Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

New insights into copper-catalyzed cross-dehydrogenativecoupling of secondary amides and terminal alkynes: facile synthesis of ynamides

Shuang-Yan Zhuo, Jian-Liang Ye* and Xiao Zheng*

Table of Contents

1. The Optimization of the Cross-dehydrogenative-coupling (CDC) Reaction C	onditions .2
2. Copper-catalyzed CDC Reaction of Amides with terminal alkynes:	7
3. Computational Studies	14
4. Kinetic Studies of The Copper-catalyzed CDC Reaction	51
5. ¹ H and ¹³ C NMR spectra	54
6. References	

1. The Optimization of the Cross-dehydrogenative-coupling (CDC) Reaction Conditions

The optimization of reactions were conducted with the following procedure: In a 25 mL round bottom flask, the amide **1a** (1.5 mmol, 3.0 eq), ligand (0.25 mmol, 0.5 eq), copper salt (0.1 mmol, 0.2 eq), base (1.5 mmol, 3.0 eq), 3Å molecular sieves (160mg) were dissolved in dry solvent (2 mL) and the terminal alkyne **2a** (0.5 mmol, 1.0 eq) was successively added. The mixture was degassed three times by applying vacuum, and backfilling with oxygen while stirring vigorously. The mixture was stirred at room temperature for 24 h, filtered by diatomaceous earth over a plug of silica gel (washed with EtOAc), and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography on silica gel to afford ynamide **3aa** and homo-coupling dimer of alkyne **4a**.

Our investigation commenced with the cross-dehydrogenative-coupling (CDC) of amide **1a** with phenylacetylene **2a** (Table S1~ S3). Under a common copper-catalyzed aerobic oxidative CDC conditions, a desired ynamide **3aa** and an alkyne homo-coupling dimer **4a** were obtained while 3Å molecular sieve was added. For to get optimized conditions, a series of factors such as ligands, copper salt, bases and solvents were studied in the first (Table S1). To our delight, ynamide **3aa** was obtained in a yield of 56% by using 1-methylbenzimidazole as a ligand, while successfully avoiding the formation of **4a** (Table S1, entry 10). Noteworthily, bivalent copper salts have better catalysis than monovalent copper salts (Table S1, entry 15~19 vs 20~22), a relatively satisfactory results can be obtained in the presence of Cu(OTf)₂ (Table S1, entry 19). By using Na₂CO₃ as a base, the yield of ynamide **3aa** without observation of **4a** (Table S1, entry 10). On the basis of these, the optimization of amide **1a**, Na₂CO₃ base, Cu(OTf)₂ catalyst, 1-methylbenzimidazole ligand and reaction time was carried out one by one (Table S2). Finally, considering the indispensable role of molecular sieve, the dosage of molecular sieve in the reaction was further optimized, and the optimal reaction conditions were determined (Table S3). The effect of amide loadings in the CDC reaction also was investigated (Table S4)...

Table S1. Optimization of ligand, copper salt, base, and solvent

Fata	Linend	Common Colk Boos	Deee	Columnt (day)	Yield (%)	
Entry	Ligand	Copper Sait	Base	Solvent (dry)	3aaª	4a ^a
1	L1	CuCl ₂ •2H ₂ O	t-BuOK	DCM	4	trace
2	L1	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	I	NR
3	L2	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	nd	56

4	L2	CuCl ₂ •2H ₂ O	t-BuOK	DCM	20	73
5	L3	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	nd	44
6	L4	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	nd	53
7	L5	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	5	60
8	L6	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	8	59
9	L6	CuCl ₂ •2H ₂ O	t-BuOK	DCM	8	50
10	L7	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	56	-
11	L8	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	١	NR
12	L9	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	trace	trace
13	L10	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	46	49
14	ВК	CuCl ₂ •2H ₂ O	K ₂ CO ₃	DCM	nd	trace
15	L7	CuSO ₄	K ₂ CO ₃	DCM	39	52
16	L7	CuBr ₂	K ₂ CO ₃	DCM	33	35
17	L7	(AcO) ₂ Cu	K ₂ CO ₃	DCM	32	37
18	L7	Cu(NO ₃) ₂	K ₂ CO ₃	DCM	65	34
19	L7	Cu(OTf) ₂	K ₂ CO ₃	DCM	67	30
20	L7	CuCl	K ₂ CO ₃	DCM	23	52
21	L7	CuBr	K ₂ CO ₃	DCM	18	50
22	L7	Cul	K ₂ CO ₃	DCM	trace	47
23	L7	Cu(OTf) ₂	Na ₂ CO ₃	DCM	72	24
24	L7	Cu(OTf) ₂	Li ₂ CO ₃	DCM	18	trace
25	L7	Cu(OTf) ₂	AcOLi	DCM	21	55
26	L7	Cu(OTf) ₂	Cs ₂ CO ₃	DCM	19	63
27	L7	Cu(OTf) ₂	Na ₂ HPO ₄	DCM	51	trace

28	L7	Cu(OTf) ₂	NaOH	DCM	22	61
29	L7	Cu(OTf) ₂	Na ₂ CO ₃	THF	80	trace
30	L7	Cu(OTf) ₂	Na ₂ CO ₃	Toluene	88	trace
31	L7	Cu(OTf) ₂	Na ₂ CO ₃	DMF	18	71
32	L7	Cu(OTf) ₂	Na ₂ CO ₃	CH₃CN	45	42
33	L7	Cu(OTf) ₂	Na ₂ CO ₃	MTBE	45	53

[a] Isolated yield.

-

Table S2. Optimization of the quantities of amide, base, copper salt, ligand and reaction time

	Ts _N H 1a	- Ph-== - 2a	Cu(OTf) ₂ ,L7 Na ₂ CO ₃ , 1 atm O ₂ , 3Å MS, Tol, rt, T	→ Ts N-=== 3aa	a	
Entry	1a (eq)	Na ₂ CO ₃ (eq)	Cu(OTf)₂ (eq)	L7 (eq)	Time (h)	Yield (%) ^a
1	3	3	0.2	0.5	24	88
2	2.5	3	0.2	0.5	24	79
3	3	3	0.2	0.4	24	89
4	3	3	0.2	0.2	24	75
5	3	3	0.15	0.3	24	64
6	3	3	0.1	0.2	24	61
7	3	2	0.2	0.4	24	84
8	3	1	0.2	0.4	24	26
9	3	3	0.2	0.4	16	72
10	3	3	0.2	0.4	18	83
11	3	3	0.2	0.4	20	89
12	3	3	0.2	0.4	22	89

[a] Isolated yield.

Table S3. The effects of molecular sieves

Ts _{∑N} ∕ + H 1a	Ph	DTf) ₂ ,L7 ₃ , 1 atm O ₂ , eves, Tol, rt, 20 h	Ts N
Entry	Molecular sieves	Weight (mg)	Yield (%) ^a
1	BK	0	trace
2	3Å	60	33
3	ЗÅ	120	39
4	ЗÅ	150	86
5	ЗÅ	180	93
6	ЗÅ	210	81
7	4Å	120	51
8	4Å	150	58
9	4Å	180	56

[a] Isolated yield.

Table S4. The effect of amide loading	ngs in the CDC reaction ^a
---------------------------------------	--------------------------------------

Ts _N ∕∕+ H 1a	Cu(OTf) ₂ Ph— <u>Na₂CO₃ , 1a</u> 3Å MS, Tol, 2a	$\begin{array}{c} I, L7\\ atm O_2, \\ rt, 20h \end{array} \xrightarrow{Ts} N P\\ 3aa \end{array}$	h + (Ph))2 4a
Entry	Amide 1a (eq)	3aa (%) ^b	4a (%) ^b
1	0	0	6
2	0.5	18	23
3	1	49	40
4	1.5	58	43
5	2	69	31
6	2.5	80	19
7	3	93	trace

[a] Reaction conditions: **1a** (x eq), 1-methylbenzimidazole (0.2 mmol, 0.4 eq), Cu(OTf)₂ (0.1 mmol, 0.2 eq), Na₂CO₃ (1.5 mmol, 3.0 eq), 3Å molecular sieves were dissolved in Tol (2 mL) and **2a** (0.5 mmol, 1.0 eq) was successively added. The mixture was stirred at room temperature for 24 h in oxygen atmosphere. [b] Isolated yield.

Figure S1. The effects of amide equivalent

2. Copper-catalyzed CDC Reaction of Amides with terminal alkynes:

General procedure: In a 25 mL round bottom flask, the amide (1.5 mmol, 3.0 eq), 1-methylbenzimidazole (0.2 mmol, 0.4 eq), Cu(OTf)₂ (0.1 mmol, 0.2 eq), Na₂CO₃ (1.5 mmol, 3.0 eq), 3Å molecular sieves (180mg) were dissolved in dry solvent (2 mL) and the terminal alkynes (0.5 mmol, 1.0 eq) was successively added. The mixture was degassed three times by applying vacuum, and backfilling with oxygen while stirring vigorously. The mixture was stirred at room temperature for 20 h, filtered by diatomaceous earth over a plug of silica gel (washed with EtOAc), and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography over silica gel.

N-((4-methoxyphenyl)ethynyl)-N-methylmethanesulfonamide (3bb)

Following the **general procedure**, the reaction of **1b** and **2b** afforded **3bb** as a white solid (eluent: EtOAc/PE = 1/6; 93% yield): mp 92.3-96.0 °C; IR (film) ν_{max} : 2232, 1595, 1366, 1273, 1261, 1191, 1167, 1091 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.39–7.34 (m, 2H), 6.86–6.81 (m, 3H), 3.81 (d, *J* = 3.96 Hz, 3H), 3.28 (d, *J* = 4.02 Hz, 3H), 3.12 (d, *J* = 3.96 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 133.5, 114.2, 113.9, 81.6, 69.1, 55.3, 39.2 36.6; HRMS (ESI) calcd for [C₁₁H₁₃NO₃SNa]⁺ (M + Na⁺): 262.0508, Found: 262.0497. All spectral data are in accordance with the literature.¹²

N-methyl-N-((4-(trifluoromethyl)phenyl)ethynyl)methanesulfonamide (3bc)

Following the **general procedure**, the reaction of **1b** and **2c** afforded **3bc** as a colorless oil (eluent: EtOAc/PE = 1/6; 91% yield): mp 82.1-84.3 °C;IR (film) ν_{max} : 2236, 1595, 1365, 1275, 1259, 1189, 1167, 1087 cm⁻¹; ¹H NMR (600 MHz, CDCI₃) δ 7.54 (d, *J* = 8.34 Hz, 2H), 7.48 (d, *J* = 8.34 Hz, 2H), 3.32 (s, 3H), 3.14 (s, 3H). ¹³C NMR (150 MHz, CDCI₃) δ 131.0, 129.2 (q, *J* = 32.6 Hz), 126.4, 125.1 (q, *J* = 3.7 Hz), 123.8 (q, *J* = 272.1 Hz), 85.4, 68.6, 39.0, 37.0; HRMS (ESI) calcd for [C₁₂H₁₅F₃NO₃S]⁺ (M + MeOH + H⁺): 310.0719, Found: 310.0721. All spectral data are in accordance with the literature.¹⁵

N-(cyclopropylethynyl)-N-methylmethanesulfonamide (3bm)

Following the **general procedure**, the reaction of **1b** and **2m** afforded **3bm** as a white solid (eluent: EtOAc/PE = 1/5; 86% yield): mp 43.2-45.8 °C; IR (film) ν_{max} : 2926, 2216, 1748, 1697, 1451, 1367, 1283, 1259, 1228 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.08 (s, 3H), 2.96 (s, 3H), 1.25 (m, 1H), 0.74 (m, 2H), 0.62 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 73.3, 69.7, 39.1, 35.9, 8.6, -1.1; HRMS (ESI) calcd for [C₇H₁₁NO₂SNa]⁺ (M + Na⁺): 196.0403, Found: 196.0402. All spectral data are in accordance with the literature.⁸

N-methyl-N-((trimethylsilyl)ethynyl)methanesulfonamide (3bn)

Following the **general procedure**, the reaction of **1b** and **2n** afforded **3bn** as a white solid (eluent: EtOAc/PE = 1/5; 99% yield): mp 41.2-44.3 °C; IR (film) v_{max} : 2926, 2216, 1757, 1695, 1455, 1355, 1277, 1259, 1230 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.20 (d, J = 2.10 Hz, 3H), 3.07 (d, J = 2.10 Hz, 3H), 0.18 (d, J = 2.13 Hz, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 95.6, 71.8, 38.9, 36.6, 0.1; HRMS (ESI) calcd for [C₇H₁₅NO₂SSiNa]⁺ (M + Na⁺): 228.0485, Found: 228.0483. All spectral data are in accordance with the literature.¹⁶

N-(hept-1-yn-1-yl)-N-methylmethanesulfonamide (3br)

Following the **general procedure**, the reaction of **1b** and **2r** afforded **3br** as a colorless oil (eluent: EtOAc/PE = 1/6; 32% yield): IR (film) ν_{max} : 2928, 2214, 1753, 1691, 1357, 1281, 1261, 1232 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.16 (s, 3H), 3.03 (d, 3H), 2.27 (t, *J* = 7.20 Hz, 2H), 1.51 (m, 2H), 1.39–1.28 (m, 4H), 0.90 (t, *J* = 6.96 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 74.1, 69.2, 39.1, 35.8, 30.9, 28.5, 22.1, 18.2, 13.9; HRMS (ESI) calcd for [C₉H₁₈NO₂S]⁺ (M + H⁺): 204.1053, Found: 204.1059. All spectral data are in accordance with the literature.¹⁷

N-benzyl-N-(cyclopropylethynyl)-4-methylbenzenesulfonamide (3em)

Following the **general procedure**, the reaction of **1e** and **2m** afforded **3em** as a white solid (eluent: EtOAc/PE = 1/7; 50% yield): mp 76.5-79.1 °C; IR (film) ν_{max} : 2924, 2210, 1757, 1695, 1451, 1355, 1275, 1261, 1232 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.28 Hz, 2H), 7.30–7.24 (m, 7H), 4.42 (s, 2H), 2.43 (s, 3H), 1.20 (m, 1H), 0.69 (m, 2H), 0.49 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 144.3, 134.7, 134.6, 129.5, 128.7, 128.3, 128.0, 127.6, 75.3, 68.8, 55.5, 21.6, 8.6, -0.9; HRMS (ESI) calcd for [C₁₉H₁₉NO₂SNa]⁺ (M + Na⁺): 348.1029, Found: 348.1025. All spectral data are in accordance with the literature.¹⁸

N-(cyclopropylethynyl)-4-methyl-N-phenylbenzenesulfonamide (3fm)

Following the **general procedure**, the reaction of **1f** and **2m** afforded **3fm** as a white solid (eluent: EtOAc/PE = 1/7; 66% yield): mp 81.2-84.3 °C; IR (film) ν_{max} : 2920, 2216, 1751, 1693, 1451, 1363, 1275, 1259, 1232 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 8.22 Hz, 2H), 7.31–7.24 (m, 5H), 7.21 (d, *J* = 6.78 Hz, 2H), 2.42 (s, 3H), 1.32 (m, 1H), 0.78 (m, 2H), 0.65 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 144.6, 139.2, 132.8, 129.2, 128.8, 128.1, 127.8, 126.0, 74.5, 69.2, 21.6, 8.7, -0.8; HRMS (ESI) calcd for [C₁₈H₁₇NO₂SNa]⁺ (M + Na⁺): 334.0872, Found: 334.0879. All spectral data are in accordance with the literature.¹⁹

1-(cyclopropylethynyl)pyrrolidin-2-one (3hm)

Following the **general procedure**, the reaction of **1h** and **2m** afforded **3hm** as a colorless oil (eluent: EtOAc/PE = 1/4; 31% yield): IR (film) v_{max} : 2922, 2214, 1753, 1700, 1357, 1279, 1261, 1228 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.57 (t, *J* = 7.14 Hz,

2H), 2.34 (t, J = 7.92 Hz, 2H), 2.03(m, J = 7.92, 7.14 Hz, 2H), 1.30 (m, 1H), 0.74 (m, 2H), 0.64 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 176.2, 76.0, 66.6, 49.9, 29.4, 18.5, 8.5, -0.9; HRMS (ESI) calcd for [C₉H₁₁NONa]⁺ (M + Na⁺): 172.0733, Found: 172.0731.

