## Electronic Supplementary Information for:

Fluorescent ratiometric supramolecular tandem assays for phosphatase and phytase enzymes
Kirk M. Atkinson and Bradley D. Smith*

## General

Column chromatography was performed using Biotage Sfär columns. ${ }^{1} \mathrm{H}$ and NMR spectra were recorded on a Bruker 400 or 500 NMR spectrometer. Chemical shifts are presented in ppm and referenced by residual solvent peak. High-resolution mass spectrometry (HRMS) was performed using a time-of-flight (TOF) analyzer with electrospray ionization (ESI). Absorption spectra were recorded on an Evolution 201 UV/vis spectrometer with Thermo Insight software. Fluorescence spectra were collected on a Horiba Fluoromax Plus fluorometer and FluoroEssence software. All absorption and fluorescence spectra were collected using quartz cuvettes ( $1 \mathrm{~mL}, 1 \mathrm{~cm}$ path length).

## Synthesis



Compound 1. A solution of pyranine ( $515 \mathrm{mg}, 0.97 \mathrm{mmol}, 1 \mathrm{eq}$ ), DIPEA ( $420 \mu \mathrm{~L}, 2.41 \mathrm{mmol}, 2.48 \mathrm{eq}$ ), tert-butyl bromoacetate ( $635 \mathrm{mg}, 3.24 \mathrm{mmol}, 3.33 \mathrm{eq}$ ) and 50 mL of MeOH was refluxed 16 hr . The reaction mixture was vacuum filtered, and the filtrate was evaporated. The resulting crude was purified by reverse phase column chromatography ( $\mathrm{C} 18,0-50 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ ) to produce a paleyellow solid. The crude material was dissolved in water with an equimolar equivalent of NaOH and was extracted 3 times with DCM. The aqueous layer was evaporated and further purified by reverse phase column chromatography ( $\mathrm{C} 18,0-50 \% \mathrm{MeOH}$ in $\mathrm{H}_{2} \mathrm{O}$ ) to produce pure compound $\mathbf{1}$ as a paleyellow solid ( $271.3 \mathrm{mg}, 43.7 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ) $\delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H})$.



CMP. A solution of 20 mL of water, compound $1(271.3 \mathrm{mg}, 0.425 \mathrm{mmol}, 1 \mathrm{eq})$, and 2 mL of TFA was stirred at room temperature for 18 hr . The reaction mixture was then evaporated to yield the known compound CMP ${ }^{1}$ as a pale-yellow powder ( $231.7 \mathrm{mg}, 93.6 \%$ ). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H})$, 8.98 (d, J = $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (s, $1 \mathrm{H}), 5.03$ (s, 2H).


cCy5. A solution of N -(3-(phenylamino)-2-propenylidene) aniline hydrochloride ( $82 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ eq), indolenine $\mathbf{S 1}^{2}$ ( $\sim 80 \mathrm{wt} \%, 475 \mathrm{mg}, 0.9 \mathrm{mmol}, 3 \mathrm{eq}$ ), AcONa ( $172 \mathrm{mg}, 2.1 \mathrm{mmol}, 7 \mathrm{eq}$ ), 5 mL of $\mathrm{Ac}_{2} \mathrm{O}$, and 5 mL of EtOH was refluxed at $100^{\circ}$ for 4 hr . The reaction was stopped, cooled to room temperature and 35 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added and stored at $-20^{\circ}$ for 20 min . The blue precipitate was vacuum filtered and purified by reverse phase column chromatography ( $\mathrm{C} 18,0-40 \% \mathrm{MeOH}(0.5 \%$ TFA) in $\mathrm{H}_{2} \mathrm{O}$ ) to afford pure cCy5 as a blue solid ( $202.2 \mathrm{mg}, 80.4 \%$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.12(\mathrm{t}$, $J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J$ $=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 18 \mathrm{H}), 2.30$ (dt, J = 15.4, 7.6 Hz, 4H), 1.67 (s, 12H). ${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ) $\delta 174.39,163.89,159.79,155.44$, 143.82, 141.67, 139.17, 126.55, 119.89, 110.57, 104.25, 63.13, 52.92, 49.13, 26.79, 20.78. HRMS (ESI+): calcd for $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 713.3401$, found 713.3391.



HRMS (ESI-TOF) spectrum of cCy5



Absorbance and emission spectra of cCy5 ( $5 \mu \mathrm{M}$ ) in methanol (left) and water (right), $\lambda_{\mathrm{ex}}=630 \mathrm{~nm}$, slit width = 1 nm .


