1179.

Diisopropyl (5-oxo-5,6,7,8-tetrahydronaphthalen-2-yl)phosphonate (4ak). Colorless oil, 124 mg, Yield: 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 6.6 Hz, 1H), 8.14 (dd, *J* = 14.3, 7.5 Hz, 1H), 7.38 (td, *J* = 7.7, 3.5 Hz, 1H), 4.78 – 4.67 (m, 2H), 3.27 (t, *J* = 6.2 Hz, 2H), 2.66 (t, *J* = 6.5 Hz, 2H), 2.12 (p, *J* = 6.3 Hz, 2H), 1.37 (d, *J* = 6.2 Hz, 6H), 1.24 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7 (d, *J* = 2.6 Hz), 147.6 (d, *J* = 11.1 Hz), 138.7 (d, *J* = 10.3 Hz), 133.5 (d, *J* = 13.8 Hz), 131.4 (d, *J* = 2.9 Hz), 129.1 (d, *J* = 186.2 Hz), 126.1 (d, *J* = 15.2 Hz), 71.1 (d, *J* = 5.9 Hz), 38.8, 28.1 (d, *J* = 3.6 Hz), 24.1 (d, *J* = 4.1 Hz), 23.8 (d, *J* = 4.7 Hz), 22.7. ³¹P NMR (162 MHz, CDCl₃) δ 15.4; HRMS (EI) m/z: [M]⁺ calcd for C₁₆H₂₃O₄P 310.1334, found 310.1330.

Diisopropyl (4-benzoylphenyl)phosphonate (4al). Colorless oil, 118 mg, Yield: 68%; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 12.6, 8.1 Hz, 2H), 7.85 – 7.76 (m, 4H), 7.60 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.3 Hz, 2H), 4.80 – 4.65 (m, 2H), 1.38 (d, J = 6.2 Hz, 6H), 1.25 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.1, 140.6 (d, J = 3.1 Hz), 136.9, 134.2 (d, J = 187.8 Hz), 132.9, 131.6 (d, J = 9.9 Hz), 130.1, 129.5 (d, J = 14.9 Hz), 128.5, 71.2 (d, J = 5.7 Hz), 24.1 (d, J = 4.0 Hz), 23.9 (d, J = 4.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.8. The spectral data were in accordance with the literature.⁴

Diisopropyl (4-(4-fluorobenzoyl)phenyl)phosphonate (4am). Colorless oil, 122 mg, Yield: 67%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, *J* = 12.9, 7.8 Hz, 2H), 7.87 – 7.75 (m, 4H), 7.16 (t, *J* = 8.4 Hz, 2H), 4.79 – 4.68 (m, 2H), 1.38 (d, *J* = 6.1 Hz, 6H), 1.25 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.6, 165.7 (d, *J* = 255.2 Hz), 140.5 (d, *J* = 3.0 Hz), 134.3 (d, *J* = 188.2 Hz), 133.2 (d, *J* = 3.0 Hz), 132.8 (d, *J* = 9.3 Hz), 131.7 (d, *J* = 9.9 Hz), 129.3 (d, *J* = 15.0 Hz), 115.7 (d, *J* = 22.0 Hz), 71.3 (d, *J* = 5.6 Hz), 24.1 (d, *J* = 3.9 Hz), 23.9 (d, *J* = 4.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.7; HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₂₂FO₄P 364.1240, found 364.1242.

Diisopropyl (4-(4-chlorobenzoyl)phenyl)phosphonate (4an). Colorless oil, 137 mg, Yield: 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dd, J = 12.9, 7.8 Hz, 2H), 7.80 (dd, J = 8.1, 3.7 Hz, 2H), 7.74 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 8.5 Hz, 2H), 4.78 – 4.67 (m, 2H), 1.39 (d, J = 6.2 Hz, 6H), 1.25 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 140.3 (d, J = 3.2 Hz), 139.6, 135.3, 134.6 (d, J = 187.9 Hz), 131.8 (d, J = 9.9 Hz), 131.6, 129.5 (d, J = 15.0 Hz), 128.9, 71.4 (d, J = 5.7 Hz), 24.2 (d, J = 4.0 Hz), 24.0 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 14.6; HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₂₂ClO₄P 380.0944, found 380.0942.

