POPs to COFs by Post-modification: CO_{2} Chemisorption and Dissolution

Ayham A. Aladwan, ${ }^{\text {a }}$ Abdussalam K. Qaroush,*a Ala'a F. Eftaiha, ${ }^{\text {b }}$ Suhad B. Hammad, ${ }^{\text {a }}$ Feda M.
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, The University of Jordan, 11942 Amman, Jordan.
${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan.
${ }^{c}$ Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
${ }^{d}$ Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland.

Electronic Supplementary Information

Abbreviations

- POP-5; the methylene group serves as the spacer within the aromatic diamine $\left(\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}_{2}\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$).
- $\mathrm{O}-\mathrm{POP}(6)$; the oxygen atom serves as the spacer within the aromatic diamine $\left(\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{O}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$).
- S-POP (7); the sulfur atom serves as the spacer within the aromatic diamine $\left(\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right.$-S$\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$ based COF).
- $\quad \mathrm{SO}_{2}-\mathrm{POP}(\mathbf{8})$; the sulfone group serves as the spacer within the aromatic diamine $\left(\mathrm{NH}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}\right.$ -$\left.\mathrm{SO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}\right)$.
- Zn-COF: Zinc bromide-based COF (9).
- I-COF: Iminium-based COF (10).
- SA-COF: Secondary amine COF (11).
- A-COF: Ammonium-based COF (12).
- M-POP: Monoethanolamine-tethered POP (13).
- E-COF: Ethylenediamine-tethered COF (14).

Table of Contents

1. Synthesis of Porous Organic Polymers (POPs) and Covalent-Organic Frameworks (COFs) 2
1.1. Synthesis of Z-POP (5-8) 2
1.2. Synthesis of Zn-COF (9) 3
1.3. Synthesis of I-COF (10) 3
1.4. Synthesis of SA-COF (11) 4
1.5. Synthesis of A-COF (12) 5
1.6. Synthesis of M-POP (13) 5
1.7. Synthesis of E-COF (14). 6
1.8. Dissolution Protocol of M-POP/DBU Binary System 6
2. Characterization of nano materials 7
2.1. Z-POPs (Z: O, S, $\mathbf{S O}_{2}$) 7
2.2. POP-5s (Zn, I, SA, A) 10
2.3. AAS, BET, and DFT Analyses 14
2.3.1. Conductivity and pH Sample Preparation Protocol 14
2.3.2. Atomic Absorption Spectroscopy 14
2.3.3. BET Analysis 15
2.3.4. DFT Calculations 15
3. $\mathbf{C O}_{2}$ Adsorption Isotherms 16
4. References 23