1-((4-methoxyphenyl)ethynyl)-4,4-dimethylpyrrolidin-2-one (3ib)

Following the **general procedure**, the reaction of **1i** and **2b** afforded **3ib** as a colorless oil (eluent: EtOAc/PE = 1/5; 47% yield): IR (film) ν_{max} : 3008, 2986, 2362, 2249, 1717, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.31 (d, *J* = 8.38 Hz, 2H), 6.36 (d, *J* = 8.38 Hz, 2H), 3.73 (s, 3H), 3.40 (s, 2H), 2.23 (s, 2H), 1.15 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.2, 159.4, 133.2, 114.5, 113.8, 79.1, 71.8, 63.0, 55.2, 44.9, 33.8, 27.4; HRMS (ESI) calcd for [C₁₅H₁₇NO₂Na]⁺ (M + Na⁺): 266.1151, Found: 266.1142.

4,4-dimethyl-1-((4-(trifluoromethyl)phenyl)ethynyl)pyrrolidin-2-one (3ic)

Following the **general procedure**, the reaction of **1i** and **2c** afforded **3ic** as a colorless oil (eluent: EtOAc/PE = 1/5; 51% yield): IR (film) ν_{max} : 2962, 2249, 1730, 1406, 1323, 1276, 1168, 1126, 1068 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.46 (q, 4H), 3.44(s, 2H), 2.25 (s, 2H), 1.16 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.2, 131.3, 129.3 (q, *J* = 32.5 Hz), 126.6, 125.1 (q, *J* = 4.3 Hz), 123.9 (q, *J* = 272.0 Hz), 83.0, 71.3, 62.7, 44.8, 34.0, 27.3; HRMS (ESI) calcd for [C₁₅H₁₄NOF₃Na]⁺ (M + Na⁺): 304.0920, Found: 304.0911.

methyl 4-((4,4-dimethyl-2-oxopyrrolidin-1-yl)ethynyl)benzoate (3ig)

Following the **general procedure**, the reaction of **1i** and **2g** afforded **3ig** as a white solid (eluent: EtOAc/PE = 1/5; 66% yield): mp 117.8-119.3 °C; IR (film) v_{max} : 3004, 2960, 2363, 2245, 11719, 1403, 1276, 1170 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.56 Hz, 2H), 7.48 (d, J = 8.56 Hz, 2H), 3.91 (s, 3H), 3.51 (s, 2H), 2.32 (s, 2H), 1.23 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.2, 166.5, 130.9, 129.4, 128.9, 127.6, 83.6, 71.9, 62.7, 52.1, 44.8, 33.9, 27.3; HRMS (ESI) calcd for [C₁₆H₁₇NO₃Na]⁺ (M + Na⁺): 294.1101, Found: 294.1089.

1-(cyclopropylethynyl)-4,4-dimethylpyrrolidin-2-one (3im)

Following the **general procedure**, the reaction of **1i** and **2m** afforded **3im** as a colorless oil (eluent: EtOAc/PE = 1/4; 27% yield): IR (film) ν_{max} : 3006, 2960, 2873, 2358, 2260, 1717, 1412, 1312, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 3.26 (s, 2H), 2.15(s, 2H), 1.32-1.26 (m, 1H), 1.10(s, 6H), 0.74-0.71 (m, 2H), 0.66-0.63 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 175.7, 75.7, 68.0, 63.0, 44.7, 33.5, 27.4, 8.6, -0.8; HRMS (ESI) calcd for [C₁₁H₁₅NONa]⁺ (M + Na⁺): 200.1046, Found: 200.1040.

3-((4-methoxyphenyl)ethynyl)oxazolidin-2-one (3lb)

Following the **general procedure**, the reaction of **1I** and **2b** afforded **3Ib** as a white solid (eluent: EtOAc/PE = 1/6; 96% yield): mp 99.5-102.6 °C; IR (film) ν_{max} : 2242, 1608, 1366, 1277, 1257, 1189, 1167, 1089 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 8.76 Hz, 2H), 6.83 (d, *J* = 8.76 Hz, 2H), 4.45 (t, *J* = 7.74 Hz, 2H), 3.96 (t, *J* = 7.74 Hz, 2H), 3.79 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 156.0, 133.3, 113.8, 77.5, 70.7, 63.0, 55.2, 47.0; HRMS (ESI) calcd for [C₁₂H₁₁NO₃Na]⁺ (M + Na⁺): 240.0631, Found: 240.0619. All spectral data are in accordance with the literature.¹

3-((4-(trifluoromethyl)phenyl)ethynyl)oxazolidin-2-one (3lc)

Following the **general procedure**, the reaction of **1I** and **1c** afforded **3Ic** as a white solid (eluent: EtOAc/PE = 1/6; 68% yield): mp 100.9-103.0 °C; IR (film) ν_{max} : 2236, 1597, 1367, 1273, 1263, 1189, 1165, 1091 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 8.28 Hz, 2H), 7.52 (d, *J* = 8.28 Hz, 2H), 4.52 (t, *J* = 7.41 Hz, 2H), 4.04 (t, *J* = 7.41 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 155.6, 131.3, 129.6 (q, *J* = 33.0 Hz), 126.1, 125.2 (q, *J* = 4.2 Hz), 123.9 (q, *J* = 272.0 Hz), 81.3, 70.4, 63.1, 46.8; HRMS (ESI) calcd for [C₁₂H₈F₃NO₂Na]⁺ (M + Na⁺): 278.0399, Found: 278.0400. All spectral data are in accordance with the literature.²⁰

3-(cyclopropylethynyl)oxazolidin-2-one (3lm)

Following the **general procedure**, the reaction of **1I** and **2m** afforded **3Im** as a white solid (eluent: EtOAc/PE = 1/4; 91% yield): mp 50.6-52.5 °C; IR (film) ν_{max} : 2924, 2212, 1757, 1695, 1453, 1369, 1283, 1257, 1226 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 4.42 (t, J = 8.22 Hz, 2H), 3.87 (t, J = 8.22 Hz, 2H), 1.35 (m, 1H), 0.82 (m, 2H), 0.71 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 156.7, 74.8, 65.4, 62.8, 46.9, 8.5, -1.1; HRMS (ESI) calcd for [C₈H₉NO₂Na]⁺ (M + Na⁺): 174.0526, Found: 174.0525. All spectral data are in accordance with the literature.¹⁴

3-((trimethylsilyl)ethynyl)oxazolidin-2-one (3ln)

Following the **general procedure**, the reaction of **1I** and **2n** afforded **3In** as a white solid (eluent: EtOAc/PE = 1/4; 84% yield): mp 78.0-81.3 °C; IR (film) ν_{max} : 2926, 2222, 1755, 1697, 1453, 1359, 1279, 1261, 1232 cm⁻¹; ¹H NMR (600 MHz, CDCI₃) δ 4.42 (t, *J* = 7.99 Hz, 2H), 3.93 (t, *J* = 7.99 Hz, 2H), 0.20 (s, 9H). ¹³C NMR (150 MHz, CDCI₃) δ 155.8, 91.3, 73.7, 62.9, 46.8, 0.0; HRMS (ESI) calcd for [C₈H₁₄NO₂]⁺ (M + H⁺): 184.0788, Found: 184.0791. All spectral data are in accordance with the literature.¹⁶

3-(3-methylbut-3-en-1-yn-1-yl)oxazolidin-2-one (3lp)

Following the **general procedure**, the reaction of **1I** and **2p** afforded **3Ip** as a white solid (eluent: EtOAc/PE = 1/6; 79% yield): decompose at 95 °C; IR (film) ν_{max} : 3004, 2988, 2360, 2242, 1757, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 5.25 (d, *J* = 42.93 Hz, 2H), 4.45 (t, *J* = 8.44 Hz, 2H), 3.94 (t, *J* = 8.44 Hz, 2H), 1.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 155.8, 125.7, 121.2, 78.1, 72.5, 62.9, 47.0, 23.5; HRMS (ESI) calcd for [C₈H₉NO₂Na]+ (M + Na+): 174.0531, Found: 174.0522. All spectral data are in accordance with the literature.²¹

3-(cyclohex-1-en-1-ylethynyl)oxazolidin-2-one (3lq)

Following the **general procedure**, the reaction of **1I** and **2q** afforded **3Iq** as a white solid (eluent: EtOAc/PE = 1/6; 42% yield): mp 71.6-74.5 °C; IR (film) ν_{max} : 3003, 2918, 2358, 2243, 1761, 1420, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 6.13 (m, 1H), 4.43 (t, *J* = 8.08 Hz, 2H), 3.91 (t, *J* = 8.08 Hz, 2H), 2.15-2.08 (m, 4H), 1.66-1.56 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 156.0, 135.4, 119.4, 76.4, 72.7, 62.8, 47.1, 29.4, 25.7, 22.3, 21.4; HRMS (ESI) calcd for [C₁₁H₁₃NO₂Na]⁺ (M + Na⁺): 214.0838, Found: 214.0832. All spectral data are in accordance with the literature.²²

3-(hept-1-yn-1-yl)oxazolidin-2-one (3lr)

Following the **general procedure**, the reaction of **1I** and **2r** afforded **3Ir** as a white solid (eluent: EtOAc/PE = 1/4; 51% yield): mp 53.4-56.2 °C; IR (film) ν_{max} : 2928, 2212, 1751, 1695, 1448, 1363, 1277, 1265, 1230 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 4.35 (t, *J* = 7.98 Hz, 2H), 3.81 (t, *J* = 7.98 Hz, 2H), 2.23 (t, *J* = 7.20 Hz, 2H), 1.46 (m, 2H), 1.33-1.21 (m, 4H), 0.83 (t, *J* = 7.14 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.6, 71.1, 69.9, 62.8, 46.9, 30.8, 28.4, 22.1, 18.2, 13.8; HRMS (ESI) calcd for [C₁₀H₁₆NO₂]⁺ (M + H⁺): 182.1176, Found: 182.1182. All spectral data are in accordance with the literature.²³

(S)-4-benzyl-3-((4-methoxyphenyl)ethynyl)oxazolidin-2-one (3mb)

Following the **general procedure**, the reaction of **1m** and **2b** afforded **3mb** as a white solid (eluent: EtOAc/PE = 1/7; 94% yield): mp 92.9-95.3 °C; $[\alpha]_{D}^{26}$ +168.1 (*c* 1.0, MeOH); IR (film) ν_{max} : 2234, 1595, 1366, 1279, 1269, 1187, 1167, 1087 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.70 Hz, 2H), 7.31 (t, *J* = 7.32, 7.37 Hz, 2H), 7.26 (t, *J* = 7.32 Hz, 1H), 7.21 (d, *J* = 7.37 Hz, 2H), 6.83 (d, *J* = 8.70 Hz, 2H), 4.33–4.27 (m, 2H), 4.13–4.07 (m, 1H), 3.77 (s, 3H), 3.21 (dd, *J* = 14.01, 3.26 Hz, 1H), 2.97 (dd, *J* = 14.80, 7.32 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 159.5, 155.5, 134.1, 133.3, 129.2, 128.7, 127.2, 113.8, 113.7, 76.5, 72.7, 67.2, 58.2, 55.1, 37.6; HRMS (ESI) calcd for [C₁₉H₁₈NO₃]⁺ (M + H⁺): 308.1281, Found: 308.1281. All spectral data are in accordance with the literature.¹

(S)-4-benzyl-3-((4-(trifluoromethyl)phenyl)ethynyl)oxazolidin-2-one (3mc)

Following the **general procedure**, the reaction of **1m** and **2c** afforded **3mc** as a white solid (eluent: EtOAc/PE = 1/7; 48% yield): mp 118.0-121.4 °C; $[\alpha]_{D}^{28}$ +127.4 (*c* 1.0, MeOH); IR (film) ν_{max} : 2232, 1593, 1363, 1277, 1267, 1185, 1161, 1093 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 8.25 Hz, 2H), 7.49 (d, *J* = 8.25 Hz, 2H), 7.35 (t, *J* = 7.32, 7.26 Hz, 2H), 7.29 (t, *J* = 7.32 Hz, 1H), 7.25 (d, *J* = 7.26 Hz, 2H), 4.43–4.36 (m, 2H), 4.20–4.15 (m, 1H), 3.77 (s, 3H), 3.21 (dd, *J* = 13.99, 3.18 Hz, 1H), 3.03 (dd, *J* = 14.55, 6.84 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 155.2, 134.0, 131.3, 129.5 (q, *J* = 32.2 Hz), 129.3, 129.0, 127.5, 126.1, 125.1 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 272.3 Hz), 80.4, 72.4, 67.6, 58.3, 38.1; HRMS (ESI) calcd for [C₁₉H₁₅F₃NO₂]⁺ (M + H⁺): 346.1049, Found: 346.1051.