Diisopropyl (4'-acetyl-[1,1'-biphenyl]-4-yl)phosphonate (4ao). White solid, m.p. 65.8-66.4 °C, 114 mg, Yield: 63%; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.97 – 7.83 (m, 2H),

7.69 (d, J = 7.8 Hz, 4H), 4.75 – 4.68 (m, 2H), 2.63 (s, 3H), 1.38 (d, J = 5.8 Hz, 6H), 1.24 (d, J = 5.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 144.5, 143.4, 136.5, 132.4 (d, J = 9.3 Hz), 129.0, 127.5, 127.3, 127.1, 71.0, 26.7, 24.1, 23.9. ³¹P NMR (162 MHz, CDCl₃) δ 16.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₂₅O₄P 360.1490, found 360.1493.

Methyl 4'-(diisopropoxyphosphoryl)-[1,1'-biphenyl]-4-carboxylate (4ap). White solid, m.p. 64.5-65.7 °C, 117 mg, Yield: 62%; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.0 Hz, 2H), 7.90 (dd, J = 12.9, 7.8 Hz, 2H), 7.68 (t, J = 7.4 Hz, 4H), 4.83 – 4.63 (m, J = 6.4 Hz, 2H), 3.94 (s, 3H), 1.39 (d, J = 6.1 Hz, 6H), 1.25 (d, J = 6.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 144.4, 143.5 (d, J = 3.0 Hz), 132.4 (d, J = 10.0 Hz), 130.2, 129.7 (d, J = 190.5 Hz), 129.8, 127.2, 127.1, 70.9 (d, J = 5.4 Hz), 52.2, 24.1 (d, J = 3.8 Hz), 23.9 (d, J = 4.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 16.2; HRMS (EI) m/z: [M]⁺ calcd for C₂₀H₂₅O₅P 376.1440, found 376.1444.

Diisopropyl (4-cyanonaphthalen-1-yl)phosphonate (4aq). White solid, m.p. 113.4-115.3 °C, 111 mg, Yield: 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, *J* = 9.3 Hz, 1H), 8.29 (dd, *J* = 15.9, 7.3 Hz, 2H), 7.95 (dd, *J* = 7.3, 3.1 Hz, 1H), 7.74 (td, *J* = 7.3, 6.6, 4.1 Hz, 2H), 4.83 – 4.70 (m, 2H), 1.41 (d, *J* = 6.2 Hz, 6H), 1.15 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 132.5 (d, *J* = 181.7 Hz), 132.5 (d, *J* = 9.1 Hz), 132.4, 132.3 (d, *J* = 3.1 Hz), 131.0 (d, *J* = 16.7 Hz), 128.8, 128.6, 127.9 (d, *J* = 4.0 Hz), 125.9, 117.1, 114.9 (d, *J* = 3.8 Hz), 71.8 (d, *J* = 5.7 Hz), 24.1 (d, *J* = 4.1 Hz),

23.8 (d, J = 5.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.8; HRMS (EI) m/z: [M]⁺ calcd for C₁₇H₂₀NO₃P 317.1181, found 317.1179.

Diisopropyl (6-cyanopyridin-3-yl)phosphonate (4ar). Colorless oil, 76 mg, Yield: 57%; ¹H NMR (400 MHz, CDCl₃) δ 9.00 (d, J = 6.1 Hz, 1H), 8.22 (dd, J = 13.3, 7.8 Hz, 1H), 7.75 (d, J = 10.6 Hz, 1H), 4.80 – 4.72 (m, 2H), 1.38 (d, J = 6.2 Hz, 6H), 1.24 (d, J = 6.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.2 (d, J = 12.1 Hz), 140.5 (d, J = 8.4 Hz), 136.4 (d, J = 2.4 Hz), 130.6 (d, J = 189.0 Hz), 127.9 (d, J = 12.1 Hz), 116.7 (d, J = 2.2 Hz), 72.4 (d, J = 5.9 Hz), 24.1 (d, J = 4.3 Hz), 24.0 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 10.3; HRMS (EI) m/z: [M]⁺ calcd for C₁₂H₁₇N₂O₃P 268.0977, found 268.0974.