1. Synthesis of Porous Organic Polymers (POPs) and Covalent-Organic Frameworks (COFs)

1.1. Synthesis of Z-POP (5-8)

In a 100 mL round bottomed flask, the \mathbf{Z}-substituted, aromatic diamine ($\mathbf{1 - 4}, 1.85 \mathrm{mmol}, 3 \mathrm{eq}$.) and 1,3,5-Triformylbenzene (TFB, $200 \mathrm{mg}, 1.23 \mathrm{mmol}, 2$ eq.) were mixed in 20 mL of anhydrous DMF at RT and transferred into a preheated sand bath at $140^{\circ} \mathrm{C}$ for a period of time: (36 h for $\mathbf{5}$; 52 h for $\mathbf{6} ; 72 \mathrm{~h}$ for 7 ; 96 h for $\mathbf{8}$). The precipitate (5-7) was collected and washed with copious amounts of DMF, EtOH , and THF, respectively. In the case of $\mathbf{8}$ which showed complete solubility in DMF, it was suspended in a 150 mL DI $\mathrm{H}_{2} \mathrm{O}$, then the solid material centrifuged at 5000 rpm for 2 h ; decanted and washed with copious amounts of EtOH and THF. The product was soaked in 50 mL THF for 4 days then dried in a vacuum oven (3 mbar) for 8 h at $60^{\circ} \mathrm{C}$.
(5, 0.50 g collected, yield by mass: 87.7%): ${ }^{13} \mathbf{C}$ CP-MAS NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{p p m}$): $\delta 44.4$ (Ar$\boldsymbol{C H}_{2}-\mathrm{Ar}$), (124.3, 133.3, 141.4, and 152.9 (Aromatic ring region)), $161.9(\mathrm{R}-\boldsymbol{C}=\mathrm{N}-\mathrm{R}), 193.7$ (Aldehyde functionality). ATR-FTIR (400-4000 $\mathbf{~ c m}^{-1}$): 3018 v(aryl C-H), 2860 v(alkylene C-H), $1697 v(\mathrm{C}=\mathrm{O}), 1623 v(\mathrm{C}=\mathrm{N}), 1500 \mathrm{v}\left(\mathrm{C}=\mathrm{C}_{\text {arom }}\right)$. TGA: No weight loss up to $481{ }^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $516^{\circ} \mathrm{C}$. PXRD: 2日: 19.08°, 42.12°. BET: Surface area: $198.7 \mathrm{~m}^{2} . \mathrm{g}^{-1}$, Pore size: 3.48 nm , Average particle size: $301.9 \AA$.
(6, 0.37 g$)$: ATR-FTIR (400-4000 cm ${ }^{-1}$): $3031 \mathrm{v}(\operatorname{aryl} \mathrm{C}-\mathrm{H}), 1697 v(\mathrm{C}=\mathrm{O}), 1621 \mathrm{v}(\mathrm{C}=\mathrm{N}), 1488$ $v($ aryl $\mathrm{C}=\mathrm{C}), 1230 \mathrm{v}_{\mathrm{as}}(\mathrm{C}-\mathrm{O}-\mathrm{C}), 1199 \mathrm{v}_{\mathrm{s}}(\mathrm{C}-\mathrm{O}-\mathrm{C})$. TGA: No weight loss up to $486{ }^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $535^{\circ} \mathrm{C}$. PXRD: 2日: 18.6°. BET: Surface area: $205.1 \mathrm{~m}^{2} . \mathrm{g}^{-1}$, Pore size: 3.88 nm , Average particle size: $292.6 \AA$.
(7, 0.40 g$)$: ATR-FTIR (400-4000 cm$^{-1}$): $3047 v(\operatorname{aryl} \mathrm{C}-\mathrm{H}), 1699 v(\mathrm{C}=\mathrm{O}), 1618 v(\mathrm{C}=\mathrm{N}), 1481$ $v($ aryl $C=C), 592 v(C-S-C)$. TGA: No weight loss up to $467^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $520^{\circ} \mathrm{C}$. PXRD: 2日: 19.1°.
(8, 0.22 g): ATR-FTIR (400-4000 cm$\left.{ }^{-1}\right): 3475 \mathrm{v}_{\mathrm{as}}\left(1^{\circ} \mathrm{N}-\mathrm{H}\right), 3361 \mathrm{v}_{\mathrm{s}}\left(1^{\circ} \mathrm{N}-\mathrm{H}\right), 3047 \mathrm{v}(\operatorname{aryl} \mathrm{C}-\mathrm{H})$, $1693 v(\mathrm{C}=\mathrm{O}), 1627 v(\mathrm{C}=\mathrm{N}), 1502 v\left(\mathrm{C}=\mathrm{C}_{\text {arom }}\right), 1282 v_{\mathrm{as}}(\mathrm{S}=\mathrm{O}), 1095 v_{\mathrm{s}}(\mathrm{S}=\mathrm{O})$. TGA: No weight loss up to $466^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $491{ }^{\circ} \mathrm{C}$. PXRD: 20: 20.1°.