(S)-4-benzyl-3-(cyclopropylethynyl)oxazolidin-2-one (3mm)

Following the **general procedure**, the reaction of **1m** and **2m** afforded **3mm** as a white solid (eluent: EtOAc/PE = 1/6; 54% yield): mp 51.5-57.6 °C; $[\alpha]_{0}^{28}$ +143.4 (*c* 1.0, MeOH); IR (film) ν_{max} : 2924, 2216, 1753, 1693, 1453, 1355, 1281, 1263, 1232 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.22 (t, *J* = 7.38, 7.26 Hz, 2H), 7.16 (t, *J* = 7.38 Hz, 1H), 7.20 (d, *J* = 7.26 Hz, 2H), 4.27 (t, *J* = 8.52 Hz, 1H), 4.21-4.16 (m,1H), 4.06 (q, *J* = 9.32, 2.94 Hz, 1H), 3.17 (dd, *J* = 13.88, 4.02 Hz, 1H), 2.90 (dd, *J* = 14.68, 8.22 Hz, 1H), 1.39 (m, 1H), 0.84 (m, 2H), 0.73 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 156.2, 134.3, 129.3, 128.8, 127.3, 77.2, 67.1, 64.3, 58.2, 37.7, 8.8, 8.8, -0.9; HRMS (ESI) calcd for [C₁₅H₁₆NO₂]⁺ (M + H⁺): 242.1176, Found: 242.1171. All spectral data are in accordance with the literature.²⁴

(S)-4-benzyl-3-((trimethylsilyl)ethynyl)oxazolidin-2-one (3mn)

Following the **general procedure**, the reaction of **1m** and **2n** afforded **3mn** as a white solid (eluent: EtOAc/PE = 1/6; 70% yield): mp 99.9-102.3 °C; $[\alpha]_{D}^{28}$ +151.5 (*c* 1.0, MeOH); IR (film) ν_{max} : 2930, 2214, 1757, 1691, 1457, 1363, 1285, 1255, 1230 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.22 (t, *J* = 7.38, 7.20 Hz, 2H), 7.16 (t, *J* = 7.38 Hz, 1H), 7.09 (d, *J* = 7.20 Hz, 2H), 4.20–4.12 (m, 2H), 3.97 (q, *J* = 7.73, 2.88 Hz, 1H), 3.07 (dd, *J* = 13.86, 3.78 Hz, 1H), 2.82 (dd, *J* = 14.04, 7.86 Hz, 1H), 0.10 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 155.3, 134.1, 129.3, 128.9, 127.4, 90.3, 76.0, 67.3, 58.1, 37.6, 0.0; HRMS (ESI) calcd for [C₁₅H₂₀NO₂]⁺ (M + H⁺): 274.1258, Found: 274.1254. All spectral data are in accordance with the literature.²⁵

methyl (R)-2-oxo-3-((4-(trifluoromethyl)phenyl)ethynyl)oxazolidine-4-carboxylate (3nc)

Following the **general procedure**, the reaction of **1n** and **2c** afforded **3nc** as a white solid (eluent: EtOAc/PE = 1/5; 32% yield): mp 78.0-81.4 °C; $[\alpha]_{p}^{27}$ +118.1 (*c* 1.0, MeOH); IR (film) ν_{max} : 3010, 2988, 2360, 2260, 1789, 1325, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.55 (q, 4H), 4.73-4.66 (m, 2H), 4.54 (dd, *J* = 8.58, 3.77 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 154.4, 131.6, 129.9 (q, *J* = 32.3 Hz), 125.8, 125.4 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 272.0 Hz), 79.8, 71.2, 65.5, 58.6, 53.5; HRMS (ESI) calcd for [C₁₄H₁₀NO₄F₃Na]⁺ (M + Na⁺): 336.0454, Found: 336.0441.

methyl N-((4-methoxyphenyl)ethynyl)-N-tosylglycinate (3sb)

Following the **general procedure**, the reaction of **1s** and **2b** afforded **3sb** as a pale yellow oil (eluent: EtOAc/PE = 1/7; 46% yield): IR (film) ν_{max} : 3005, 2987, 2361, 2237, 1508, 1276, 1261, 1170 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, *J* = 8.22 Hz, 2H), 7.28 (d, *J* = 8.22 Hz, 2H), 7.22 (d, *J* = 9.05 Hz, 2H), 7.74 (d, *J* = 9.05 Hz, 2H), 4.23 (s, 2H), 3.73 (s, 3H), 3.63 (s, 3H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 159.7, 144.8, 134.4, 133.7, 129.5, 128.1, 114.2, 113.8, 80.6, 70.0, 55.3, 52.5, 52.4, 21.7; HRMS (ESI) calcd for [C₁₉H₁₉NO₅SNa]⁺ (M + Na⁺): 396.0876, Found: 396.0865.

methyl N-tosyl-N-((4-(trifluoromethyl)phenyl)ethynyl)glycinate (3sc)

Following the **general procedure**, the reaction of **1s** and **2c** afforded **3sc** as a colorless oil (eluent: EtOAc/PE = 1/7; 80% yield): IR (film) v_{max} : 2949, 2239, 1761, 1615, 1372, 1327, 1276, 1217, 1168, 1124, 1067 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 8.50 Hz, 2H), 7.42 (d, J = 8.50 Hz, 2H), 7.31 (d, J = 7.94 Hz, 2H), 7.28 (d, J = 7.94 Hz, 2H), 4.25 (s, 2H), 3.61 (s, 3H), 2.35 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.3, 145.2, 134.1, 131.1, 129.7, 129.2 (q, J = 32.2 Hz), 128.0, 126.4, 125.0 (q, J = 3.4 Hz), 123.8 (q, J = 274.0 Hz), 84.5, 69.7, 52.5, 52.0, 21.6; HRMS (ESI) calcd for [C₁₉H₁₆NO₄SF₃Na]⁺ (M + Na⁺): 434.0644, Found:434.0632.

methyl 4-(((N-(2-methoxy-2-oxoethyl)-4-methylphenyl)sulfonamido)ethynyl)benzoate (3sg)

Following the **general procedure**, the reaction of **1s** and **2g** afforded **3sg** as a colorless oil (eluent: EtOAc/PE = 1/7; 40% yield): IR (film) ν_{max} : 3006, 2988, 2360, 2234, 1715, 1276, 1261 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.32 Hz, 2H), 7.87 (d, *J* = 8.32 Hz, 2H), 7.38-7.36 (m, 4H), 4.34 (s, 2H), 3.91 (s, 3H), 3.72 (s, 3H), 2.46 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.4, 166.5, 145.2, 134.2, 130.7, 129.7, 129.4, 128.9, 128.1, 127.4, 85.1, 70.4, 52.6, 52.2, 52.1, 21.7; HRMS (ESI) calcd for [C₂₀H₁₉NO₆SNa]⁺ (M + Na⁺): 424.0825, Found: 424.0811.

methyl N-(cyclopropylethynyl)-N-tosylglycinate (3sm)

Following the **general procedure**, the reaction of **1s** and **2m** afforded **3sm** as a white solid (eluent: EtOAc/PE = 1/6; 23% yield): mp 71.9-73.0 °C; IR (film) ν_{max} : 3010, 2988, 2360, 1748, 1276, 1261, 1165 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.96 Hz, 2H), 7.27 (d, *J* = 7.96 Hz, 2H), 4.11 (s, 2H), 3.61 (s, 3H), 2.38(s, 3H), 1.21-1.17 (m, 1H), 0.71-0.67 (m, 2H), 0.55-0.53 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 167.8, 144.6, 134.4, 129.4, 128.0, 74.8, 68.4, 52.4, 52.3, 21.7, 8.8, -0.9; HRMS (ESI) calcd for [C₁₅H₁₇NO₄SNa]⁺ (M + Na⁺): 330.0770, Found: 330.0760.

3. Computational Studies

3.1 Computational methods: All calculations were carried out with the Gaussian 09 programs¹. The geometries of all the species were fully optimized by using DFT of the B3LYP method²⁻⁴ with the def2-SVP basis set⁵ in conjunction with the SMD implicit solvation model in toluene.⁶ All stationary points were verified as either minima (zero imaginary frequencies) or transition states (a single imaginary frequency). Single point energies were conducted over the B3LYP-optimized geometries with M06 functional⁷ and the def2-TZVP basis set⁵ in conjunction with the SMD implicit solvation model in toluene.⁶ The D3 dispersion correction developed by Grimme was added in all the optimization and single point calculations.⁸ Minimum energy crossing points (MECP) between triplet and singlet states were located by using the sobMECP program.⁹ Reported energies are Gibbs free energies determined by summing these single-point electronic energies and free energy corrections except for the estimation of the MECP energies. The final energies of the MECP are the M06-D3/def2-TZVP calculated single point energies in toluene. Molecular structure graphics were generated using *CYLview 1.0b.*¹⁰

Figure S2. DFT calculations on the assumed Cu (II)-mediated cross-dehydrogenation-coupling (CDC) process. The values are relative free energies (Δ G, in kcal/mol) of the transition states and intermediates.

Figure S3. DFT calculations on the assumed Cu (III)-mediated cross-dehydrogenation-coupling (CDC) process leading to ynamide. The values are relative free energies (Δ G, in kcal/mol) of the transition states and intermediates.

Figure S4. MECP between the triplet intermediate Int6 and singlet intermediate Int4 potential energy surfaces.

Comments on Figure S4: Nitrogen radical IV coordinate to Cu(II) intermediate Int2 (Figure S3) along with the dissociation of ligand, generating a triplet Cu(II) complex Int6 ($\Delta H = -88.9 \text{ kcal /mol}$). The corresponding singlet state intermediate Int4, which is more stable by 19.1 kcal/mol, afforded as Cu(III) complex through a minimum energy crossing point Int7^{MECP}. The relative energy of Int7^{MECP} is determined to be -84.1 kcal/mol, which is only 4.8 kcal/mol higher than Cu(II) intermediate Int6.

Figure S5. DFT calculations on the assumed Cu (III)-mediated cross-dehydrogenation-coupling (CDC) process leading to diyne
 4a. The values are relative free energies (ΔG, in kcal/mol) of the transition states and intermediates.

Figure S6. IRC analysis of TS 4

Comments on Figure S5 and S6: Computational results indicated that the possible Cu(III) intermediate Int5 (-59.3 kcal /mol) with the coordination of two alkyne anions and one amide anion is thermodynamically comparable to the Cu(II) intermediate Int2 (-60.6 kcal /mol) (Figure S5). It is suggested that Int5 may be formed while small amounts of secondary amides was used. When the Int5 is generated, facile CDC process via TS4 ($\Delta G^{\neq} = 5.4$ kcal /mol) leads to ynamide 3aa. However, the transition state TS5, which leads to diyne 4a, can't be located. IRC analysis of TS4 verified that the calculated transition state links reactant Int8 and product ynamide 3aa-V complex 12. It is noteworthy that Int8

formation promptly produces divne **4a-IV** complex **13** without any energy penalty (Figure S6). It is suggested that the **Int5** preferentially delivers to divne **4a** instead of ynamide **3aa**. Indeed, as controlled experimental results shown (Figure S1), the formation of divne **4a** was facilitated by the presence of small amounts ($\sim < 1.5$ equiv.) of secondary amides, and gradually inhibited while the amount of amide increased from 1.5 to 3 equiv owing to Cu(III) intermediate **Int4** (-71.4 kcal /mol) being predominantly generated instead of the **Int5**.

Figure S7. MECP between the triplet intermediate Int9 and singlet intermediate Int5 potential energy surfaces.

Comments on Figure S7: Nitrogen radical coordinate to Cu(II) intermediate Int3 (Figure S5) along with the dissociation of ligand, forming a triplet Cu(II) complex Int9 ($\Delta H = -80.3$ kcal /mol). The corresponding singlet state intermediate Int5, which is more stable by 10.8 kcal/mol, afforded as Cu(III) complex through a minimum energy crossing point Int10^{MECP}. The relative energy of Int10^{MECP} is determined to be -78.1 kcal/mol, which is only 2.2 kcal/mol higher than Cu(II) intermediate Int9.

3.2 Molecular Geometries and Energies (in Hartree) :

Cu(OTf)2

Thermal correction to Gibbs Free Energy = 0.007624 Single-point electronic energies = -3563.547441 Free Energies (298K) = -3563.539817

Cu	0.00001	0.00002	0.0245
0	1.48085	0.67179	-1.16964
S	2.42462	0.89035	0.01234
0	1.50499	0.64104	1.20691
0	3.26943	2.0627	0.01896
С	3.52144	-0.63383	-0.02308
F	4.31272	-0.63529	1.03605
F	4.244	-0.6291	-1.13036
F	2.73668	-1.70888	-0.00169
0	-1.48085	-0.67171	-1.16964
S	-2.42459	-0.89035	0.01234
0	-1.50502	-0.64096	1.20694
0	-3.26938	-2.06272	0.01895

С	-3.52146	0.63379	-0.02308
F	-2.73673	1.70887	-0.00167
F	-4.31276	0.63521	1.03604
F	-4.24401	0.62903	-1.13037

Ligand

Thermal correction to Gibbs Free Energy = 0.114290 Single-point electronic energies = -419.032537 Free Energies (298K) = -418.918247

Charge = 0 Multiplicity = 1			
С	1.757	-1.1634	0.00003
Ν	0.66427	-1.88366	-0.00008
С	-0.36911	-0.96294	0.00002
С	0.16051	0.35599	0.00006
Ν	1.53293	0.1931	0.00027
С	-1.76042	-1.15328	-0.00002
С	-2.57692	-0.02354	-0.00004
С	-2.03247	1.28044	-0.00001
С	-0.65386	1.49494	0.00004
С	2.52019	1.25055	-0.00016
н	-2.17682	-2.16308	-0.00007
н	-3.66335	-0.14439	-0.00009
н	-2.70755	2.14028	-0.00001
н	-0.23345	2.503	0.00011
н	2.41418	1.88479	0.89482
н	2.41388	1.88429	-0.89546
н	3.52664	0.81024	-0.00019
н	2.7765	-1.55379	0.00008

Thermal correction to Gibbs Free Energy = 0.282007 Single-point electronic energies = -4401.716980 Free Energies (298K) = -4401.434974