Methyl 6-(diisopropoxyphosphoryl)-2-naphthoate (4as). White solid, m.p. 99.3-100.4 °C, 107 mg, Yield: 61%; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.45 (d, *J* = 15.3 Hz, 1H), 8.12 (d, *J* = 8.5 Hz, 1H), 8.03 – 7.95 (m, 2H), 7.86 – 7.76 (m, 1H), 4.79 – 4.68 (m, *J* = 6.4 Hz, 2H), 3.98 (s, 3H), 1.40 (d, *J* = 6.1 Hz, 6H), 1.22 (d, *J* = 6.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 134.5, 134.4, 134.0 (d, *J* = 2.5 Hz), 133.5 (d, *J* = 10.0 Hz), 130.8, 129.7, 129.5 (d, *J* = 4.6 Hz), 129.3, 127.5 (d, *J* = 9.4 Hz), 126.2, 71.2 (d, *J* = 5.4 Hz), 52.5, 24.2 (d, *J* = 3.8 Hz), 24.0 (d, *J* = 4.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 15.8; HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₂₃O₅P 350.1283, found 350.1280.

Diisopropyl (4-(phenylsulfonyl)phenyl)phosphonate (4at). Colorless oil, 143 mg, Yield: 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 3.5 Hz, 2H), 7.97 – 7.88 (m, 4H), 7.59 (t, J = 7.4Hz, 1H), 7.52 (t, J = 7.5 Hz, 2H), 4.73 – 4.65 (m, 2H), 1.35 (d, J = 6.2 Hz, 6H), 1.20 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 144.9 (d, J = 3.5 Hz), 140.8, 135.8 (d, J = 187.8 Hz), 133.7, 132.6 (d, J = 10.2 Hz), 129.5, 128.0, 127.45 (d, J = 15.1 Hz), 71.6 (d, J = 5.8 Hz), 24.1 (d, J = 4.1Hz), 23.9 (d, J = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 13.4; HRMS (EI) m/z: [M]⁺ calcd for C₁₈H₂₃O₅PS 382.1004, found 382.1007.

Dimethyl (4-acetylphenyl)phosphonate (4au). Colorless oil, 46 mg, Yield: 40%; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 8.2, 3.8 Hz, 2H), 7.87 (dd, J = 12.9, 7.9 Hz, 2H), 3.75 (d, J = 11.1 Hz, 6H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5, 140.1 (d, J = 3.2 Hz), 132.3 (d, J = 10.1 Hz), 131.9 (d, J = 187.5 Hz), 128.2 (d, J = 15.1 Hz), 53.0 (d, J = 5.7 Hz), 26.9. ³¹P NMR (162 MHz, CDCl₃) δ 19.7. The spectral data were in accordance with the literature.³

Diethyl (4-(benzo[d]thiazol-2-yl)phenyl)phosphonate (4av). White solid, 160 mg, Yield: 92%; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 8.2, 3.7 Hz, 2H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.93 (dd, *J* = 11.8, 7.6 Hz, 3H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 4.24 – 4.05 (m, 4H), 1.34 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.6, 154.0, 137.0 (d, *J* = 3.3 Hz), 135.2, 132.5 (d, *J* = 10.2 Hz), 130.9 (d, *J* = 188.3 Hz), 127.4 (d, *J* = 15.2 Hz), 126.7, 125.8, 123.6, 121.8, 62.4 (d, J = 5.5 Hz), 16.4 (d, J = 6.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 17.6. The spectral data were in accordance with the literature.⁵

Diisopropyl (4-(benzothiazol-2-yl)phenyl)phosphonate (4aw). White solid, m.p. 73.4-74.8 °C, 171 mg, Yield: 91%; ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.12 (m, 2H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.99 – 7.88 (m, 3H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 4.72 (h, *J* = 6.4 Hz, 2H), 1.39 (d, *J* = 6.2 Hz, 6H), 1.24 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 154.1, 136.8, 135.2, 132.6 (d, *J* = 188.3 Hz), 132.5 (d, *J* = 10.1 Hz), 127.3 (d, *J* = 15.1 Hz), 126.6, 125.7, 123.6, 121.8, 71.1 (d, *J* = 5.5 Hz), 24.1 (d, *J* = 4.0 Hz), 23.9 (d, *J* = 4.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 15.3; HRMS (EI) m/z: [M]⁺ calcd for C₁₉H₂₂NO₃PS 375.1058, found 370.1056.

