Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Visible-light-induced bromine radical initiate direct C-H

alkylation of heteroaromatic

Xiangxue Cao, ^a Lanfeng Wei, ^{*c} Jinbo Yang, ^a Huanhuan Song, ^{*b} Yu Wei ^{*a}

- a. School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, China.
- b. Bingtuan Energy Development Institute, Shihezi University, Shihezi, 832003, China.
- c. Xinjiang Key Laboratory of Coal Mine Disaster Intelligent Prevention and Emergency Response, Xinjiang Institute of Engineering, Urumqi 830023, China.

Table of contents

1.	General considerations	3
2.	General procedure	4
3.	Radical inhibition experiment	5
4.	Characterization data	6
5	References	15
6	Copies of NMR spectra	16

1. General considerations

General. Unless otherwise noted, all reactions were carried out under an air atmosphere. Analytical thin-layer chroma-tography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluores-cent indicator. Visualization was accomplished by exposure to a UV lamp. All the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200–300 mesh). Eluent generally contained ethyl acetate (EA), petroleum ether (PE).

Structural analysis. NMR spectra were measured on a Bruker Ascend 400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents and referenced internally to corresponding solvent resonance, ¹³C NMR spectra were recorded at 101 MHz, ¹⁹F NMR spectra were recorded at 376 MHz, and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired on Thermo Scientific LTQ Orbitrap XL with an ESI source. Melting points were measured with a micro-melting point apparatus.

Materials. Commercial reagents and solvent were purchased from Adamas, J&K, Energy, Aladdin, Alfa Aesar, Macklin, Organics, TCI, Innochem and used as received unless otherwise stated.

2. General procedure

A flame-dried 25 mL quartz reaction tube was placed with a magnetic stir bar. Then, 2-methylquinoline (28.6 mg, 0.2 mmol, 1.0 equiv.), tetrabutylammonium tribromide (19.3 mg, 0.04 mmol, 20.0 mol%), trifluoroacetic acid (45.6 mg, 0.4 mmol, 2.0 equiv.), THF (2.0 mL) and H₂O (400 μ L) were added to the tube. The reaction tube was placed on a photocatalytic parallel reactor with Blue LEDs (10 W) at the bottom (**Figure S1**). Then the reaction mixture was stirred and irradiated with the Blue LEDs for 12 hours at room temperature.

Figure S1. Picture of the reactor

After taking the reaction tube out, 10 mL saturated NaHCO₃ solution was added to the reaction mixture. Then, the reaction mixture was extracted with ethyl acetate ($3 \times 10 \text{ mL}$). The combined organic phase was washed with brine ($2 \times 5.0 \text{ mL}$) and then dried over anhydrous Na₂SO₄. After concentration, the crude product was purified by column chromatography (silica gel) to give the target product, using petroleum ether / ethyl acetate as the eluent.

3. Radical inhibition experiment

Figure S2. HRMS spectra for Radical inhibition experiment.

4. Characterization data

(2a) 2-Methyl-4-(tetrahydro-2-furanyl)quinolone (CAS: 104293-35-8)¹

2H), 1.87 – 1.79 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 149.4, 147.8, 129.3, 128.9, 125.5, 123.8, 122.9, 117.2, 76.7, 68.9, 33.8, 25.9, 25.4.

(2b) 2-Phenyl-4-(tetrahydro-2-furanyl)quinolone $(1869978-48-2)^2$

2-phenyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₉H₁₇NO Exact Mass: 275.1310 Molecular Weight: 275.3510

Following the General Procedure A with 2-phenylquinoline (41.0 mg, 0.2 mmol), **2b** was obtained as colorless oil (40.2 mg, 73%), $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.20 (m, 3H), 8.06 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.56 – 7.52

(m, 3H), 7.49 – 7.45 (m, 1H), 5.68 – 5.64 (m, 1H), 4.31 – 4.25 (m, 1H), 4.11 – 4.05 (m, 1H), 2.70 – 2.61 (m, 1H), 2.13 – 1.98 (m, 2H), 1.94 – 1.86 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.3, 149.9, 148.3, 139.9, 130.5, 129.2, 129.1, 128.7, 127.6, 126.0, 124.5, 123.0, 114.3, 69.0, 34.0, 26.0.