С	-2.79496	1.56606	-1.03251
Ν	-2.29544	0.55439	-0.33947
С	-3.37348	-0.0985	0.24822

С	-4.55357	0.57847	-0.13621
Ν	-4.14149	1.62785	-0.94855
С	-3.43518	-1.20367	1.10765
С	-4.69573	-1.60504	1.5424
С	-5.86999	-0.92889	1.14419
С	-5.82135	0.17896	0.29996
С	-5.00702	2.61684	-1.56476
Cu	-0.3627	0.08815	-0.23285
0	0.11957	1.96578	-0.70005
S	-0.03939	3.10222	0.31919
0	-0.34474	2.60464	1.66485
0	-0.82031	4.21273	-0.23171
С	1.72148	3.73515	0.41547
F	1.75048	4.86867	1.11477
F	2.20524	3.96863	-0.8044
F	2.50135	2.83848	1.02263
С	1.86471	-0.95812	1.40763
Ν	1.50266	-0.27969	0.33165
С	2.66784	0.04427	-0.35189
С	3.75788	-0.48597	0.37433
N	3.20471	-1.11233	1.48416
С	2.87976	0.75977	-1.5377
C	4,19654	0.91352	-1.96372
C	5.28026	0.375	-1.23487
C	5.08204	-0.33329	-0.05079
С	3.93587	-1.84616	2.5
0	-0.71984	-1.78357	-0.79849
S	-0.68141	-3.11496	-0.05892
0	-1.76045	-4.01234	-0.46018
0	-0.40163	-2.95482	1.38175
С	0.8685	-3.90274	-0.76251
F	1.95639	-3.18041	-0.46415
F	0.77902	-4.00346	-2.08558
F	1.02068	-5.12034	-0.24361
н	-2.53374	-1.72226	1.43095
н	-4.77729	-2.467	2.20857
н	-6.83779	-1.28015	1.51009
н	-6.72524	0.71055	-0.00306
н	-4.39522	3.33917	-2.12021
н	-5.57749	3.1534	-0.79153
н	-5.70894	2.12899	-2.25812
н	2.04053	1.19659	-2.07814
Н	4.39891	1.47066	-2.88157
Н	6.2975	0.52041	-1.60637
н	5.91717	-0.74774	0.51678
Н	4.45307	-2.70571	2.04664
н	3,23268	-2,21281	3.25875
н	4.6767	-1,19183	2,9837
н	-2,19622	2,2964	-1.57242
Н	1.17233	-1.40984	2.11397

Ph-≡

2a

Thermal correction to Gibbs Free Energy = 0.079376 Single-point electronic energies = -308.2658332 Free Energies (298K) = -308.1864572

Charge = 0 Multiplicity = 1

С	-1.51587	-1.21076	0.00001
С	-0.12079	-1.21581	-0.00002
С	0.59497	-0.00002	-0.00003
С	-0.12077	1.2158	-0.00002
С	-1.51584	1.21078	0.00001
С	-2.21737	0.00001	0.00003
Н	-2.05989	-2.1588	0.00003
Н	0.42848	-2.15982	-0.00003
Н	0.42853	2.15979	-0.00003
Н	-2.05986	2.15882	0.00002
Н	-3.31043	0.00003	0.00006
С	2.02833	-0.00001	-0.00007
С	3.24307	0.	-0.00004
Н	4.31875	0.00002	0.00063

Na₂CO₃

Thermal correction to Gibbs Free Energy = -0.013556 Single-point electronic energies = -588.4985647 Free Energies (298K) = -588.5121207

0	-0.00025	-0.78056	-0.00002
С	-0.00004	0.56529	0.
0	1.12523	1.16679	-0.00026
0	-1.12505	1.16684	0.00026
Na	2.16616	-0.71897	0.00011
Na	-2.16609	-0.71888	-0.00009

$$\begin{array}{c}
\mathsf{TfO}\\
\mathsf{I}\\\mathsf{U}\\\mathsf{V}\\\mathsf{V}\\\mathsf{V}\\\mathsf{N}\\\mathsf{V}\\\mathsf{Ph}\\\mathsf{Int 1}\\\mathsf{Int 1}\\$$

Thermal correction to Gibbs Free Energy = 0.353359 Single-point electronic energies = -3747.8340496 Free Energies (298K) = -3747.4806906

Cu	-0.0878	0.19859	0.21872
0	-1.57978	1.58771	0.06867
S	-2.39905	2.19558	-1.05281
0	-3.72638	2.62422	-0.61213
0	-1.61012	3.11365	-1.8951
С	-2.70508	0.72227	-2.17216
F	-1.54135	0.12559	-2.4731
F	-3.49586	-0.17597	-1.58182
F	-3.28203	1.1179	-3.30513
С	1.32586	-1.07637	-0.20978
С	2.27935	-1.80347	-0.479
С	3.4205	-2.61728	-0.77523
С	3.29278	-3.8291	-1.48923
C	4.41334	-4.61223	-1.76971
C	5.68346	-4.20722	-1.34438
C	5 82473	-3 00817	-0.6362
C	4 70937	-2 21902	-0.35391
н	2 30277	-4 14595	-1 82607
н	1 29/87	-5 54607	-2 32607
Ц	4.23407	-0.04007	-2.52007
Ц	6 81/13	-4.02221	-0.30216
	4 82067	1 29192	-0.30210
	4.02007	-1.20102	0.19017
	-1.32042	-2.4900	0.30025
	-1.31142	-1.21070	1.00142
C	-2.70004	-1.12304	1.20427
	-3.31030	-2.42371	1.33240
N	-2.375	-3.26887	0.76157
C	-3.49347	-0.02857	1.7554
C	-4.74712	-0.28352	2.30637
C	-5.28273	-1.58811	2.37365
С	-4.57719	-2.68579	1.88484
С	-2.50459	-4.70405	0.59961
Н	-3.09789	0.98122	1.67468
Н	-5.33745	0.55315	2.6877
Н	-6.2725	-1.7387	2.81176
Н	-4.98532	-3.69737	1.92705
Н	-2.6354	-5.18851	1.57949
Н	-1.59736	-5.0999	0.12502
Н	-3.37258	-4.94044	-0.03512
С	1.10147	2.89993	-0.24336
Ν	1.21037	1.75433	0.40801
С	2.40622	1.81016	1.11223
С	3.01146	3.06286	0.85574
Ν	2.15297	3.72252	-0.01323
С	3.0229	0.8854	1.96613
С	4.23796	1.25262	2.54154
С	4.83325	2.507	2.27934
С	4.23094	3.43624	1.43204
С	2.34703	5.05135	-0.56189
Н	2.56402	-0.08615	2.15186

Н	4.74523	0.55342	3.21088
Н	5.78707	2.754	2.75201
Н	4.68765	4.40664	1.22826
Н	2.39683	5.79614	0.24754
Н	1.50398	5.29638	-1.22084
Н	3.28048	5.09101	-1.14411
Н	-0.43052	-2.89439	-0.08487
Н	0.26518	3.16834	-0.89113

NaHCO₃

Thermal correction to Gibbs Free Energy = -0.000026 Single-point electronic energies = -426.7642204 Free Energies (298K) = -426.7642464

Charge = 0 Multiplicity = 1

0	-0.03927	-1.13645	-0.00005
С	0.56856	-0.03985	0.00012
0	1.92775	-0.09862	-0.00001
0	0.03504	1.10698	-0.00005
Na	-1.91209	0.0402	0.00001
Н	2.2334	0.82164	-0.00001

NaOTf

Thermal correction to Gibbs Free Energy = -0.007099 Single-point electronic energies = -1123.8987516 Free Energies (298K) = -1123.9058506

Charge = 0 Multiplicity = 1 0 -1.0629 0.27198 1.22283 S 0.722 -0.31687 0. -0.00006 Ο 0.21897 2.07859 0 -1.06295 0.27191 -1.22276 С 1.16535 -0.41943 0. F 1.91556 -0.23186 1.08288 F 1.91558 -0.23182 -1.08286 F 0.73101 -1.69375 -0.00003 Na -2.52058 -0.96349 -0.00001

Ts N H 1a

Thermal correction to Gibbs Free Energy = 0.142294 Single-point electronic energies = -914.7101794 Free Energies (298K) = -914.5678854

N	-2.32824	0.33051	1.04379
С	-2.178	1.77101	1.2004
С	0.08222	-0.23567	-0.2153
С	0.70354	0.8735	-0.79354
С	2.08607	1.02638	-0.65822
С	2.85631	0.08505	0.04217
С	2.20311	-1.02786	0.60495
С	0.82583	-1.19623	0.48108
С	4.34815	0.23991	0.18692
S	-1.70219	-0.41154	-0.32054
0	-2.02278	-1.83336	-0.17465
0	-2.15855	0.37979	-1.46691
Н	-2.13197	-0.22844	1.87395
Н	-2.79244	2.09482	2.05369
Н	-2.55743	2.27039	0.29813
Н	-1.13327	2.0928	1.37434
Н	0.11071	1.59641	-1.35664
Н	2.57541	1.89168	-1.11339
Н	2.78932	-1.77913	1.14198
Н	0.32564	-2.07041	0.90292
Н	4.71273	1.1631	-0.28694
Н	4.87865	-0.61051	-0.27372
Н	4.64271	0.26241	1.2496

Thermal correction to Gibbs Free Energy = 0.422219 Single-point electronic energies = -3093.9400663 Free Energies (298K) = -3093.5178473

Cu	0.00005	0.00005	-0.58913
С	1.88615	-0.37337	-0.99721
С	-1.88607	0.3733	-0.99741
С	-3.0801	0.57348	-1.22511
С	-4.47907	0.76551	-1.46267
С	-4.9492	1.81869	-2.27931
С	-6.31599	1.99907	-2.49641
С	-7.24685	1.13718	-1.90545
С	-6.79654	0.08839	-1.09506
С	-5.43158	-0.09934	-0.87558
С	3.08014	-0.57374	-1.22494
С	4.4791	-0.766	-1.46244
С	5.43171	0.09908	-0.87588
С	6.79665	-0.08889	-1.09535
С	7.24681	-1.13816	-1.9052

С	6.31584	-2.0003	-2.49563
С	4.94908	-1.81967	-2.27854
н	-4.22502	2.49161	-2.74486
н	-6.65828	2.81934	-3.13361
н	-8.31691	1.28071	-2.07719
н	-7.51645	-0.59166	-0.63104
н	-5.08201	-0.92037	-0.24533
н	5.08227	0.92049	-0.24605
н	7.51664	0.59134	-0.63174
н	8.31685	-1.28188	-2.07692
н	6.65801	-2.82094	-3.13241
н	4.22481	-2.49277	-2.74368
С	-0.3538	2.97928	-0.01403
Ν	0.35502	1.90023	0.24785
С	1.36407	2.29874	1.11329
С	1.2228	3.68595	1.35896
Ν	0.11808	4.08495	0.62041
С	2.39402	1.57144	1.72659
С	3.25874	2.26649	2.56984
С	3.11082	3.65222	2.80466
C	2.08931	4.38808	2.20509
С	-0.42253	5.42821	0.55297
н	2.50427	0.50527	1.52733
Н	4.07332	1.72862	3.06136
н	3.81238	4.15809	3.47279
н	1.97092	5.45801	2.38761
н	-1.29878	5.43454	-0.10857
н	0.33036	6.12551	0.1535
н	-0.72981	5.76943	1.5539
С	0.35334	-2.97958	-0.01425
N	-0.35504	-1.90028	0.24769
С	-1.36388	-2.2983	1.1136
С	-1.22292	-3.68551	1.35951
N	-0.11863	-4.08499	0.62059
С	-2.39336	-1.57058	1.72718
С	-3.25794	-2.26519	2.57092
С	-3.11036	-3.65091	2.80595
С	-2.08932	-4.38721	2.20612
С	0.42158	-5.42842	0.55321
н	1.23237	-2.99041	-0.65723
н	-2.50336	-0.50441	1.52777
н	-4.07215	-1.72697	3.06267
Н	-3.81182	-4.15644	3.47445
Н	-1.97118	-5.45714	2.3888
Н	-0.33159	-6.12557	0.154
Н	0.72899	-5.76958	1.55412
Н	1.29768	-5.43508	-0.10852
н	-1.23305	2.98971	-0.65671

Thermal correction to Gibbs Free Energy = 0.488053 Single-point electronic energies = -3700.3994558 Free Energies (298K) = -3699.9114028

Cu	0.15117	-0.62297	-0.08016
С	0.75745	1.09123	0.63372
С	1.14778	2.17707	1.06063
С	1.63261	3.42579	1.56478
С	0.74489	4.46671	1.91903
С	1.22731	5.68123	2.40842
С	2.60368	5.88894	2.55439
С	3.49561	4.86776	2.20634
С	3.02007	3.65008	1.71888
Ν	-0.78494	-2.41227	-0.15096
С	-1.44072	-2.81618	-1.38564
С	-2.69651	-1.64836	1.66463
С	-2.28219	-0.47793	2.31345
С	-3.20284	0.54466	2.53923
С	-4.54431	0.42178	2.12962
С	-4.9366	-0.76442	1.48794
С	-4.02376	-1.79944	1.25662
С	-5.52798	1.53313	2.39746
S	-1.46919	-2.90449	1.23223
0	-0.44005	-2.82882	2.29554
0	-2.21187	-4.16859	1.04872
Н	-0.32988	4.30613	1.80519
Н	0.52353	6.47352	2.67861
Н	2.97924	6.8412	2.93819
Н	4.57262	5.02134	2.31801
Н	3.71648	2.85266	1.4491
Н	-0.76137	-2.58579	-2.2211
Н	-2.394	-2.28612	-1.58653
Н	-1.64761	-3.89853	-1.40164
Н	-1.24187	-0.36898	2.62661
Н	-2.87218	1.45917	3.03987
Н	-5.97599	-0.88525	1.16884
Н	-4.33285	-2.72657	0.77017
Н	-5.78655	1.57923	3.46966
Н	-6.46522	1.39515	1.8372
Н	-5.1073	2.51623	2.12956
С	2.21999	-2.68247	0.61215
Ν	1.99779	-1.53266	0.00478