Dependence of absorption at $\lambda_{\max }$ on the concentration of cCy 5 in MeOH .


Dependence of absorption at $\lambda_{\max }$ on the concentration of $\mathbf{c C y} 5$ in water.

|  | CMP | cCy5 |
| :---: | :---: | :---: |
| $\phi_{f}^{[a]}$ | $0.96^{[b]}$ | 0.41 |
| $\varepsilon\left(\right.$ L.mol $\left.^{-1} \mathrm{~cm}^{-1}\right)$ | 25,780 | 222,100 |
| Brightness ${ }^{[3]}$ | 24,749 | 91,061 |

Table S1. Photophysical characterization of CMP and cCy5 in water at room temperature. [a] Absolute fluorescence quantum yield was measured directly by photon counting, error is $\pm 5 \%$. [b] ref 1. [c] Brightness $=\varepsilon \times \phi_{F}$, error is $\pm$ 15\%.

## Fluorescence quantum yield measurements of cCy5

Absolute quantum yield of cCy5 was measured on a Horiba Fluoromax Plus spectrometer with an integrating sphere. Samples were excited at 630 nm with absorbance $\leq 0.05$. The photons were recorded with an integrating sphere upon excitation of a blank solvent reference, then the reference was replaced by a sample solution, and the spectrum $620-800 \mathrm{~nm}$ was acquired. The quantum yield was calculated by the equation below:

$$
\phi_{F}=\frac{P_{e m}}{P_{\text {abs }}}=\frac{\int_{B}^{A}\left(F_{\text {sample }}-F_{\text {blank }}\right) d \lambda}{\int_{D}^{C}\left(E_{\text {blank }}-E_{\text {sample }}\right) d \lambda}
$$

where $P$ is the number of photons, $F$ is the fluorescence intensity and $E$ is the intensity at the excitation wavelength. Experiments were conducted in triplicate at three different concentrations, with the reported absolute quantum yields corresponding to the mean value, and $\pm 5 \%$ systematic error was determined.
cCy5 ( $\lambda_{\text {ex }}=630 \mathrm{~nm}$ ) : $A=800, B=640, C=640 \mathrm{~nm}, \mathrm{D}=620 \mathrm{~nm} . \phi_{F}=33.8 \%$ in methanol and $40.5 \%$ in water.


CalixPyr. Synthesized according to the literature. ${ }^{31} \mathrm{H}$ NMR (400 MHz, $\mathrm{D}_{2} 0$ ) $\delta 9.45$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 9.25 ( $\mathrm{d}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{t}, J=8.2 \mathrm{~Hz}, 8.01 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H})$.


## CMP and Calixpyridinium association constant in different aqueous buffers (direct titration)

For a 1:1 host-guest system:
$H+G \stackrel{K_{a}}{\rightleftharpoons} H G$

The desired association constant is expressed in equation (1.1):
$K_{a}=\frac{[H G]}{[H][G]}$

Assigning the total concentration of host and guest as $[\mathrm{H}]_{0}$ and $[\mathrm{G}]_{0}$, respectively, gives mass balance equations (1.2) and (1.3):
$[H]_{0}=[H]+[H G](1.2)$
$[G]_{0}=[G]+[H G](1.3)$

Equation (1.2) is rearranged to define $[\mathrm{H}]$ and equation (1.3) is rearranged to define [G]. The newly defined $[\mathrm{H}]$ and $[\mathrm{G}]$ are used to replace $[\mathrm{H}]$ and $[\mathrm{G}]$ in equation (1.1) and the resulting equation is rearranged to yield equation (1.4):
$[H G]^{2}-\left([H]_{0}+[G]_{0}+1 / K_{a}\right)[H G]+[H]_{0}[G]_{0}=0$ (1.4)

The real root of equation (1.4) is expressed in equation (1.5), which defines [HG] based on $K_{a}$ and experimentally determined values $\left([H]_{0}\right.$ and $\left.[G]_{0}\right)$ :
$[H G]=0.5\left(\left\{[H]_{0}+[G]_{0}+\frac{1}{K_{a}}\right\}-\sqrt{\left([H]_{0}+[G]_{0}+\frac{1}{K_{a}}\right)^{2}-4[H]_{0}[G]_{0}}\right)$

The association constant was calculated form the titration data with specifically written non-linear least squares fitting the equation for 1:1 binding within Origin Lab ${ }^{\text {TM }} 8.6$ software.