(2c) 4-(Tetrahydrofuran-2-yl)quinoline-2-carbaldehyde

4-(tetrahydrofuran-2-yl)quinoline -2-carbaldehyde Chemical Formula: C₁₄H₁₃NO₂ Exact Mass: 227.0946 Molecular Weight: 227.2630

Following the General Procedure A with quinoline-2carbaldehyde (31.4 mg, 0.2 mmol), 2c was obtained as white solid (15.5 mg, 34%), $R_f = 0.3$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.18 (s, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.71 – 7.67 (m, 1H), 5.66 – 5.62 (m, 1H), 4.30 - 4.25 (m, 1H), 4.10 - 4.04 (m, 1H), 2.68 - 2.60 (m, 1H), 2.10 – 2.02 (m, 2H), 1.91 – 1.83 (m, 1H).

¹³C NMR 101 MHz, CDCl₃) δ 194.0, 152.5, 151.3, 148.0, 131.3, 130.0, 128.9, 127.6, 127.4, 123.5, 112.9, 69.1, 33.9, 26.0. Melting point (°C): 100.3 – 102.7 °C.

IR: 3375, 3059, 2988, 2955, 2878, 1697, 1593, 1512, 1458, 1360, 1151, 771, 650, 461. HRMS (ESI) m/z calcd for C₁₄H₁₃NO₂ [M+H]⁺: 228.10191, found: 228.10185.

(2d) 2,6-Dimethyl-4-(tetrahydrofuran-2-yl)quinolone (2378441-92-8)³

2,6-dimethyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₅H₁₇NO Exact Mass: 227.1310 Molecular Weight: 227.3070

Following the General Procedure A with 2,6dimethylquinoline (31.4 mg, 0.2 mmol), **2d** was obtained as colorless oil (20.0 mg, 44%), $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.40 (s, 1H), 5.54 (t, J = 7.2 Hz, 1H), 4.24 - 4.19 (m, 1H), 4.06 - 4.00 (m, 1H), 2.71

(s, 3H), 2.63 – 2.56 (m, 1H), 2.52 (s, 3H), 2.12 – 1.95 (m, 2H), 1.87 – 1.78 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) *δ* 158.0, 148.7, 146.3, 135.2, 131.1, 129.0, 123.8, 122.0, 117.1, 76.7, 68.9, 33.8, 25.9, 25.3, 21.8.

(2e) 6-Methoxy-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2378441-93-9)⁴

Following the General Procedure A with 6-methoxy-2methylquinoline (34.6 mg, 0.2 mmol), **2e** was obtained as white solid (33.6 mg, 69%), $R_f = 0.1$ (petroleum ether/ethyl acetate = 4:1).

6-methoxy-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₅H₁₇NO₂ Exact Mass: 243.1259 Molecular Weight: 243.3060

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 9.2 Hz, 1H), 7.40 (s, 1H), 7.33 (dd, J = 9.2, 2.4 Hz, 1H), 7.08 (d, J = 2.8 Hz, 1H), 5.48 (t, J = 7.2 Hz, 1H), 4.25 – 4.19 (m, 1H), 4.06 – 4.00 (m, 1H), 3.91 (s, 3H), 2.70(s, 3H), 2.63 – 2.55 (m, 1H),

2.11 – 2.05 (m, 1H), 2.04 – 1.96 (m, 1H), 1.89 – 1.82 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 156.9, 156.3, 148.0, 143.7, 130.6, 124.6, 120.6, 117.4, 102.0, 76.8, 68.9, 55.5, 33.4, 25.9, 25.1.

(2f) 6-Fluoro-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2095358-07-7)⁴

6-fluoro-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄FNO Exact Mass: 231.1059 Molecular Weight: 231.2704

1H).