С	3.2319	-1.06424	-0.4208
С	4.21821	-2.01001	-0.05125
Ν	3.53451	-3.02224	0.60875
С	3.58978	0.10884	-1.09957
С	4.93918	0.29263	-1.39772
С	5.91491	-0.66117	-1.03142
С	5.5732	-1.8298	-0.35031
С	4.12543	-4.2065	1.2005
Н	2.83256	0.85076	-1.35633
Н	5.2527	1.19894	-1.92178
Н	6.96224	-0.4769	-1.28354
Н	6.32686	-2.56533	-0.06216
Н	3.33511	-4.80899	1.66673
Н	4.85948	-3.92376	1.97097
Н	4.62925	-4.81138	0.4304
С	-2.44507	0.74608	-1.08589
Ν	-1.24309	0.27653	-1.34646
С	-0.95096	0.65023	-2.64777
С	-2.05246	1.36986	-3.16876
Ν	-2.98622	1.41	-2.14333
С	0.18841	0.42077	-3.43055
С	0.18851	0.92664	-4.72856
С	-0.91651	1.64342	-5.24082
С	-2.05698	1.87857	-4.47258
С	-4.28714	2.04813	-2.19539
Н	1.03768	-0.13201	-3.02355
Н	1.06144	0.76843	-5.3664
Н	-0.87554	2.0235	-6.26454
Н	-2.90923	2.43326	-4.86988
Н	-4.89845	1.60791	-2.9984
Н	-4.17786	3.12822	-2.37988
Н	-4.80164	1.90045	-1.2368
Н	-2.96841	0.62718	-0.13931
Н	1.43974	-3.27043	1.09393

Thermal correction to Gibbs Free Energy = 0.418737 Single-point electronic energies = -3093.908240 Free Energies (298K) = -3093.489502

С	-2.84147	-0.55884	-0.32368
Ν	-1.8862	0.25619	0.26509
С	-2.54647	1.07568	1.05876

Ν	-3.88933	0.85662	1.04574
С	-4.11787	-0.19249	0.16715
Cu	0.16106	0.36838	0.02585
С	1.54683	1.53635	-0.77166
С	0.73138	2.07514	0.79864
С	0.72224	3.25543	1.21058
С	0.75555	4.58825	1.67795
С	1.86785	5.08083	2.41341
С	1.89359	6.39454	2.87524
С	0.82053	7.2616	2.62644
С	-0.28415	6.79407	1.90118
С	-0.32146	5.48313	1.43209
C	0.42319	-2.76792	0.23163
N	0.82373	-1.55122	-0.30074
C	1.85003	-1.8173	-1.08431
N	2 16123	-3 14094	-1 1163
C	3 23116	-3 7658	-1 86914
C	-/ 89988	1 57772	1 70/6
C	1 26058	-3 78752	-0 28201
C	2 64719	1 9/621	1 26/02
C	2.04710	2 10072	1 9/290
C	5.09227	2.19972	1 55501
C	5.00007	1.45650	-1.00001
C	0.2093	1.79903	-2.13441
C	6.38075	2.88581	-3.01463
	5.23071	3.63142	-3.30615
C	4.00469	3.29906	-2.73329
C	-0.61063	-3.07828	1.12522
С	-0.77805	-4.41612	1.476
С	0.06122	-5.42694	0.95524
С	1.09691	-5.13298	0.06813
С	-2.70802	-1.59948	-1.25271
С	-3.86986	-2.2512	-1.66056
С	-5.13896	-1.88065	-1.16112
С	-5.28807	-0.84428	-0.23938
Н	2.40289	-1.05963	-1.63966
Н	2.82346	-4.49644	-2.5852
Н	3.92742	-4.28173	-1.18979
Н	3.78237	-2.99446	-2.42309
Н	-5.44698	0.89236	2.46069
Н	-5.6161	2.05739	1.10942
Н	-4.41653	2.35348	2.40273
Н	2.70781	4.4103	2.60877
Н	2.7626	6.75009	3.43648
Н	0.84615	8.29154	2.99152
Н	-1.12476	7.46363	1.69662
Н	-1.18228	5.12674	0.86079
Н	5.00453	0.61588	-0.86201
н	7.18232	1.21506	-1.89475
н	7.34003	3.15106	-3.46653
н	5.29213	4.48417	-3.98833

Н	3.11149	3.88462	-2.96254
Н	-1.25041	-2.28741	1.519
Н	-1.57585	-4.69372	2.1692
Н	-0.10459	-6.46427	1.25661
Н	1.74661	-5.91422	-0.33143
Н	-2.07494	1.85616	1.65608
Н	-1.72228	-1.87376	-1.63066
Н	-3.80188	-3.06841	-2.38284
Н	-6.02524	-2.41833	-1.50723
Н	-6.26898	-0.55621	0.14384

Thermal correction to Gibbs Free Energy = 0.488512 Single-point electronic energies = -3700.363195 Free Energies (298K) = -3699.874683

С	2.10675	-1.38229	1.77833
С	2.05115	0.05787	3.38755
Ν	3.2673	-0.55203	3.49024
С	4.29811	-0.28822	4.47403
С	3.33684	-1.48526	2.46749
Cu	-0.50251	0.10371	1.70581
С	-2.34826	-0.40093	1.87354
С	-3.60392	-0.46482	2.00456
С	-5.01119	-0.55446	1.96848
С	-5.70034	-0.28838	0.75329
С	-7.08796	-0.37352	0.69362
С	-7.83086	-0.72117	1.83112
С	-7.1656	-0.99557	3.03366
С	-5.7766	-0.91811	3.10711
Ν	-0.29195	1.43754	0.06957
Ν	1.33095	-0.40032	2.38352
С	-1.42862	1.75454	-0.51843
С	0.65021	1.38458	-0.94842
Ν	-1.31175	1.92622	-1.8614
С	-2.4061	2.06225	-2.80063
С	0.01413	1.68065	-2.18142
С	2.01247	1.05772	-0.91921
С	2.70065	1.02766	-2.13181
С	2.05419	1.31682	-3.35402
С	0.69823	1.64692	-3.40135
С	1.83802	-2.18637	0.66312
С	2.8262	-3.08373	0.26722

С	4.05335	-3.18319	0.96249
С	4.33327	-2.38794	2.07416
S	-2.51717	-1.96773	-0.63354
0	-3.67392	-2.86994	-0.47315
0	-2.74781	-0.6243	-1.20254
Н	1.73872	0.83892	4.07931
Н	5.22704	0.03765	3.98022
Н	4.50776	-1.19367	5.06485
Н	3.96013	0.50686	5.15171
Н	-5.11094	-0.05894	-0.13659
Н	-7.60007	-0.17666	-0.25261
Н	-8.92091	-0.78546	1.77851
Н	-7.73871	-1.27455	3.92247
Н	-5.25931	-1.13407	4.04493
Н	-2.38897	1.80546	-0.0104
Н	-2.60792	1.09468	-3.28493
Н	-2.16473	2.8208	-3.56001
Н	2.50046	0.81784	0.02561
Н	3.76211	0.76745	-2.13991
Н	2.6269	1.27645	-4.28408
Н	0.19427	1.85716	-4.34677
Н	-3.30905	2.37459	-2.26023
Н	0.88512	-2.09139	0.14237
Н	2.64797	-3.72349	-0.60019
Н	4.80255	-3.9016	0.62018
Н	5.28186	-2.46635	2.60899
Ν	-1.62933	-1.79825	0.76317
С	-1.33566	-2.795	-1.71067
С	-1.44283	-4.16731	-1.93712
С	-0.28686	-2.05487	-2.27036
С	-0.48187	-4.8052	-2.72902
Н	-2.27653	-4.72126	-1.50183
С	0.66179	-2.70444	-3.05577
Н	-0.21438	-0.98333	-2.08543
С	0.58319	-4.08998	-3.29686
Н	-0.56512	-5.8807	-2.9088
Н	1.48215	-2.12524	-3.48861
С	1.62482	-4.76992	-4.14842
Н	1.45402	-5.8545	-4.21808
Н	1.62675	-4.36099	-5.17316
Н	2.63723	-4.61029	-3.7403
С	-1.52981	-3.00706	1.57034
Н	-0.94678	-2.74774	2.46625
Н	-2.51091	-3.40282	1.88445
Н	-0.98456	-3.80284	1.02909

Thermal correction to Gibbs Free Energy = 0.238678 Single-point electronic energies = -2478.559333 Free Energies (298K) = -2478.320655

Charge = 0 Multiplicity = 2	2			
	С	2.10675	-1.38229	1.77833
	С	2.05115	0.05787	3.38755
	N	3.2673	-0.55203	3.49024
	С	4.29811	-0.28822	4.47403
	С	3.33684	-1.48526	2.46749
	Cu	-0.50251	0.10371	1.70581
	С	-2.34826	-0.40093	1.87354
	С	-3.60392	-0.46482	2.00456
	С	-5.01119	-0.55446	1.96848
	С	-5.70034	-0.28838	0.75329
	С	-7.08796	-0.37352	0.69362
	С	-7.83086	-0.72117	1.83112
	С	-7.1656	-0.99557	3.03366
	С	-5.7766	-0.91811	3.10711
	N	-0.29195	1.43754	0.06957
	N	1.33095	-0.40032	2.38352
	С	-1.42862	1.75454	-0.51843
	С	0.65021	1.38458	-0.94842
	N	-1.31175	1.92622	-1.8614
	С	-2.4061	2.06225	-2.80063
	С	0.01413	1.68065	-2.18142
	С	2.01247	1.05772	-0.91921
	С	2.70065	1.02766	-2.13181
	С	2.05419	1.31682	-3.35402
	С	0.69823	1.64692	-3.40135
	С	1.83802	-2.18637	0.66312
	С	2.8262	-3.08373	0.26722
	С	4.05335	-3.18319	0.96249
	С	4.33327	-2.38794	2.07416
	S	-2.51717	-1.96773	-0.63354
	0	-3.67392	-2.86994	-0.47315
	0	-2.74781	-0.6243	-1.20254
	Н	1.73872	0.83892	4.07931
	Н	5.22704	0.03765	3.98022
	Н	4.50776	-1.19367	5.06485
	Н	3.96013	0.50686	5.15171
	Н	-5.11094	-0.05894	-0.13659
	Н	-7.60007	-0.17666	-0.25261
	Н	-8.92091	-0.78546	1.77851
	Н	-7.73871	-1.27455	3.92247
	Н	-5.25931	-1.13407	4.04493
	Н	-2.38897	1.80546	-0.0104
	Н	-2.60792	1.09468	-3.28493
	Н	-2.16473	2.8208	-3.56001

Н	2.50046	0.81784	0.02561
Н	3.76211	0.76745	-2.13991
Н	2.6269	1.27645	-4.28408
Н	0.19427	1.85716	-4.34677
Н	-3.30905	2.37459	-2.26023
Н	0.88512	-2.09139	0.14237
Н	2.64797	-3.72349	-0.60019
Н	4.80255	-3.9016	0.62018
Н	5.28186	-2.46635	2.60899
Ν	-1.62933	-1.79825	0.76317
С	-1.33566	-2.795	-1.71067
С	-1.44283	-4.16731	-1.93712
С	-0.28686	-2.05487	-2.27036
С	-0.48187	-4.8052	-2.72902
Н	-2.27653	-4.72126	-1.50183
С	0.66179	-2.70444	-3.05577
Н	-0.21438	-0.98333	-2.08543
С	0.58319	-4.08998	-3.29686
Н	-0.56512	-5.8807	-2.9088
Н	1.48215	-2.12524	-3.48861
С	1.62482	-4.76992	-4.14842
Н	1.45402	-5.8545	-4.21808
Н	1.62675	-4.36099	-5.17316
Н	2.63723	-4.61029	-3.7403
С	-1.52981	-3.00706	1.57034
Н	-0.94678	-2.74774	2.46625
Н	-2.51091	-3.40282	1.88445
Н	-0.98456	-3.80284	1.02909

Thermal correction to Gibbs Free Energy = 0.220953 Single-point electronic energies = -1221.780281 Free Energies (298K) = -1221.559328

С	-0.78702	1.35994	-0.53054
С	-1.85241	0.78061	-0.40704
Ν	0.39593	1.98425	-0.64338
С	0.92426	2.32275	-1.96989
С	-3.09527	0.10458	-0.2172
С	-3.53757	-0.21262	1.08688
С	-4.74369	-0.8865	1.27779
С	-5.53551	-1.24881	0.18199
С	-5.10853	-0.93338	-1.11281
С	-3.89978	-0.26732	-1.31661
С	2.11508	0.0621	0.37658
С	1.38593	-1.01073	0.90399

С	1.81339	-2.3088	0.63407
С	2.95697	-2.55413	-0.14837
С	3.67221	-1.45499	-0.65206
С	3.26016	-0.14572	-0.39739
С	3.3855	-3.9679	-0.44197
S	1.53223	1.72591	0.64973
0	0.74975	1.75911	1.88116
0	2.62385	2.66486	0.39041
Н	1.26309	1.42556	-2.51686
Н	1.75831	3.02493	-1.85141
Н	0.12638	2.81488	-2.54347
Н	-2.92413	0.07751	1.94293
Н	-5.07106	-1.1268	2.29287
Н	-6.4817	-1.77354	0.33665
Н	-5.72171	-1.21178	-1.97412
Н	-3.56673	-0.02799	-2.32902
Н	0.50615	-0.82437	1.52148
Н	1.25091	-3.1523	1.04365
Н	4.5719	-1.62499	-1.24933
Н	3.82583	0.70605	-0.77891
Н	2.69189	-4.44327	-1.1572
Н	3.37769	-4.58533	0.47067
Н	4.39492	-4.00908	-0.87714

Ph────Ph

4a

Thermal correction to Gibbs Free Energy = 0.159035 Single-point electronic energies = -615.366169 Free Energies (298K) = -615.207134

С	-5.44543	0.85736	0.85566
С	-4.05113	0.86186	0.85983
С	-3.33385	0.0001	-0.00016
С	-4.05122	-0.86178	-0.85997
С	-5.44551	-0.85753	-0.85541
С	-6.14674	-0.00015	0.00023
Н	-5.98964	1.52829	1.52525
Н	-3.50213	1.53017	1.52659
Н	-3.50227	-1.52999	-1.52687
Н	-5.98979	-1.52857	-1.52485
Н	-7.23975	-0.00027	0.00039
С	-1.90797	0.00016	-0.00025
С	-0.68262	0.00012	-0.00024
С	0.6826	0.00015	-0.00013
С	1.90796	0.00015	-0.00004
С	3.33385	0.00007	0.
С	4.05108	-0.86096	0.86078
С	4.05128	0.86098	-0.86071

С	5.44537	-0.85671	0.85646
Н	3.50203	-1.52858	1.52819
С	5.44558	0.8565	-0.8563
Н	3.5024	1.52869	-1.52817
С	6.14675	-0.00017	0.00011
Н	5.98954	-1.52711	1.52663
Н	5.9899	1.5268	-1.52643
Н	7.23975	-0.00026	0.00015