1.2. Synthesis of Zn-COF (9)

In a 100 mL round bottomed flask, $\operatorname{POP-5}(5,0.10 \mathrm{~g})$ and zinc bromide $\left(\mathrm{ZnBr}_{2}, 0.10 \mathrm{~g}, 0.4 \mathrm{mmol}\right)$, were mixed together in 10 mL anhydrous DMF at RT and transferred into a preheated sand bath at $140{ }^{\circ} \mathrm{C}$ for 72 h . The product was collected and washed with copious amounts of DMF, EtOH, and THF, respectively. The product was dried in a vacuum oven (3 mbar) for 8 h at $60^{\circ} \mathrm{C}(0.10$ g). ${ }^{13} \mathbf{C}$ CP-MAS (500 MHz, ppm): $\delta 42.9$ ($\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}$), (123.3, 131.8, 140.2, and 151.3 (Aromatic ring region), 160.5 ($\mathrm{R}-\boldsymbol{C}=\mathrm{N}-\mathrm{R}$), 193.9 (Aldehyde functionality). ATR-FTIR (400-4000 $\left.\mathbf{c m}^{-1}\right): 3020 v(\operatorname{aryl} \mathrm{C}-\mathrm{H}), 2858 v($ alkylene $\mathrm{C}-\mathrm{H}), 1697 v(\mathrm{C}=\mathrm{O}), 1623 v(\mathrm{C}=\mathrm{N}), 1498 v(\mathrm{C}=\mathrm{C}), 503$ $v(\mathrm{Zn}-\mathrm{N})$. TGA: No weight loss up to $453{ }^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $488{ }^{\circ} \mathrm{C}$. PXRD: 20: $3.1^{\circ}, 19.4^{\circ}, 25.3^{\circ}, 32.6^{\circ}, 34.4^{\circ}, 36.4^{\circ}, 38.8^{\circ}, 43.0^{\circ}, 46.8^{\circ}$, $51.5^{\circ}, 53.8^{\circ}, 56.8^{\circ}$.

1.3. Synthesis of I-COF (10)

In a 100 mL round bottomed flask, 1 mL of $\mathrm{HBr} . \mathrm{AcOH}$ was slowly added at ice-cooled conditions to a suspension of POP-5 $(5,0.10 \mathrm{~g})$ in 70 mL ethyl acetate. The reaction left to stir overnight at RT. The product was collected and washed with copious amount of EtOAc, then dried in a vacuum
oven (3 mbar) for 8 h at $60^{\circ} \mathrm{C}(0.15 \mathrm{~g}) . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, DMSO- \boldsymbol{d}_{6}, ppm): δ 10.21, 10.20, 8.85, 8.69, 8.55, 7.40, 7.39, 7.36, 7.34, 7.31, 7.29, 7.27, 4.00, 3.70. ${ }^{13}$ C NMR (125 MHz, DMSO$\left.d_{6}, \mathbf{p p m}\right): \delta 192.61,170.84,141.70,137.82,134.94,134.30,130.47,130.09,129.81,123.96$, 121.98, the spacer peak at $c a .40 \mathrm{ppm}$ is overlapped with the DMSO- d_{6} peak. ATR-FTIR (400$\left.4000 \mathrm{~cm}^{-1}\right): 3432 v\left(\mathrm{~N}^{+}-\mathrm{H}\right), 3035 v(\operatorname{aryl} \mathrm{C}-\mathrm{H}), 2861 v($ alkylene $\mathrm{C}-\mathrm{H}), 1697 v(\mathrm{C}=\mathrm{O}), 1660 v\left(\mathrm{C}=\mathrm{N}^{+}\right)$, $1625 v(\mathrm{C}=\mathrm{N}), 1498 v(\mathrm{C}=\mathrm{C})$. TGA: No weight loss up to $150^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $244{ }^{\circ} \mathrm{C}$. PXRD: 20: $7.4^{\circ}, 9.4^{\circ}, 14.8^{\circ}, 20.1^{\circ}, 21.9^{\circ}, 22.6^{\circ}$, $23.6^{\circ}, 25.6^{\circ}, 26.1^{\circ}, 27.1^{\circ}, 29.1^{\circ}, 32.6^{\circ}$. BET: Surface area: $43.4 \mathrm{~m}^{2} . \mathrm{g}^{-1}$, Pore size: 1.78 nm , Average particle size: $1383.1 \AA$.