Following the General Procedure A with 6-fluoro-2methylquinoline (32.2 mg, 0.2 mmol), **2f** was obtained as white solid (24.5 mg, 53%), $R_f = 0.3$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (600 MHz, CDCl₃) δ 8.02 (dd, J = 8.8, 5.6 Hz, 1H), 7.45 – 7.39 (m, 3H), 5.42 (t, J = 7.2 Hz, 1H), 4.23 – 4.18 (m, 1H), 4.05 – 3.99 (m, 1H), 2.70 (s, 3H), 2.61 – 2.53 (m, 1H), 2.12 – 2.04 (m, 1H), 2.03 – 1.94 (m, 1H), 1.85 –1.76 (m, ¹³C NMR (101 MHz, CDCl₃) δ 159.7 (d, J = 247.2 Hz), 158.3 (d, J = 2.7 Hz), 148.6 (d, J = 5.5 Hz), 145.0, 131.7 (d, J = 9.2 Hz), 124.4 (d, J = 9.3 Hz), 118.8 (d, J = 25.5 Hz), 117.9, 106.8 (d, J = 22.6 Hz), 76.7, 68.9, 33.6, 25.9, 25.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.8.

(2g) 6-Chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2378441-89-3)⁴

Following the General Procedure A with 6-chloro-2methylquinoline (35.5 mg, 0.2 mmol), **2g** was obtained as white solid (34.7 mg, 70%), $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1).

6-chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄CINO Exact Mass: 247.0764 Molecular Weight: 247.7220

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 9.2 Hz, 1H), 7.78 (d, J = 2.0 Hz, 1H), 7.58 (dd, J = 8.8, 2.0 Hz, 1H), 7.44 (s, 1H), 5.45 (t, J = 7.2 Hz, 1H), 4.20 (dd, J = 13.6, 7.6 Hz, 1H), 4.03 (dd, J = 14.8, 7.2 Hz, 1H), 2.71 (s, 3H), 2.64 –

2.55 (m, 1H), 2.14 – 2.05 (m, 1H), 2.04 – 1.95 (m, 1H), 1.85 – 1.76 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 148.5, 146.2, 131.2, 130.9, 129.7, 124.6, 122.1, 118.0, 76.5, 68.9, 33.8, 25.9, 25.4.

(2h) 6-Bromo-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2095358-06-6)⁴

Following the General Procedure A with 6-bromo-2methylquinoline (44.4 mg, 0.2 mmol), **2h** was obtained as white solid (43.8 mg, 75%), $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1).

6-bromo-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄BrNO Exact Mass: 291.0259 Molecular Weight: 292.1760

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 2.0 Hz, 1H), 7.89 (d, J = 9.2 Hz, 1H), 7.71 (dd, J = 8.8, 2.0 Hz, 1H), 7.44 (s, 1H), 5.45 (t, J = 7.2 Hz, 1H), 4.23–4.17 (m, 1H), 4.02 (dd, J = 15.2, 7.2 Hz, 1H), 2.70 (s, 3H), 2.64 – 2.54 (m,

1H), 2.13 – 2.05 (m, 1H), 2.03 – 1.95 (m, 1H), 1.85 – 1.76 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 148.5, 146.4, 132.3, 131.0, 125.4, 125.1, 119.4, 118.0, 76.5, 68.9, 33.8, 25.9, 25.4.

(2i) 7-Chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (1821239-62-6)⁴

7-chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄CINO Exact Mass: 247.0764 Molecular Weight: 247.7220

Following the General Procedure A with 7-chloro-2methylquinoline (35.5 mg, 0.2 mmol), **2i** was obtained as white solid (26.3 mg, 53%), $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 1.6 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.43 – 7.40 (m, 2H), 5.49 (t, J =7.2 Hz, 1H), 4.20 (dd, J = 14.0, 8.0 Hz, 1H), 4.02 (dd, J =

15.2, 7.2Hz, 1H), 2.71 (s, 3H), 2.61 – 2.53 (m, 1H), 2.12 – 2.04 (m,1H), 2.03 – 1.95 (m, 1H), 1.84 – 1.75 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) *δ* 160.3, 149.4, 148.4, 134.8, 128.3, 126.3, 124.3, 122.3, 117.4, 76.6, 69.0, 33.8, 25.9, 25.5.