Thermal correction to Gibbs Free Energy = 0.126510 Single-point electronic energies = -914.040424 Free Energies (298K) = -913.913914

Charge = 0 Multiplicity = 2

Ν	-2.10319	-0.03157	1.20898
С	-3.5383	-0.01506	1.30769
С	0.20223	0.00537	-0.19562
С	0.87769	1.22356	-0.10639
С	2.26229	1.21337	0.07246
С	2.97491	0.00642	0.16031
С	2.26265	-1.2033	0.05939
С	0.88122	-1.2149	-0.11905
С	4.46916	-0.01053	0.34993
S	-1.56642	0.00433	-0.40633
0	-1.97466	-1.26306	-1.03239
0	-1.98137	1.28969	-0.98926
Н	-3.8318	-0.0375	2.36683
Н	-3.98207	-0.88454	0.7826
Н	-3.96066	0.88846	0.82452
Н	0.32627	2.16218	-0.18455
Н	2.79962	2.1628	0.14169
Н	2.8038	-2.15179	0.1182
Н	0.33087	-2.15327	-0.20747
Н	4.88325	1.00428	0.44088
Н	4.96781	-0.50671	-0.49981
Н	4.74516	-0.57478	1.25645

Thermal correction to Gibbs Free Energy = 0.515585 Single-point electronic energies = -4195.439750 Free Energies (298K) = -4194.924164

Cu	-1.18715	0.07634	-0.68917
Ν	-1.22765	1.97717	-1.06426
С	-3.94177	1.0334	-0.91987
Ν	-3.21781	-0.0144	-0.56332
С	-4.12312	-0.97777	-0.1066
С	-5.42792	-0.43496	-0.22408
Ν	-5.26536	0.84152	-0.74303
С	-3.96164	-2.27119	0.41697
С	-5.10972	-2.96908	0.78817
С	-6.40065	-2.41675	0.65456
С	-6.582	-1.13233	0.14663
С	-6.32463	1.79678	-1.00458
С	0.62163	0.10504	-1.02626
С	1.80851	0.13302	-1.30882
С	3.21047	0.18143	-1.58586
С	3.86213	-0.89964	-2.21545
С	5.23798	-0.86019	-2.44227
С	5.98911	0.2507	-2.04027
С	5.3522	1.32865	-1.41471
С	3.9747	1.30046	-1.19158
С	-0.5338	2.54694	-2.2149
Ν	-0.95492	-1.80449	-0.41539
С	-0.80299	-2.65232	-1.58316
С	1.46429	-2.61421	0.84576
С	1.90082	-3.82187	0.29126
С	3.27031	-4.04131	0.13459
С	4.21286	-3.07938	0.53705
С	3.74398	-1.88598	1.10979
С	2.37961	-1.64671	1.26389
С	5.68909	-3.32949	0.36903
S	-0.29294	-2.30166	1.02097
0	-0.90358	-3.61448	1.31289
0	-0.46882	-1.17637	1.95281
S	-1.23383	2.91069	0.31626
С	0.44097	2.99324	0.95283
0	-1.62121	4.27465	-0.08856
0	-2.04147	2.17511	1.30056
С	1.27072	4.05449	0.58711
С	2.58371	4.08803	1.06663
С	3.07158	3.07963	1.91206
С	2.20448	2.03195	2.27363
С	0.89651	1.97393	1.79757
Н	-2.9796	-2.71313	0.54989
н	-5.00072	-3.97408	1.20325
н	-7.27118	-3.00203	0.96104
н	-7.5738	-0.68737	0.04615
н	-5.88705	2.72502	-1.39425
Н	-6.86943	2.02322	-0.07521
н	-7.03136	1.39273	-1.7458

Н	-3.51081	1.96182	-1.28543
Н	3.27956	-1.77519	-2.50824
Н	5.73029	-1.70655	-2.92821
Н	7.06787	0.27601	-2.21513
Н	5.93204	2.20034	-1.09957
Н	3.47638	2.13543	-0.69689
Н	0.55193	2.67859	-2.06207
Н	-0.98104	3.52324	-2.46306
Н	-0.6743	1.87017	-3.06927
Н	0.22786	-2.6731	-1.98173
Н	-1.47308	-2.27587	-2.37127
Н	-1.11877	-3.68165	-1.34085
Н	1.17676	-4.58452	0.00038
Н	3.61482	-4.98105	-0.30634
Н	4.45808	-1.11869	1.41965
Н	2.01872	-0.71121	1.68648
Н	6.08091	-3.9385	1.203
Н	6.25843	-2.38848	0.34888
Н	5.90148	-3.87979	-0.561
Н	0.8847	4.84979	-0.0527
Н	3.23759	4.91664	0.78103
Н	2.56641	1.24508	2.9415
Н	0.23704	1.14635	2.06831
С	4.49629	3.08471	2.40185
Н	5.01006	4.02785	2.16338
Н	4.54632	2.93246	3.49237
Н	5.06796	2.26298	1.9363

Thermal correction to Gibbs Free Energy = 0.512605 Single-point electronic energies = -4195.418286 Free Energies (298K) = -4194.905682

Cu	-0.30946	-1.13249	-1.07418
Ν	-1.56495	-2.58983	-0.88603
С	0.18831	1.7403	-1.43026
Ν	0.56371	0.5099	-1.71965
С	1.7512	0.60356	-2.42788
С	2.07642	1.97363	-2.5532
Ν	1.06209	2.66387	-1.90063
С	2.58368	-0.38218	-2.97289
С	3.72739	0.04424	-3.64138
С	4.04441	1.41557	-3.76465

С	3.22695	2.40624	-3.22244
С	0.97226	4.10459	-1.75359
С	-2.0571	-0.73253	-1.59286
С	-3.15	-0.30825	-1.95357
С	-4.46381	0.15343	-2.2692
С	-5.53878	-0.23978	-1.439
С	-6.83411	0.19365	-1.71967
С	-7.08193	1.01531	-2.8261
С	-6.02395	1.40361	-3.65626
С	-4.7228	0.98048	-3.38264
С	-2.02472	-3.44839	-1.96879
N	1.3202	-2.004	-0.35494
С	1.6342	-3.38422	-0.67396
C	3.75495	-0.86572	0.2742
C	4.05841	0.47039	-0.00204
C	5 30982	0 79816	-0 52047
C	6 27416	-0 19152	-0 77795
С С	5 95287	-1 52/39	-0 /7631
C C	4 70642	-1.86602	0.05557
C	7 60574	0 18300	1 27674
6	2 10060	1 20222	-1.37074
3	2.10909	-1.30333	1.07621
0	2.34334	-2.20444	1.97031
0	1.42102	-0.0312	1.17119
5	-2.4855	-2.01800	0.54927
	-1.77648	-4.04462	1.35562
0	-2.11687	-1.41493	1.29833
0	-3.89348	-2.91348	0.2385
C	-0.51946	-3.91105	1.95693
С	0.05271	-5.02626	2.56131
С	-0.60947	-6.26872	2.58091
С	-1.87131	-6.36568	1.97208
С	-2.46368	-5.25979	1.35627
Н	2.34177	-1.43696	-2.84658
Н	4.4065	-0.69806	-4.0667
Н	4.95638	1.70563	-4.29208
Н	3.47361	3.46572	-3.31272
Н	0.91444	4.58708	-2.74141
Н	1.85387	4.48736	-1.21702
Н	0.07108	4.35562	-1.17945
Н	-0.71273	1.99522	-0.87496
Н	-5.33335	-0.89721	-0.59098
Н	-7.65864	-0.11619	-1.07213
Н	-8.09945	1.35121	-3.0425
н	-6.21477	2.04279	-4.52245
Н	-3.89471	1.2849	-4.02703
н	-3.06011	-3.23494	-2.27966
н	-1.94809	-4.50174	-1.64555
н	-1.35182	-3.31137	-2.82628
н	0.74698	-3.84216	-1.13983
н	1.87196	-3.98294	0.22105
Н	2.47875	-3.48047	-1.38693
---	----------	----------	----------
Н	3.30772	1.23665	0.19292
Н	5.54271	1.84421	-0.73872
Н	6.69382	-2.30956	-0.652
Н	4.47974	-2.90239	0.31226
Н	8.28947	-0.67641	-1.43139
Н	8.10108	0.97534	-0.78986
Н	7.47782	0.57744	-2.40037
Н	0.01762	-2.96382	1.94284
Н	1.03812	-4.92294	3.02337
Н	-2.40332	-7.32083	1.98177
Н	-3.44771	-5.32994	0.88968
С	0.02852	-7.45456	3.25655
Н	-0.54041	-8.38077	3.08698
н	1.05808	-7.61132	2.8947
Н	0.09514	-7.2936	4.34632

Thermal correction to Gibbs Free Energy = 0.262532 Single-point electronic energies = -2973.702333 Free Energies (298K) = -2973.439802

Cu	-0.48341	-1.09438	-0.40419
С	-2.24275	0.21062	1.36789
Ν	-2.09505	-0.23329	0.12967
С	-3.2764	0.06271	-0.534
С	-4.14786	0.71158	0.37143
Ν	-3.45342	0.78811	1.57081
С	-3.66937	-0.18114	-1.85606
С	-4.94227	0.23867	-2.23457
С	-5.80715	0.88628	-1.32311
С	-5.42793	1.1353	-0.00456
С	-3.94515	1.36987	2.80571
Ν	1.23269	-1.8659	-0.54749
С	1.95335	-2.41529	-1.68402
С	3.01407	0.03492	0.30852
С	2.29221	1.21042	0.06299
С	2.96948	2.363	-0.32555
С	4.37022	2.36843	-0.47913
С	5.06906	1.17923	-0.22965
С	4.39983	0.01384	0.16279
С	5.08245	3.63039	-0.89616
S	2.11088	-1.46815	0.75445
0	3.13571	-2.48045	1.0792
0	1.14546	-1.06246	1.80814

Н	-1.48017	0.12577	2.14186
Н	-2.99035	-0.6837	-2.54811
Н	-5.28361	0.06456	-3.25783
Н	-6.79817	1.19899	-1.66104
Н	-6.09704	1.63407	0.69902
Н	-3.17014	1.28754	3.57892
Н	-4.84731	0.8383	3.14559
Н	-4.18937	2.43287	2.65638
Н	1.21729	-2.80627	-2.40258
Н	2.61807	-3.24735	-1.39115
Н	2.57058	-1.66223	-2.21783
Н	1.20498	1.20879	0.17529
Н	2.40642	3.28196	-0.51542
Н	6.15692	1.16027	-0.34214
Н	4.94227	-0.91214	0.362
Н	4.95297	4.42639	-0.14276
Н	4.67951	4.02124	-1.84581
Н	6.16225	3.46616	-1.0289

Thermal correction to Gibbs Free Energy = 0.509529 Single-point electronic energies = -4195.353388 Free Energies (298K) = -4194.843860

Cu	-0.42297	0.64117	-0.08725
Ν	-1.48869	-0.95303	0.61269
С	0.62665	2.7419	-1.88322
Ν	0.43849	1.43851	-1.81637
С	0.89806	0.9208	-3.01869
С	1.39689	1.98625	-3.80844
Ν	1.20211	3.13248	-3.0512
С	0.94063	-0.39475	-3.50069
С	1.49433	-0.60477	-4.76151
С	1.99934	0.46419	-5.53507
С	1.95801	1.78027	-5.07417
С	1.53801	4.48657	-3.44753
С	-1.39521	2.16165	0.68246
С	-2.18979	2.86296	1.31288
С	-3.14441	3.54288	2.13349
С	-3.37581	4.93244	2.0303
С	-4.31759	5.56208	2.84639
С	-5.05018	4.82317	3.78211
С	-4.8314	3.44418	3.89496

С	-3.89212	2.80702	3.08429
С	-2.5949	-1.05916	-0.32194
Ν	0.17933	-1.45404	-0.26805
С	-0.15322	-2.78164	-0.75308
С	2.86415	-1.45382	-0.57713
С	3.3162	-0.26193	-1.15408
С	4.27727	-0.32232	-2.15883
С	4.78885	-1.55348	-2.60666
С	4.33209	-2.73195	-1.9921
С	3.37747	-2.69252	-0.97476
С	5.78377	-1.5918	-3.73585
S	1.60193	-1.37053	0.68506
0	1.7572	-2.55547	1.53692
0	1.59236	-0.00452	1.22687
S	-1.77133	-1.29844	2.23044
C	-2 00386	-3 07226	2 33697
0	-0.57156	-0 94271	2 97798
0	-3 07968	-0 69285	2 52523
C	-0.90716	-3 88619	2.02020
C	-0.90710	-5.26809	2.04071
C	-1.00759	-5.20003	2.00732
C	-2.34302	5 00632	2.44223
C	-3.42707	-3.00032	2.10009
C	-3.27030	-3.01975	2.10702
C	-2.52516	-7.34330	2.32993
п	0.00321	-1.21014	-2.89471
н	1.54669	-1.62044	-5.1611
н	2.42756	0.25571	-6.51867
H	2.3425	2.60828	-5.67289
Н	0.98958	4.76634	-4.36041
Н	2.61897	4.5743	-3.63847
Н	1.26213	5.17799	-2.64084
Н	0.33835	3.43529	-1.09305
Н	-2.80473	5.51235	1.30095
Н	-4.48121	6.63954	2.75186
Н	-5.78664	5.31878	4.42055
Н	-5.39876	2.85906	4.62452
Н	-3.71641	1.73124	3.16591
Н	-3.32811	-0.26605	-0.09802
Н	-3.0838	-2.04924	-0.31079
Н	-2.2226	-0.86751	-1.33949
Н	-0.99346	-2.71382	-1.45487
Н	-0.39661	-3.50019	0.04405
Н	0.70403	-3.17001	-1.32938
Н	2.91157	0.69033	-0.81297
н	4.62841	0.6048	-2.61943
н	4.7354	-3.69701	-2.30995
Н	3.04406	-3.60731	-0.48161
Н	6.60796	-0.87978	-3.56744
Н	5.29736	-1.30182	-4.68352
н	6.21627	-2.59405	-3.871

Н	0.07087	-3.43629	2.81205
Н	-0.23314	-5.90887	2.92307
Н	-4.41571	-5.43867	1.97327
Н	-4.12171	-2.96543	1.91296
Н	-2.65985	-7.65859	3.58038
Н	-3.4107	-7.68317	1.97047
Н	-1.64502	-7.8832	2.14382