1.4. Synthesis of SA-COF (11)

In a 50 mL round bottomed flask, POP-5 (5,50 mg) was suspended in 30 mL MeOH followed by the addition of $\mathrm{NaBH}_{4}(1.00 \mathrm{~g}, 2.64 \mathrm{mmol})$ over 10 min , under ice-cooled conditions and reaction left to stir for 1 h . Then, left for an additional 18 h at RT. The product was collected and washed with copious amounts of MeOH , and THF , and dried in a vacuum oven (3 mbar) for 8 h at $60^{\circ} \mathrm{C}$ (56 mg). ${ }^{13} \mathbf{C}$ CP-MAS (500 MHz, ppm): $\delta 42.7\left(\mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 66.9(\boldsymbol{C}$ - $\mathrm{N}-\mathrm{H}),(123.3,131.7,140.1$, and 151.3 (Aromatic ring region), 160.9 ($\mathrm{R}-\boldsymbol{C}=\mathrm{N}-\mathrm{R}$), 191.5 (Aldehyde functionality). ATR-FTIR (400-4000 cm ${ }^{-1}$): $3417 v(\mathrm{O}-\mathrm{H})$ and $v(\mathrm{~N}-\mathrm{H}), 3093 \mathrm{v}($ aryl C-H), $2854 \mathrm{v}($ alkylene C-H), 1625 $v(\mathrm{C}=\mathrm{N}), 1610 v(\mathrm{C}-\mathrm{N}-\mathrm{H}), 1512 v(\mathrm{~N}-\mathrm{H}), 1477 v(\mathrm{C}=\mathrm{C}), 1340 v(\mathrm{C}-\mathrm{N})$. TGA: No weight loss up to $457{ }^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $483{ }^{\circ} \mathrm{C}$. PXRD: 2月: $6.8^{\circ}, 8.5^{\circ}, 10.3^{\circ}, 11.1^{\circ}, 13.5^{\circ}, 15.0^{\circ}, 25.1^{\circ}, 27.1^{\circ}, 29.1^{\circ}, 30.4^{\circ}, 33.4^{\circ}, 34.9^{\circ}, 38.6^{\circ}, 40.1^{\circ}, 41.4^{\circ}$. BET: Surface area: $18.1 \mathrm{~m}^{2} . \mathrm{g}^{-1}$, Pore size: 2.73 nm , Average particle size: $3309.5 \AA$.

1.5. Synthesis of A-COF (12)

In a 100 mL round bottomed flask, 1 mL of HBr . AcOH was slowly added at ice-cooled conditions to a suspension of SA-COF $(\mathbf{1 1}, 0.10 \mathrm{~g})$ in 70 mL EtOAc. The reaction left to stir at RT overnight. The product was collected and washed with copious amount of EtOAc and dried in a vacuum oven (3 mbar) for 8 h at $60{ }^{\circ} \mathrm{C}(0.13 \mathrm{~g}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, DMSO- \boldsymbol{d}_{6}, ppm): δ 10.21, 10.20, 10.09, $8.89,8.88,8.77,8.71,8.69,8.61,8.57,8.54,8.46,8.39,8.32,8.26,8.15,8.11,7.90,7.50,7.33$, 7.29, 7.16, 7.01, 4.60, 4.00, 3.88, 3.76. ${ }^{13}$ C NMR ($\left.\mathbf{1 2 5} \mathbf{~ M H z , ~ D M S O - ~} \boldsymbol{d}_{6}, ~ p p m\right): ~ \delta 192.64,166.76$, $158.91,141.66,137.82,134.95,134.29,130.45,130.08,129.81,123.96,123.82,121.99,60.24$, 40.39. ATR-FTIR (400-4000 cm ${ }^{-1}$): 3380 v($\left.\mathrm{N}^{+}-\mathrm{H}\right), 3031 \mathrm{v}($ aryl C-H), 2833 v(alkylene C-H), 1693 $v(\mathrm{C}=\mathrm{O}), 1658 v\left(\mathrm{C}=\mathrm{N}^{+}\right), 1627 v(\mathrm{C}=\mathrm{N}), 1569 v\left(\mathrm{C}-\mathrm{N}^{+}-\mathrm{H}\right), 1506 v(\operatorname{aryl} \mathrm{C}=\mathrm{C}), 1430 v\left(\mathrm{~N}^{+}-\mathrm{H}\right)$. TGA: No weight loss up to $157^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $260{ }^{\circ} \mathrm{C}$. PXRD: 20: $22.1^{\circ}, 26.0^{\circ}, 30.2^{\circ}, 43.1^{\circ}, 50.9^{\circ}, 53.3^{\circ}$.