(2j) 8-Chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2378441-96-2)⁴

8-chloro-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄CINO Exact Mass: 247.0764 Molecular Weight: 247.7220 Following the General Procedure A with 8-chloro-2methylquinoline (35.5 mg, 0.2 mmol), **2j** was obtained as white solid (27.2 mg, 55%), $R_f = 0.5$ (petroleum ether/ethyl acetate = 5:1).

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7. 76 (m, 2H), 7.51 (s, 1H), 7.39 (t, J = 8.0 Hz, 1H), 5.54 (t, J = 7.2 Hz, 1H), 4.23 (q, J = 7.6 Hz, 1H), 4.04 (q, J = 7.2 Hz, 1H), 2.82 (s, 3H), 2.64 – 2.56 (m, 1H), 2.13 – 2.05 (m, 1H), 2.04 – 1.95 (m, 1H), 1.86 – 1.77 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) *δ* 160.2, 149.7, 144.2, 133.5, 129.1, 125.3, 125.2, 122.1, 118.1, 76.7, 69.0, 33.9, 25.93, 25.91.

(2k) 8-Bromo-2-methyl-4-(tetrahydrofuran-2-yl)quinolone (2378441-97-3)⁴

Following the General Procedure A with 8-bromo-2methylquinoline (44.4 mg, 0.2 mmol), **2k** was obtained as white solid (39.7 mg, 68%), $R_f = 0.5$ (petroleum ether/ethyl acetate = 5:1).

8-bromo-2-methyl-4-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₄H₁₄BrNO Exact Mass: 291.0259 Molecular Weight: 292.1760

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.48 (s, 1H), 7.30 (t, J =8.4 Hz, 1H), 5.53 (t, J = 7.2 Hz, 1H), 4.20 (dd, J = 15.2, 8.0 Hz, 1H), 4.02 (q, J =9.6 Hz, 1H), 2.80 (s, 3H), 2.62 – 2.55 (m, 1H), 2.10 – 2.05 (m, 1H), 2.02 – 1.95 (m, 1H), 1.83 – 1.77

(m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 149.7, 145.0, 132.7, 125.7, 125.22, 125.18, 122.8, 118.1, 76.7, 69.0, 34.0, 25.9, 26.0.

(21) 4,7-Dichloro-2-(tetrahydrofuran-2-yl)quinolone (2306793-11-1)¹

4,7-dichloro-2-(tetrahydrofuran-2-yl)quinoline Chemical Formula: C₁₃H₁₁Cl₂NO Exact Mass: 267.0218 Molecular Weight: 268.1370

Following the General Procedure A with 4,7-dichloroquinoline (39.6 mg, 0.2 mmol), **21** was obtained as colorless oil (33.2 mg, 62%), $R_f = 0.1$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 9.2 Hz, 1H), 8.06 (s, 1H), 7.70 (s, 1H), 7.55 – 7.52 (m, 1H), 5.14 – 5.11 (m, 1H), 4.17 – 4.11 (m, 1H), 4.06 – 4.00 (m, 1H), 2.55 – 2.47 (m, 1H), 2.09 – 1.99 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 165.1, 148.5, 143.4, 136.5, 128.1, 128.0, 125.4, 124.0, 118.4, 81.2, 69.3, 33.2, 25.8.