References

1 V. J. Roy and S. Raha Roy, Org. Lett., 2023, 25, 923.

2 E. Jablonkai, L. B. Balázs and G. Keglevich, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2015, **190**, 660.

3 X. F. Huang, Q. L. Wu, J. S. He and Z. Z. Huang, Org. Biomol. Chem, 2015, 13, 4466.

4 W. C. Fu, C. M. So and F. Y. Kwong, Org. Lett., 2015, 17, 5906.

5 D.-L. Zhu, S. Jiang, Q. Wu, H. Wang, L.-L. Chai, H.-Y. Li and H.-X. Li, Org. Lett., 2021, 23, 160.

4. NMR spectrum

¹H NMR (400 MHz, CDCl₃) Spectrum of 4aa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4aa

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4aa

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ba

¹³C NMR (101 MHz, CDCl₃) Spectrum of **4ba**

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4ba**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ca

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ca

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ca

¹H NMR (400 MHz, CDCl₃) Spectrum of 4da

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4da

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4da

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ea

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ea

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ea

¹H NMR (400 MHz, CDCl₃) Spectrum of 4fa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4fa

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4fa

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ga

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ga

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ga

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ha

¹³C NMR (101 MHz, CDCl₃) Spectrum of **4ha**

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4ha**

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ia

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ia

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ja

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ja

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ja

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ka

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ka

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ka

¹H NMR (400 MHz, CDCl₃) Spectrum of 4la

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4la**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ma

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ma

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ma

¹H NMR (400 MHz, CDCl₃) Spectrum of **4na**

¹³C NMR (101 MHz, CDCl₃) Spectrum of **4na**

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4na**

¹H NMR (400 MHz, CDCl₃) Spectrum of 40a

¹³C NMR (101 MHz, CDCl₃) Spectrum of 40a

³¹P NMR (162 MHz, CDCl₃) Spectrum of 40a

¹H NMR (400 MHz, CDCl₃) Spectrum of 4pa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4pa

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4pa**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4qa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4qa

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4qa

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ra

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ra

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4ra**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4sa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4sa

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ta

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ta

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ta

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ua

¹³C NMR (101 MHz, CDCl₃) Spectrum of **4ua**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4va

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4va**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4wa

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4wa

¹H NMR (400 MHz, CDCl₃) Spectrum of 4xa

¹³C NMR (101 MHz, CDCl₃) Spectrum of **4xa**

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4xa**

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ya

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ya

¹H NMR (400 MHz, CDCl₃) Spectrum of 4za

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4za

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4za

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ab

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ab

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ac

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ac

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ac

¹H NMR (400 MHz, CDCl₃) Spectrum of **4af**

 ^{13}C NMR (101 MHz, CDCl₃) Spectrum of 4af

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4af

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ag

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ag

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ag

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ah

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ah

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ah

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ai

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ai

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ai

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4aj

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4aj

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ak

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ak

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4ak**

¹H NMR (400 MHz, CDCl₃) Spectrum of **4al**

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4al

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4al

¹H NMR (400 MHz, CDCl₃) Spectrum of 4am

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4am

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4am

¹H NMR (400 MHz, CDCl₃) Spectrum of **4an**

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4an

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4an

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ao

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ao

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ap

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ap

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ap

¹H NMR (400 MHz, CDCl₃) Spectrum of 4aq

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4aq

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4aq

¹H NMR (400 MHz, CDCl₃) Spectrum of 4ar

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4ar

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4ar

¹H NMR (400 MHz, CDCl₃) Spectrum of 4as

³¹P NMR (162 MHz, CDCl₃) Spectrum of **4as**

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4at

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4at

¹H NMR (400 MHz, CDCl₃) Spectrum of 4au

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4au

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4au

¹³C NMR (101 MHz, CDCl₃) Spectrum of 4av

¹H NMR (400 MHz, CDCl₃) Spectrum of 4aw

³¹P NMR (162 MHz, CDCl₃) Spectrum of 4aw