Thermal correction to Gibbs Free Energy = 0.287955 Single-point electronic energies = -1828.179014 Free Energies (298K) = -1827.891059

Ν	-0.75969	-0.49836	0.49669
С	-1.67448	0.0251	-0.51333
Ν	0.40296	-1.07524	0.07135
С	0.76065	-2.38056	0.61871
С	-2.01179	-0.56674	2.9329
С	-3.29343	-0.02796	3.05089
С	-4.27001	-0.74815	3.74462
С	-3.97984	-1.99164	4.32617
С	-2.67326	-2.50186	4.19898
С	-1.68777	-1.79985	3.51018
С	-5.02308	-2.76429	5.09043
S	-0.7551	0.3342	2.02824
0	0.55174	0.0368	2.62002
0	-1.24515	1.70249	1.84154
С	2.00206	-0.47787	-2.07248
С	3.06927	-1.31095	-2.4084
С	3.26187	-1.65816	-3.74879
С	2.40738	-1.17941	-4.75316
С	1.34517	-0.33205	-4.38146
С	1.13727	0.02415	-3.05188
С	2.61587	-1.53946	-6.20113
S	1.73257	-0.03404	-0.35743
0	2.92553	-0.43404	0.39368
0	1.18637	1.3245	-0.30718
Н	-2.67164	0.1552	-0.06785
Н	-1.7489	-0.72017	-1.31742
Н	-1.33755	0.99147	-0.92074
Н	-0.14278	-3.00612	0.61079
Н	1.16347	-2.30816	1.64137
Н	1.5151	-2.85206	-0.02793
Н	-3.51595	0.94718	2.61438
Н	-5.27555	-0.32975	3.83978
Н	-2.42638	-3.4646	4.65538

Н	-0.67388	-2.19548	3.4264
Н	-5.07609	-3.81015	4.74617
Н	-6.02267	-2.31737	4.98588
Н	-4.77778	-2.79316	6.1661
Н	3.74385	-1.6708	-1.62968
Н	4.09771	-2.3098	-4.01702
Н	0.67525	0.05834	-5.15283
Н	0.31945	0.69077	-2.77214
Н	3.42854	-2.26933	-6.32981
Н	2.86782	-0.64419	-6.79488
Н	1.69889	-1.96644	-6.64013

Thermal correction to Gibbs Free Energy = 0.199831 Single-point electronic energies = -2367.258328 Free Energies (298K) = -2367.058495

Cu	-0.0646	-0.38844	-0.00009
С	-2.71831	-1.67197	-0.00011
Ν	-1.98958	-0.56974	-0.00015
С	-2.89193	0.48751	-0.00009
С	-4.20341	-0.03842	-0.00001
Ν	-4.05208	-1.41759	-0.00004
С	-2.6748	1.87179	-0.00005
С	-3.79731	2.6957	0.00008
С	-5.10596	2.16093	0.00017
С	-5.33528	0.78568	0.00013
С	-5.12802	-2.39063	0.00008
С	1.784	-0.20901	0.00005
С	3.01299	-0.10566	0.00004
С	4.43922	0.00827	0.00004
С	5.16627	0.06422	1.21206
С	6.55744	0.17156	1.20844
С	7.2617	0.22569	0.00004
С	6.55742	0.17183	-1.20837
С	5.16626	0.06449	-1.21199
Н	-2.32082	-2.6855	-0.00013
Н	-1.65729	2.26854	-0.0001
Н	-3.66686	3.78047	0.00012
Н	-5.95912	2.84378	0.00027
Н	-6.34626	0.37409	0.00021
Н	-5.75493	-2.26671	0.89648
Н	-4.70425	-3.40329	-0.00031
Н	-5.75549	-2.26628	-0.89587
Н	4.62024	0.02159	2.1574
Н	7.09804	0.21293	2.15833

Н	8.35176	0.30921	0.00004
Н	7.098	0.21341	-2.15827
Н	4.62021	0.02207	-2.15733

$$\begin{array}{c} & & \\ Ts - N \cdot & N \sim N - \\ Cu^{||} \\ Ph & N - Ts \\ Int 6 \end{array}$$

Thermal correction to Gibbs Free Energy = 0.512558 Single-point electronic energies = -4195.409298 Free Energies (298K) = -4194.896742

Cu	-1.28952	0.20595	-0.7909
Ν	-1.75973	2.15144	-1.11286
С	-4.17807	0.51849	-0.89509
Ν	-3.23414	-0.34998	-0.57132
С	-3.89616	-1.48643	-0.10905
С	-5.29078	-1.24811	-0.18804
Ν	-5.42457	0.03826	-0.69143
С	-3.42864	-2.70926	0.39156
С	-4.37462	-3.6569	0.7804
С	-5.76017	-3.41011	0.68299
С	-6.24391	-2.19512	0.19931
С	-6.67193	0.74367	-0.91163
С	0.59542	0.35753	-1.27596
С	1.81587	0.42762	-1.48592
С	3.21694	0.55817	-1.66829
С	3.91304	-0.23516	-2.60975
С	5.29605	-0.12249	-2.74023
С	6.00934	0.78732	-1.94868
С	5.32952	1.58725	-1.0204
С	3.94905	1.47532	-0.87526
С	-1.07165	2.81852	-2.21527
Ν	-0.32403	-1.69561	-0.48533
С	-0.18689	-2.60257	-1.60378
С	2.06808	-2.42566	0.80028
С	2.57811	-3.66803	0.41359
С	3.95929	-3.8141	0.26603
С	4.83256	-2.74235	0.51041
С	4.28603	-1.50894	0.91036
С	2.91205	-1.33931	1.05386
С	6.32252	-2.88714	0.3453
S	0.30618	-2.22489	1.00269
0	-0.26863	-3.56589	1.22847
0	0.05794	-1.14262	1.95759
S	-1.91758	3.05265	0.25021
С	-0.29689	3.08313	1.04058

0	-2.24354	4.4485	-0.10793
0	-2.81523	2.31615	1.16065
С	0.60043	4.11706	0.76414
С	1.88702	4.06949	1.30944
С	2.28727	3.00671	2.13592
С	1.35938	1.98464	2.40428
С	0.0764	2.01426	1.86094
н	-2.3676	-2.91329	0.50385
Н	-4.02907	-4.61331	1.18043
н	-6.46655	-4.18103	1.00072
н	-7.31395	-1.98976	0.13047
Н	-6.45546	1.74561	-1.30413
Н	-7.22479	0.84497	0.03501
Н	-7.29765	0.20052	-1.63678
Н	-3.95768	1.52148	-1.25325
Н	3.35484	-0.94573	-3.22301
Н	5.82429	-0.74677	-3.46545
Н	7.09339	0.87489	-2.05792
Н	5.88197	2.3013	-0.40405
Н	3.4118	2.0885	-0.15028
Н	-0.01141	3.05398	-2.00131
Н	-1.58632	3.75393	-2.49107
Н	-1.08552	2.14361	-3.08402
Н	0.85414	-2.93173	-1.76986
Н	-0.54213	-2.0864	-2.50697
Н	-0.8112	-3.4994	-1.43886
Н	1.90329	-4.50963	0.2496
Н	4.36496	-4.78271	-0.03765
Н	4.95144	-0.66226	1.09423
Н	2.48825	-0.37816	1.34475
Н	6.84711	-2.67365	1.29179
Н	6.70209	-2.16909	-0.40052
Н	6.60424	-3.89961	0.02084
Н	0.28448	4.95134	0.13537
Н	2.59262	4.87583	1.08924
Н	1.64224	1.14461	3.04404
Н	-0.62382	1.20337	2.06353
С	3.67107	2.96163	2.73431
Н	4.37489	3.60748	2.18681
Н	3.65833	3.30485	3.78378
Н	4.07604	1.93685	2.73873

Int 7^{MECP}

Single-point electronic energies = -4195.401722

Cu	-1.1967	0.06615	-0.83696
Ν	-1.60538	2.03652	-1.02548
С	-4.08298	0.46537	-0.94317

Ν	-3.18776	-0.4623	-0.65881
С	-3.9125	-1.55856	-0.18951
С	-5.29098	-1.23297	-0.22883
Ν	-5.35615	0.06506	-0.7151
С	-3.51404	-2.81396	0.29291
С	-4.50871	-3.70259	0.69885
С	-5.87667	-3.36807	0.63856
С	-6.29244	-2.12056	0.17643
С	-6.55446	0.86257	-0.88211
С	0.66782	0.20338	-1.41585
С	1.87093	0.32351	-1.69818
С	3.24732	0.54321	-1.97875
С	3.89697	-0.10525	-3.05568
C	5.25048	0.11595	-3.30367
C	5.98281	0.99426	-2,49537
C	5 35066	1 65495	-1 43439
C	4 00053	1 4322	-1 17213
C	-0 97129	2 8208	-2 0831
N	-0.28/31	-1 89/92	-0.6421
C C	-0.20451	-7.82316	-0.0421
C	2 02088	-2.02310	0.81116
C	2.02000	-2.03799	0.56412
C	2.52090	-3.91001	0.50412
C	3.91144	-4.09952	0.31213
C	4.79303	-3.02032	0.71100
C	4.20103	-1./000	0.97843
	2.87537	-1.5514	1.029
C	6.28883	-3.21439	0.64348
S	0.2528	-2.38556	0.89316
0	-0.36672	-3.70095	1.13793
0	-0.01955	-1.24821	1.77323
S	-1.85996	2.8376	0.38832
С	-0.26321	3.09468	1.19365
0	-2.39971	4.17973	0.0981
0	-2.61637	1.9205	1.25949
С	0.44273	4.28442	0.99834
С	1.69621	4.44585	1.59716
С	2.25348	3.43864	2.40142
С	1.514	2.25781	2.59225
С	0.26582	2.07816	1.99616
Н	-2.46511	-3.0867	0.38799
Н	-4.21474	-4.68136	1.08559
Н	-6.62348	-4.09341	0.97014
Н	-7.34995	-1.85001	0.13954
Н	-6.2784	1.84866	-1.27808
Н	-7.06266	1.00117	0.08524
Н	-7.24993	0.37633	-1.58458
н	-3.81751	1.46129	-1.29346
н	3.32283	-0.7848	-3.68877
н	5.73896	-0.39464	-4.1376
н	7.04259	1.16978	-2.69627

Н	5.91536	2.35262	-0.81053
Н	3.50046	1.94842	-0.34995
Н	0.08447	3.08194	-1.87673
Н	-1.53055	3.75546	-2.25513
Н	-0.98564	2.23328	-3.01321
Н	0.92912	-3.19949	-1.82546
Н	-0.37417	-2.31199	-2.67177
Н	-0.77584	-3.69256	-1.60405
Н	1.84304	-4.75723	0.43462
Н	4.31185	-5.09814	0.3185
Н	4.92243	-0.90795	1.14132
Н	2.45732	-0.5643	1.23091
Н	6.76536	-2.95856	1.60452
Н	6.73229	-2.55404	-0.12003
Н	6.55954	-4.2509	0.39653
Н	0.00078	5.08009	0.39569
Н	2.24658	5.37881	1.44369
Н	1.91613	1.46314	3.22806
Н	-0.29298	1.15471	2.15464
С	3.59196	3.62382	3.07513
Н	4.21567	4.36083	2.54643
Н	3.46886	3.9823	4.11239
н	4.14951	2.67513	3.12883

Thermal correction to Gibbs Free Energy = 0.444945 Single-point electronic energies = -3588.968456 Free Energies (298K) = -3588.968456

Cu	0.56951	0.49476	-0.35805
С	2.31587	-0.22002	-0.41306
С	3.39436	-0.79762	-0.40363
С	4.59098	-1.58295	-0.36538
С	4.49127	-2.96524	-0.08838
С	5.64041	-3.75488	-0.04192
С	6.90022	-3.18811	-0.27051
С	7.00703	-1.82024	-0.54651
С	5.86398	-1.02034	-0.59352
Ν	-0.06265	-1.24396	-0.8656
С	0.26889	-1.72749	-2.19258
С	-1.53972	-3.07552	0.38902
С	-2.66162	-2.26969	0.62353
С	-3.9247	-2.85202	0.60364

С	-4.09001	-4.22943	0.35492
С	-2.9468	-5.0087	0.12493
С	-1.66832	-4.44033	0.13804
С	-5.4707	-4.83301	0.33831
S	0.08304	-2.30921	0.40839
0	0.18366	-1.47685	1.62046
0	1.06911	-3.37784	0.16057
С	2.07466	2.37463	1.24885
Ν	1.23841	2.23344	0.2338
С	0.92512	3.50701	-0.22078
С	1.62626	4.43232	0.5863
N	2.33852	3.67414	1.50794
C	0.10426	3.94847	-1.26631
C	0.01225	5.32292	-1.46891
C	0.71371	6.24162	-0.65627
C	1 53356	5 81431	0.38649
C	3 21117	4 19446	2 54519
C	-1 2/898	1 08037	-0 3/005
C	-7.45034	1.000037	-0.0 4 030
C	2 9595	1.51011	0.20903
C	-3.0303	1.00920	-0.21017
C	-4.37330	1.20741	1 02696
C	-5.95716	1.4204	0.05124
C	-0.0445	1.90901	-0.05154
C	-5.94059	2.34508	-1.20724
C	-4.5636	2.13478	-1.28969
н	3.50063	-3.39158	0.08741
H	5.55241	-4.8231	0.17428
H	7.79768	-3.81145	-0.23401
Н	7.98867	-1.37359	-0.72683
Н	5.94558	0.04755	-0.80998
Н	-0.37526	-2.59213	-2.43695
Н	1.32502	-2.02179	-2.31087
Н	0.03164	-0.9298	-2.91243
Н	-2.53662	-1.20039	0.80068
Н	-4.80439	-2.22569	0.77765
Н	-3.05377	-6.07937	-0.06973
Н	-0.77698	-5.04346	-0.04232
Н	-6.10953	-4.33752	-0.41212
Н	-5.96884	-4.70614	1.31457
Н	-5.44626	-5.90843	0.10787
Н	-0.44354	3.23171	-1.87818
Н	-0.62139	5.70248	-2.27395
Н	0.61023	7.31194	-0.85013
Н	2.07689	6.52128	1.01606
Н	3.63393	3.35865	3.1173
Н	2.64308	4.84497	3.22732
н	4.03236	4.77286	2.09526
Н	2.51555	1.54687	1.80055
н	-4.04532	0.76505	1.79689
Н	-6.49837	1.14103	1.93502