(2m) 4-(Tetrahydrofuran-2-yl)-2,2'-biquinoline

4-(tetrahydrofuran-2-yl) -2,2'-biquinoline Chemical Formula: C₂₂H₁₈N₂O Exact Mass: 326.1419 Molecular Weight: 326.3990

Following the General Procedure A kwith 2,2'-biquinoline (51.3 mg, 0.2 mmol), **2m** was obtained as yellow oil (26,8 mg, 41%), $R_f = 0.6$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.84 (d, *J* = 8.8 Hz, 1H), 8.33 – 8.28 (m, 3H), 8.0 (d, *J* = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.60 – 7.56 (m, 2H), 5.69 (t, *J* = 7.2 Hz, 1H), 4.39 (q, *J* = 14.4 Hz, 1H), 4.13 (q, *J* = 14.8 Hz, 1H), 2.71 – 2.63 (m, 1H), 2.17 – 2.10 (m, 2H), 2.05 – 1.97 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.4, 156.2, 149.8, 148.1, 148.0, 136.6, 130.8, 130.1, 129.4, 129.0, 128.4, 127.6, 126.9, 126.7, 125.9, 123.4, 119.5, 114.9, 77.4, 69.0, 33.8, 26.1.

IR: 2960, 2926, 2853, 1462, 1261, 1094, 1018, 800.

HRMS (ESI) m/z calcd for C₂₂H₁₈N₂O [M+H]⁺: 327.14919, found: 327.14893.

(2n) 4-Chloro-1-(tetrahydrofuran-2-yl)isoquinoline

4-chloro-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂CINO Exact Mass: 233.0607 Molecular Weight: 233.6950

Following the General Procedure A with 4chloroisoquinoline (37.2 mg, 0.2 mmol), 2n was obtained as yellow oil (29.0 mg, 62%), $R_f = 0.5$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.37 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 7.80 (t, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 5.68 (t, J = 7.2 Hz, 1H), 4.18 – 4.12 (m, 1H), 4.05 – 3.99 (m, 1H), 2.56 – 2.48 (m, 1H), 2.42 – 2.36 (m, 1H), 2.20 – 2.07 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 158.5, 140.1, 133.9, 130.9, 127.9, 127.4, 125.6, 123.9, 78.7, 69.0, 30.6, 26.1.

IR: 3080, 3074, 3045, 2962, 2925, 2856, 1618, 1569, 1257, 1055, 966, 763, 675. HRMS (ESI) m/z calcd for C₁₃H₁₂ClNO [M+H]⁺: 234.06802, found: 234.06842.

(20) 4-Bromo-1-(tetrahydrofuran-2-yl)isoquinoline (2408961-61-3)⁵

4-bromo-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂BrNO Exact Mass: 277.0102 Molecular Weight: 278.1490

Following the General Procedure A with 4bromoisoquinoline (41.6 mg, 0.2 mmol), **20** was obtained as yellow oil (41.2 mg, 74%), $R_f = 0.5$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 8.34 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 5.66 (t, J = 7.2 Hz, 1H), 4.17 – 4.11 (m, 1H), 4.04 – 3.99 (m, 1H), 2.56 – 2.47 (m, 1H), 2.04 (m, 2H)

2.42 – 2.33 (m, 1H), 2.20 – 2.04 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 159.1, 143.0, 135.0, 131.1, 128.0, 127.8, 126.6, 125.6, 119.2, 78.6, 69.0, 30.5, 26.0.

the

(2p) 5-Bromo-1-(tetrahydrofuran-2-yl)isoquinoline (2095358-00-0)⁵

Following

bromoisoquinoline (41.6 mg, 0.2 mmol), **2p** was obtained as colorless oil (31.7 mg, 57%), $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 5.5 Hz, 1H),

Procedure

А

with

5-

General

5-bromo-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂BrNO Exact Mass: 277.0102 Molecular Weight: 278.1490 8.34 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 6.4 Hz, 2H), 7.44 (t, J = 8.4 Hz, 1H), 5.70 (t, J = 7.2 Hz, 1H), 4.18 – 4.12 (m, 1H), 4.05 – 3.99 (m, 1H), 2.59 – 2.50 (m, 1H), 2.43 – 2.34 (m, 1H), 2.20 – 2.06 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) *δ* 160.0, 142.7, 135.6, 133.6, 127.7, 127.4, 125.1, 122.2, 119.4, 79.0, 69.0, 30.6, 26.0.