Figure S1 Association constant for CalixPyr and CMP in water ( pH 6.8 ), $\lambda_{\mathrm{ex}}=401 \mathrm{~nm}$, slit width 1 nm . $K_{a}=(1.3 \pm 0.1) \times 10^{5} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.992$.


Figure S2 Association constant for CalixPyr and CMP in $10 \mathrm{mM} \mathrm{NaOAc}(\mathrm{pH} 7.2), \lambda_{\mathrm{ex}}=401 \mathrm{~nm}$, slit width $1 \mathrm{~nm} . K_{a}=(1.3 \pm 0.2) \times 10^{6} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.999$.


Figure S3 Association constant for CalixPyr and CMP in 5 mM TES buffer ( pH 7.2 ), $\lambda_{\mathrm{ex}}=401 \mathrm{~nm}$, slit width $1 \mathrm{~nm} . K_{a}=(3.6 \pm 0.8) \times 10^{6} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.999$.


Figure S4 Association constant for CalixPyr and CMP in 10 mM HEPES buffer ( pH 7.0 ), $\lambda_{\mathrm{ex}}=401 \mathrm{~nm}$, slit width $1 \mathrm{~nm} . K_{a}=(3.0 \pm 1.0) \times 10^{6} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.998$.


Figure S5 Association constant for CalixPyr and CMP in 100 mM potassium phosphate buffer ( pH $7.0), \lambda_{\mathrm{ex}}=401 \mathrm{~nm}$, slit width $1 \mathrm{~nm} . K_{a}=(3.1 \pm 1.8) \times 10^{3} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.998$.

## NMR Experiments



Figure S6 Partial ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 6.63,25^{\circ} \mathrm{C}$ ) of CMP ( 1 mM , sodium salt), CalixPyr (1 mM) •CMP (1 mM), and CalixPyr (1 mM).


CMP (1 eq)

CalixPyr ( 0.5 eq)


Figure S7 Partial ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 6.63,25^{\circ} \mathrm{C}$ ) of CalixPyr ( 0.5 mM )•CMP (1 mM ).


Figure $\mathbf{S 8}$ Expanded ${ }^{1} \mathrm{H}$ NMR spectrum ( $500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, \mathrm{pD} 6.63,25^{\circ} \mathrm{C}$ ) for CalixPyr ( 0.5 mM ) $\cdot \mathrm{CMP}(1$ mM ).

## Phytate Titration



Figure S9 Emission spectra of CMP ( $1 \mu \mathrm{M}$ ) with increasing concentration of Phyt ( $\lambda_{\text {ex }}=401 \mathrm{~nm}$, slit width $=1 \mathrm{~nm})$. Also present in the solution is cCy5 $(1 \mu \mathrm{M})$, CalixPyr $(4 \mu \mathrm{M})$, in 5 mM HEPES ( pH 5.1 )

## Competitive titration of Phyt in the presense of CalixPyr and CMP

In the following equation derivation, we will use H as CalixPyr, I as CMP, and G as Phyt. For the competitive binding, we have
$H I+G \rightleftharpoons H G+I$

The equilibrium between H and G is:
$H+G \stackrel{K_{a}}{\rightleftharpoons} H G$
$K_{a}=\frac{[H][G]}{[H G]}$

The equilibrium between H and I is:

$$
\begin{align*}
& H+I \stackrel{K_{i}}{\rightleftharpoons} H I \\
& K_{i}=\frac{[H][I]}{[H I]} \tag{2.2}
\end{align*}
$$

According to mass balance equation,

$$
\begin{align*}
& {[H]_{t}=[H]+[H G]+[H I]}  \tag{2.3}\\
& {[G]_{t}=[G]+[H G]}  \tag{2.4}\\
& {[I]_{t}=[I]+[H I]} \tag{2.5}
\end{align*}
$$

Now we will derive an equation involving only one unknown concentration. Here we use $[\mathrm{H}]$ and focus on equation (2.3). We will seek to define all other concentrations to define [H], accordingly, equation (2.1)-(2.5) can be rearranged to
$[H G]=\frac{K_{a}[H][G]_{t}}{1+K_{a}[H]}$
$[H I]=\frac{K_{i}[H][I]_{t}}{1+K_{i}[H]}$

$$
[I]=\frac{[I]_{t}}{1+K_{i}[H]}
$$

Substitute (2.6)-(2.8) to (2.3) yielded

$$
\begin{equation*}
[H]_{t}=[H]+\frac{K_{a}[H][G]_{t}}{1+K_{a}[H]}+\frac{K_{i}[H][I]_{t}}{1+K_{i}[H]} \tag{2.9}
\end{equation*}
$$