н	-7.72319	2.15574	0.00925
Н	-6.46979	2.79131	-2.05399
Н	-4.01757	2.40998	-2.19494

Thermal correction to Gibbs Free Energy = 0.445780 Single-point electronic energies = -3588.960726 Free Energies (298K) = -3588.514945

Charge = 0 Multiplicity = 1			
Cu	-0.56403	-1.0685	0.29249
С	1.02933	-0.04101	0.12744
С	2.07327	0.60078	0.04906
С	3.27709	1.36974	-0.05154
С	3.25983	2.67544	-0.59168
С	4.43534	3.42062	-0.69127
С	5.65201	2.88416	-0.25439
С	5.68343	1.59287	0.28463
С	4.51209	0.84137	0.38628
Ν	-1.78733	-2.50949	0.78878
С	-2.19538	-3.48962	-0.21473
С	-3.91516	-2.4785	2.45318
С	-4.28557	-1.18982	2.85049
С	-5.63765	-0.84464	2.85551
С	-6.62767	-1.76932	2.47626
С	-6.2242	-3.06277	2.10077
С	-4.87728	-3.42796	2.09495
С	-8.08744	-1.39903	2.51328
S	-2.17225	-2.90318	2.40539
0	-1.45381	-1.95891	3.26214
0	-2.0728	-4.35495	2.61313
С	-3.2429	0.08427	-0.31767
Ν	-1.96181	0.13917	-0.62817
С	-1.83462	1.15819	-1.56589
С	-3.11552	1.71483	-1.79757
Ν	-3.98619	1.00354	-0.98186
С	-0.71454	1.64482	-2.25518
С	-0.91912	2.68867	-3.1548
С	-2.20104	3.24179	-3.37274
С	-3.3248	2.76428	-2.69993
С	-5.41607	1.21572	-0.86321
С	0.17222	-2.68093	0.88667
С	0.86433	-3.64479	1.19551
С	1.65294	-4.75969	1.61127

С	1.18848	-5.57851	2.66607
С	1.9447	-6.67028	3.09206
С	3.16392	-6.97262	2.47355
С	3.6276	-6.17127	1.42372
С	2.88479	-5.07021	0.99603
Н	0.27032	1.21504	-2.07279
Н	-0.06634	3.09166	-3.70665
Н	2.30983	3.09736	-0.92823
Н	4.40211	4.42982	-1.11116
Н	6.57145	3.4705	-0.33199
Н	6.62966	1.16731	0.63002
Н	4.53623	-0.16591	0.80819
Н	-3.29606	-3.56759	-0.23805
Н	-1.76189	-4.48516	-0.0294
Н	-1.86242	-3.1287	-1.19755
Н	-3.5194	-0.47398	3.15372
Н	-5.93121	0.16102	3.1691
Н	-6.97946	-3.80078	1.81703
Н	-4.57119	-4.44083	1.82797
Н	-8.53519	-1.68955	3.47996
Н	-8.65706	-1.91489	1.7248
Н	-8.23661	-0.31462	2.39799
Н	-2.31415	4.06129	-4.08686
Н	-4.31722	3.18639	-2.86932
Н	-5.82789	0.506	-0.13357
Н	-5.90991	1.05818	-1.83461
Н	-5.623	2.24111	-0.51975
Н	-3.67045	-0.61847	0.3943
Н	0.22649	-5.34292	3.1263
Н	1.5768	-7.29472	3.91084
Н	3.75174	-7.8312	2.80907
Н	4.57969	-6.40262	0.93836
н	3.24971	-4.43657	0.1845

$$\begin{array}{c} Ph \\ Cu^{II} \\ N > N - \\ Ts \\ Int 9 \end{array}$$

Thermal correction to Gibbs Free Energy = 0.441377 Single-point electronic energies = -3588.951181 Free Energies (298K) = -3588.509803

Cu	0.55827	0.71329	-0.77643
С	2.51384	0.36636	-0.8541
С	3.62257	-0.18679	-0.79273
С	4.87906	-0.85164	-0.67826

С	5.04954	-1.8658	0.29401
С	6.27219	-2.52519	0.41309
С	7.34486	-2.18698	-0.42097
С	7.18571	-1.18703	-1.388
С	5.96493	-0.52649	-1.52274
Ν	0.82551	-1.34531	-0.66943
С	0.87015	-2.21518	-1.8164
С	-0.68362	-2.69308	1.08946
С	-1.68163	-1.80294	1.50589
С	-2.9892	-2.26601	1.6119
С	-3.31817	-3.60026	1.30671
С	-2.2928	-4.46919	0.89742
C	-0.97381	-4.02522	0.78289
C	-4.74789	-4.05949	1.40618
S	0.97538	-2.07749	0.87335
0	1 21171	-0.9899	1 82582
0	1 90441	-3 21585	0 78902
C	1.60711	3 03322	0.7079
N	0.6554	2 6659	-0.08166
C C	-0.24736	2.0039	
C	-0.24730	J.7210	0.0302
N	1 46954	4.74004	1 22252
	1.40034	4.27 141	0.75614
C	-1.4090	5.09204	-0.75014
C	-2.14010	5.0950 6 10997	-0.007 14
C	-1.03293	0.10007	0.27942
C	-0.4 1000	5.95050	0.94371
C	2.3595	4.97549	2.13427
C	-1.36677	0.54057	-1.01826
C	-2.5678	0.27598	-1.06036
C	-3.95861	-0.05724	-1.06343
С	-4.92437	0.8397	-0.55336
С	-6.27581	0.49217	-0.52628
С	-6.69741	-0.75208	-1.00945
С	-5.7521	-1.6499	-1.52004
С	-4.39864	-1.31085	-1.5455
Н	4.20286	-2.1416	0.92516
Н	6.38855	-3.31243	1.16271
Н	8.30235	-2.70491	-0.32078
Н	8.01944	-0.92255	-2.04395
Н	5.83725	0.25166	-2.27873
Н	-0.07741	-2.78336	-1.89178
Н	1.70527	-2.93261	-1.75921
Н	0.96875	-1.59134	-2.71551
Н	-1.43452	-0.76401	1.72461
Н	-3.77782	-1.5762	1.92199
Н	-2.52933	-5.51056	0.6636
Н	-0.17536	-4.70043	0.47005
Н	-5.38841	-3.46574	0.73266
Н	-5.13837	-3.91597	2.42757
н	-4.86012	-5.12159	1.14301

Н	-1.86392	3.1005	-1.39218
Н	-3.10425	5.2559	-1.06118
Н	-2.19947	7.03465	0.40733
Н	-0.01391	6.73941	1.58911
Н	3.23073	4.34385	2.35121
Н	1.84288	5.20696	3.07865
Н	2.70471	5.91517	1.67571
Н	2.51857	2.41533	0.92017
Н	-4.59645	1.81024	-0.17349
Н	-7.0076	1.19902	-0.12547
Н	-7.75695	-1.02024	-0.9892
Н	-6.07235	-2.62356	-1.90102
Н	-3.66047	-2.016	-1.93354

Int 10^{MECP}

Single-point electronic energies = -3588.947741

Cu	0.45377	0.60499	-0.63157
С	2.36882	0.24863	-0.73269
С	3.51882	-0.20336	-0.73217
С	4.84094	-0.73915	-0.67499
С	5.13085	-1.78129	0.2373
С	6.41596	-2.31761	0.30444
С	7.43243	-1.82959	-0.52506
С	7.1558	-0.80014	-1.43181
С	5.87269	-0.25975	-1.51245
Ν	0.54257	-1.40189	-0.61223
С	0.70601	-2.28481	-1.74129
С	-0.80737	-2.82697	1.23875
С	-1.93022	-2.04235	1.53296
С	-3.16248	-2.66639	1.69985
С	-3.29748	-4.06214	1.5801
С	-2.15053	-4.82297	1.30491
С	-0.90342	-4.21599	1.12998
С	-4.6519	-4.705	1.74282
S	0.75937	-2.00949	0.95148
0	0.82916	-0.82653	1.81705
0	1.81872	-3.03003	0.96887
С	1.65274	2.85953	0.83039
Ν	0.65579	2.54338	0.02858
С	-0.13449	3.68266	-0.08078
С	0.45029	4.70614	0.70342
Ν	1.58618	4.14293	1.27224
С	-1.31084	3.93246	-0.80286
С	-1.86373	5.20773	-0.71066
С	-1.27277	6.21963	0.07619
С	-0.10371	5.98792	0.79848

С	2.52008	4.80431	2.16195
С	-1.47092	0.59239	-0.92989
С	-2.68165	0.40393	-1.04426
С	-4.08659	0.1643	-1.18159
С	-5.04023	0.99401	-0.54863
С	-6.40611	0.73922	-0.67684
С	-6.85655	-0.34505	-1.43797
С	-5.92535	-1.17578	-2.07079
С	-4.55853	-0.92721	-1.94599
Н	4.32568	-2.16864	0.86584
Н	6.62622	-3.12617	1.00946
Н	8.4381	-2.25418	-0.46819
Н	7.94675	-0.4173	-2.08229
Н	5.65234	0.54147	-2.2212
Н	-0.12958	-3.01092	-1.78443
Н	1.65586	-2.84329	-1.69818
Н	0.67727	-1.68368	-2.66055
Н	-1.83561	-0.95932	1.61266
Н	-4.043	-2.05523	1.91514
Н	-2.23241	-5.9103	1.22325
Н	-0.00938	-4.80692	0.92258
Н	-5.3761	-4.27848	1.02878
Н	-5.0567	-4.52546	2.75307
Н	-4.61301	-5.79157	1.58119
Н	-1.7691	3.14137	-1.39633
Н	-2.78127	5.4325	-1.25989
Н	-1.74183	7.20545	0.11999
Н	0.3532	6.77129	1.4064
Н	3.31354	4.09985	2.44269
Н	2.01008	5.14526	3.07666
Н	2.97811	5.67485	1.66622
Н	2.45242	2.17438	1.1111
Н	-4.69122	1.84071	0.04688
Н	-7.12783	1.39285	-0.17903
Н	-7.9273	-0.54097	-1.53832
Н	-6.26768	-2.02539	-2.66815
Н	-3.83236	-1.57673	-2.43882

4. Kinetic Studies of The Copper-catalyzed CDC Reaction

Following the general procedure, nine parallel CDC reactions of amide **1a** and terminal alkyne **2g** were performed. These reactions were quenched and worked up every 2 hours from 2h to 18h. The variations in substrate and product concentrations were monitored via integrating ¹H-NMR resonances of amide N-C<u>H₃</u> (δ 2.63 ppm, 3H), alkyne C_{*sp*-<u>H</u>} (δ 3.26 ppm, 1H) and ynamide N-C<u>H₃</u> (δ 3.17 ppm, 3H) with respect to the 1,3,5-Trimethoxybenzene Ph-<u>H</u> (0.5 eq of **2g**, δ 6.08 ppm, 3H) internal standard (Table *S5*). The data were plotted in Origin 2015pro. Plots of [amide], [alkyne] and

[ynamide] versus time gave three straight lines which indicates that the reaction rate is independent of [amide] and [alkyne] under the general procedure as shown in Figure *S8*.

Entry	time	terminal alkyne (mol/L)	Amide (mol/L)	Ynamide (mol/L)
1	2	0.153	0.708	0.018
2	4	0.125	0.680	0.053
3	6	0.105	0.645	0.083
4	8	0.063	0.625	0.105
5	10	0.040	0.615	0.110
6	12	0.030	0.603	0.133
7	14	0.020	0.565	0.145
8	16	0.019	0.545	0.155
9	18	0.017	0.513	0.175

Table S5. Concentrations of substrates and products in the CDC reaction with time

Figure S8. Concentrations of substrates and product as a function of time (h) for the CDC reaction to determine the reaction order in [amide] and [alkyne] under the general procedure

Effect of different dosage of 3Å molecular sieves on the CDC reaction

Following the general procedure, different 3Å molecular sieves loadings were employed from 60mg to 180mg. The yields of ynamide were listed in Table S6 and k_{obs} were obtained. Plot of *kobs* vs dosage of 3Å molecular sieves gave a straight line, which suggested an apparent first-order reaction rate in 3Å MS (Figure S9).

Entry	3Å MS (mg)	Yield (%)	M (mol/L)	K _{obs} (M h ⁻¹)*10 ⁻³
1	60	0.31	0.078	3.229
2	90	0.43	0.108	4.479
3	120	0.56	0.140	5.833
4	150	0.70	0.175	7.292
5	180	0.87	0.218	9.063

Table S6. Effect of different dosage of 3Å molecular sieves on the CDC reaction

Figure S9. The apparent first-order reaction rate in 3Å MS

5. ¹H and ¹³C NMR spectra

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	mag O

8.361 8.361 8.375 8.072 8.072 8.072 7.231 7.236 7.236 7.235 7.235 7.235 7.235

3.148

S94

ZSY-B75b-H1 600 MHz, CDC13 2022-04-26

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	maga O

ZSY-B138c-2-H1 600 MHz, CDC13 2022-07-15

ZSY-B177-H1 600 MHz, CDCl3 2022-10-13

ZSY-C152A-H1 600 MHz, CDCl3 2023-08-04

ZSY-C152B-H1 600 MHz, CDCl3 2023-08-03

--0.000

S129

오 – 00 주	070
00~~	000
0000	0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	000
VV	V/

S132

S133

ZSY-B155c-H1 600 MHz, CDCl3 2022-09-14

ZSY-B82b-H1 600 MHz, CDC13 2022-04-28

ZSY-C160B-H1 600 MHz, CDC13 2023-09-08

ZSY-B88b-H1 600 MHz, CDC13 2022-05-04

S164

ZSY-C164A-H1 600 MHz, CDC13 2023-09-07

6. References

- [1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*; Gaussian, Inc.: Wallingford, CT, 2009.
- [2] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789.
- [3] A. D. Becke, J. Phys. Chem. 1993, 98, 1372–1377, doi:10.1063/1.464304.
- [4] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- [5] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.
- [6] A. V. Marenich, C. J. Cramer, D. G. Truhlar, *J. Phys. Chem. B* **2009**, *113*, 6378–6396.
- [7] Y. Zhao, D. G. Truhlar, *Theor. Chem. Acc.* 2008, 120, 215-241.
- [8] S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 54104–154123.
- [9] T. Lu, The sobMECP Program, http://sobereva.com/286. (Date of access: 22/03/2023).
- [10] C. Y. Legault, CYLview, 1.0b; Université de Sherbrooke, 2009; http://www.cylview.org.