(2q) 4-(Tetrahydrofuran-2-yl)isoquinoline-5-carbaldehyde

Following the General Procedure A with isoquinoline-5-carbaldehyde (31.4 mg, 0.2 mmol), 2q was obtained as colorless oil (11.8 mg, 26%), $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 10.39 (s, 1H), 8.97 (d, J = 6,0 Hz, 1H), 8.72 – 8.66 (m, 2H), 8,19 (d, J = 7.2 Hz, 1H), 7.78 (t, J = 8.0 Hz, 1H), 5.71 (t, J = 7,2 Hz, 1H), 4.18 – 4,12 (m, 1H), 4.06 – 4.00 (m, 1H), 2.67 – 2.58 (m, 1H), 2.42 – 2.36 (m, 1H), 2.23 – 2.09 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 192.6, 159.8, 144.6, 139.1, 134.2, 132.5, 130.8, 126.8, 126.1, 117.2, 79.4, 69.0, 30.2, 26.1. Melting point (°C): 155.6 – 108.0 °C.

IR: 2989, 2987, 2964, 2879, 2750, 1678, 1564, 1225, 1180, 1057, 852, 769, 660. HRMS (ESI) m/z calcd for C₁₄H₁₃N₂O [M+H]⁺: 228.10191, found: 228.10199.

(2r) 6-Chloro-1-(tetrahydrofuran-2-yl)isoquinoline (2095357-99-4)⁵

6-chloro-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂CINO Exact Mass: 233.0607 Molecular Weight: 233.6950

Following the General Procedure A with 6chloroisoquinoline (32.7 mg, 0.2 mmol), **2r** was obtained as yellow oil (15.0 mg, 32%), $R_f = 0.4$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 5.6 Hz, 1H), 8.32 (d, J = 8.8 Hz, 1H), 7.81 (s, 1H), 7.54 (d, J = 9.2 Hz, 1H), 7.50 (d, J = 5.6 Hz, 1H), 5.65 (t, J = 6.8 Hz, 1H), 4.19 - 4.13 (m, 1H), 4.05 – 4.00 (m, 1H), 2.57 – 2.48 (m, 1H), 2.43 – 2.35 (m, 1H), 2.22 – 2.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 142.4, 137.4, 136.2, 128.1, 127.3, 126.0, 124.8, 119.7, 79.2, 69.0, 30.6, 26.1.

(2s) 6-Bromo-1-(tetrahydrofuran-2-yl)isoquinoline (2095357-98-3)⁶

Following the General Procedure A with 6bromoisoquinoline (41.6 mg, 0.2 mmol), **2s** was obtained as white solid (39.5 mg, 71%), $R_f = 0.2$ (petroleum ether/ethyl acetate = 4:1).

6-bromo-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂BrNO Exact Mass: 277.0102 Molecular Weight: 278.1490

Br

¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 5.6 Hz, 1H), 8.23 (d, J = 9.2 Hz, 1H), 7.97 (d, J = 1.2 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.47 (d, J = 6.0 Hz, 1H), 5.63 (t, J = 7.2 Hz, 1H), 4.17 – 4.11(m, 1H), 4.04 – 3.98 (m, 1H), 2.56 – 2.48

(m, 1H), 2.41 – 2.33 (m, 1H), 2.19 – 2.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 142.4, 137.7, 130.6, 129.3, 127.2, 125.0, 124.6, 119.4, 79.1, 69.0, 30.5, 26.0.

(2t) 7-Bromo-1-(tetrahydrofuran-2-yl)isoquinoline (2095358-02-2)⁶

7-bromo-1-(tetrahydrofuran-2-yl) isoquinoline Chemical Formula: C₁₃H₁₂BrNO Exact Mass: 277.0102 Molecular Weight: 278.1490

Following the General Procedure A with 7-bromoisoquinoline (41.6 mg, 0.2 mmol), **2t** was obtained as white solid (31.2 mg, 56%), $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 853 – 8.50 (m, 2H), 7.75 – 7.68 (m, 2H), 7.54 (d, J = 6.0 Hz, 1H), 5.60 (t, J = 7.2 Hz, 1H), 4.18 – 4.13 (m, 1H), 4.06 – 4.00 (m, 1H), 2.58 – 2.50 (m, 1H), 2.42 – 2.34 (m, 1H), 2.22 – 2.07 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) *δ* 158.6, 141.7, 134.9, 133.3, 128.8, 127.8, 127.5, 120.9, 120.1, 79.0, 68.9, 30.4, 26.0.