Equation (2.9) is a cubic equation for $[\mathrm{H}]$ and can be rearranged as

$$
\begin{aligned}
& A[H]^{3}+B[H]^{2}+C[H]+D=0 \quad \text { (2.10) } \\
& A=K_{i} K_{a} \\
& B=K_{i}+K_{a}+K_{i} K_{a}[I]_{t}+K_{i} K_{a}[G]_{t}-K_{i} K_{a}[H]_{t} \\
& C=1+K_{i}[I]_{t}+K_{a}[G]_{t}-K_{i}[H]_{t}-K_{a}[H]_{t} \\
& D=-[H]_{t}
\end{aligned}
$$

In the competitive titration experiment, Phyt was titrated into CalixPyr•CMP complex (4:1 molar ratio). We treated the CalixPyr•CMP complex as non-fluorescent while the CalixPyr•Phyt complex (HG) as fluorescent. The relation between measured fluorescence signals with the real concentration of HG can be written as

$$
F=k[H G]
$$

k was the emission coefficient
We combine equation (2.6) and (2.11) to give the final equation

$$
\begin{equation*}
F=\frac{k \times K_{a} \times[H] \times[G]_{t}}{1+K_{a} \times[H]} \tag{2.12}
\end{equation*}
$$

Equation (2.12) was used for nonlinear fitting using Origin Lab ${ }^{\top M}$ software version 8.6. In the above equation, $[\mathrm{G}]_{\mathrm{t}}$ was the total concentration of Phyt for each titration and Newton's method was used to iterate the real concentration of CalixPyr ([H]) from equation (2.10).

Figure S10 Competitive fluorescence titration added Phyt to a mixture of CMP (1 $\mu \mathrm{M}$ ) and CalixPyr $(4 \mu \mathrm{M})$ in 5 mM HEPES solution at $\mathrm{pH} 5.1\left(\lambda_{\mathrm{ex}}=401 \mathrm{~nm}, \lambda_{\mathrm{obs}}=430 \mathrm{~nm}\right)$.


Figure S11 Competitive fluorescence titration added Phyt to a mixture of CMP ( $1 \mu \mathrm{M}$ ) and CalixPyr $(4 \mu \mathrm{M})$ in 5 mM HEPES solution at pH 5.1 and fitted the plot of CMP fluorescence intensity to a 1:1 competitive binding model to give $K_{a}$ for Phyt and CalixPyr $=(2.0 \pm 0.1) \times 10^{6} \mathrm{M}^{-1} . \mathrm{R}^{2}=0.977$.

## ATP, ADP, AMP, and AP Titrations



Figure S12 No change in cCy5 emission intensity upon addition of ATP, ADP or AMP to a mixture of CMP $(1 \mu \mathrm{M})$, cCy5 $(1 \mu \mathrm{M})$, and CalixPyr $(4 \mu \mathrm{M})$ in 10 mM NaOAc solution at pH 7.2 at room temperature. $\lambda_{\text {ex }}=630 \mathrm{~nm}, \lambda_{\text {obs }}=665 \mathrm{~nm}$.


Figure S13 Negligible change in cCy5 emission intensity during continuous fluorescence enzyme assay that added AP (1.5 $\mathrm{U} \mathrm{mL}^{-1}$, injected at 1 min ) to a mixture of CalixPyr ( $4 \mu \mathrm{M}$ ), CMP ( $1 \mu \mathrm{M}$ ), cCy5 $(1 \mu \mathrm{M})$, and ATP $(60 \mu \mathrm{M})$ in 10 mM NaOAc solution at $\mathrm{pH} 7.2,37^{\circ} \mathrm{C} . \lambda_{\text {ex }}=630 \mathrm{~nm}, \lambda_{\text {obs }}=665 \mathrm{~nm}$.

## References

1. E. A. Legenzov, N. D. A. Dirda, B. M. Hagen and J. P. Y. Kao, PLoS one 2015, 10, 1-18.
2. M. A. Spitsyn, V. E. Kuznetsova, V. E. Shershov, M. A. Emelyanova, T. O. Guseinov, S. A. Lapa, T. V Nasedkina, A. S. Zasedatelev and A. V Chudinov, Dyes Pigments 2017, 147, 199-210.
3. S. Shinoda, M. Tadokoro, H. Tsukube, S. Shinoda and R. Arakawa, Chem. Commun. 1998, 2, 181-182.