(2u) Methyl 1-(tetrahydrofuran-2-yl)isoquinoline-3-carboxylate (2095358-05-5)⁶

methyl 1-(tetrahydrofuran-2-yl) isoquinoline-3-carboxylate Chemical Formula: C₁₅H₁₅NO₃ Exact Mass: 257.1052 Molecular Weight: 257.2890

Following the General Procedure A with methyl isoquinoline-3-carboxylate (37.4 kmg, 0.2 mmol), 2u was obtained as white solid (27.3 mg, 53%), $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1).

¹H NMR (400 MHz, CDCl₃) δ 8.52 – 8.50 (m, 2H), 7.98 – 7.95 (m, 1H), 7.77 – 7.71 (m, 2H), 5.68 (t, *J* = 7.2 Hz, 1H), 4.17 (dd, *J* = 14.8, 7.6 Hz, 1H), 4.06 – 4.00 (m, 4H), 2.74 – 2.65 (m, 1H), 2.47 – 2.38 (m, 1H), 2.27 – 2.08 (m, 2H).

 13 C NMR (101 MHz, CDCl₃) δ 166.4, 160.0, 139.9, 136.4, 130.6, 129.3, 128.8, 128.1, 126.1, 124.2, 80.4, 69.0, 52.7, 30.3, 26.1.

(2v) 6-(Tetrahydrofuran-2-yl)phenanthridine $(1588454-61-8)^5$

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 143.1, 133.2, 130.32, 130.26, 128.4, 127.1, 126.8, 126.4, 124.7, 124.0, 122.3, 121.8, 79.5, 69.0, 30.0, 25.9.

(2w) 2-Chloro-3-(tetrahydrofuran-2-yl)quinoxaline (2770705-43-4)⁵

Chemical Formula: C₁₂H₁₁ClN₂O Exact Mass: 234.0560 Molecular Weight: 234.6830 Following the General Procedure A with 2chloroquinoxaline (32.9 mg, 0.2 mmol), 2w was obtained as colorless oil (21.6 mg, 46%), $R_f = 0.2$ (petroleum ether/ethyl acetate = 6:1).

Molecular Weight: 234.6830 ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 1H), 8.00 – 7.98 (m, 1H), 7.76 – 7.73 (m, 2H), 5.55 (t, J = 6.0 Hz, 1H), 4.29 – 4.23 (m, 1H), 4.08 – 4.03 (m, 1H), 2.53 – 2.48 (m, 1H), 2.27 – 2.22 (m, 1H), 2.18 – 2.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 146.0, 141.3, 140.6, 130.6, 130.1, 129.3, 128.0, 78.0, 69.4, 30.9, 25.7.

(2x) 2-Phenyl-4-(tetrahydrofuran-2-yl)pyridine $(1795742-55-0)^7$

Following the General Procedure A with 2-phenylpyridine (31.0 mg, 0.2 mmol), 2x was obtained as yellow oil (18.5 mg, 41%), $R_f = 0.3$ (petroleum ether/ethyl acetate = 4:1).

Chemical Formula: $C_{15}H_{15}NO$ Exact Mass: 225.1154 Molecular Weight: 225.2910 IH NMR (400 MHz, CDCl₃): δ 8.63 (d, J = 5.2 Hz, 1H), 8.00 (d, J = 6.8 Hz, 2H), 7.70 (s, 1H), 7.49 – 7.39 (m, 3H), 7.19 (d, J = 4.4 Hz, 1H), 4.97 (t, J = 7.2 Hz, 1H), 4.15 –

4.10 (m, 1H), 4.02–3.96 (m, 1H), 2.44 –2.38 (m, 1H), 2.06–1.98 (m, 2H), 1.84–1.79 (m, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 157.5, 153.7, 149.5, 139.3, 128.93, 128.9, 127.0, 119.0, 117.3, 79.2, 69.0, 34.3, 25.8.

5 References

1. J. Zhou, Y. Zou, P. Zhou, Z. Chen and J. Li, Org. Chem. Front., 2019, 6, 1594.

2. C. Y. Huang, J. Li, W. Liu and C. J. Li, Chem. Sci., 2019, 10, 5018-5024.

3. X. Li, C. Liu, S. Guo, W. Wang and Y. Zhang, Eur. J. Org. Chem., 2021, 411-421.

4. S. Wang, Y. Fan, H. Zhao, J. Wang, S. Zhang and W. Wang, *Synlett*, 2019, **30** 2096–2100.

5. L. Li, X. Song, M. F. Qi and B. Sun, Tetrahedron., 2022, 99, 153846.

6. S. Liu, A. Liu, Y. Zhang and W. Wang, Chem. Sci., 2017, 8, 4044.

7. Z. Zhou, Y. Wu, P. Yang, S. Deng, Q. Zhang and D. Li, *ChemistrySelect*, 2021, 6, 2770–2773.

6 Copies

of

NMR

spectra

x00xx1x00xx7x00x	500	00040-04	8-10-4000-0-0000-40408
4000-000040-804	C 0 4	00000-0000	F040-0-08F04000F4000F0
000000000000444	000	000-000	888888888888888888888888888888888888888
000000000000000000000000000000000000000	N N N	त त त त त त त त	000000000000000000000000000000000000000
	512		

¹H NMR 400 MHz CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR 400 MHz CDCl₃

0-0	- 0 M - 4 M 0 0 0 M 0 M - 4 400 0 M	- 4 v x 0 m m v	-0000000000000000000000000000000000000
SSON	700100000000000000000000000000000000000	00000400	-0-040000-0040-080
0 00 00	000000000000000000000000000000000000000	4400	60000011110000000
00 00 00	xx xx xx xx r r r r r r r r r r r r r r	4444444	
SY			

¹H NMR 400 MHz CDCl₃

000000000004	500	800480004000400400000004000
WEN40E0EN	010	LN4040-0040-000000000000000000
000170000	000	<u></u>
000000000000000000000000000000000000000	N N N	444444666666666666666666666666666666666
SSV VIII		

01000040000	041	00040-0000000004-000000-40000
040000000000	00 00 47	0000-400000-000-00000000000000000000000
000	000	
7777770000000	N N N	444444466666666666666666666666666666666
LLLLLL I	512	

¹H NMR 400 MHz CDCl₃

$$\begin{array}{c} 8.807 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.333 \\ 8.4035 \\ 1.4016 \\ 1$$

00000000000	0 8 0	L & O U O O W 4 4 N U N 4 4 N O - & O O & O L O 4 N & O L O
0 8 4 0 1 1 0 0 4 4 1 0	40-	040-00000400-00-00-04000040000
4400000044	000	
00000000000000000	N N N	444444666666666666666666666666666666666
	אר	

¹H NMR 400 MHz CDCl₃

0000000	-00000000000-	M4 9 8 0 - N N M 9 N N N N N N 0 - M 0 - 0 M 9 8 - 0 N M 4
4-400400	0-0000000000000000000000000000000000000	40080804000400040-080-06040-0
00004400	777200007777780	0000000000000000000000000000000000000
$\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$ $\dot{\infty}$	L'L'L'L'L'L'L'L'N'N'N	444444444444444444444444444444444444444

¹H NMR 400 MHz CDCl₃

00000000000000000000000000000000000000	040	000000000000000000000000000000000000
4 4 4 M W U U O 8 8 L L O N N 4 4 M W	300	80008040000000000000000000000
	S S S	000000000440000000
	vivivi	4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6
	4	

-154.472 -145.999 140.572 140.572 130.580 128.006	-77.973 -69.425	-30.879
N CI N 2w		