1.6. Synthesis of M-POP (13)

In a 100 mL round-bottomed flask, POP-5 $(5,500 \mathrm{mg})$ was suspended into a freshly distilled monoethanolamine (MEA, 50 mL) under N_{2} at RT, and transferred into a preheated sand bath at $100^{\circ} \mathrm{C}$ for 72 h . The reaction was cooled to RT and the post-modified product was collected and washed with copious amounts of $\mathrm{Et}_{2} \mathrm{O}$, and ACN , respectively. The product was soaked in 50 mL ACN for 1 day, then dried in vacuum oven (3 mbar) for 8 h at $60^{\circ} \mathrm{C}(450 \mathrm{mg}$ collected). ATRFTIR (400-4000 cm^{-1}): $3351 \mathrm{v}(\mathrm{O}-\mathrm{H}), 3022 \mathrm{v}($ aryl C-H), $2869 \mathrm{v}($ aliphatic $\mathrm{C}-\mathrm{H}), 1697 \mathrm{v}(\mathrm{C}=\mathrm{O})$, $1619 v(\mathrm{C}=\mathrm{N}), 1598$ and $1502 v(\operatorname{aryl} \mathrm{C}=\mathrm{C})$. TGA: No weight loss up to $446^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $476^{\circ} \mathrm{C}$. PXRD: 20: $18.3^{\circ}, 23.5^{\circ}, 30.2^{\circ}, 43.0^{\circ}$.

1.7. Synthesis of E-COF (14)

In a 100 mL round-bottomed flask, POP-5 (500 mg) together with a freshly distilled ethylenediamine (EDA, 50 mL), mixed under N_{2} at RT and transferred into a preheated sand bath at $100^{\circ} \mathrm{C}$ for 72 h . The precipitate formed after cooling the reaction in the freezer for $30 \mathrm{~min}(-20$ ${ }^{\circ} \mathrm{C}$), collected and washed with copious amounts of $\mathrm{Et}_{2} \mathrm{O}$, and ACN , respectively. The product was soaked in 50 mL ACN for 1 day then dried in vacuum oven (3 mbar) for 8 hours at $60^{\circ} \mathrm{C}(400$ mg collected). ATR-FTIR (400-4000 $\mathbf{c m}^{-1}$): 3153 v(N-H carbamate), 3049 v(aryl C-H), 2950 $v\left(\mathrm{NH}_{3}{ }^{+}\right), 2826 v($ aliphatic C-H $), 1768 v\left(\mathrm{R}-\mathrm{NH}-\mathrm{COO}\right.$ amide I band), $1672 v\left(\mathrm{R}-\mathrm{NH}^{-} \mathrm{CO}_{2}{ }^{-} \mathrm{NH}_{3}{ }^{+}-\mathrm{R}\right)$, $1641 v(\mathrm{C}=\mathrm{N}), 1583$ and $1496 v($ aryl $\mathrm{C}=\mathrm{C}), 1550 v(\mathrm{R}-\mathrm{NH}-\mathrm{COO}$ amide II band), $1139 v($ in-plane aryl C-H), $644 \mathrm{v}\left(\right.$ out-of-plane aryl C-H). TGA: No weight loss up to $142{ }^{\circ} \mathrm{C}$, the decomposition temperature at 80% weight loss $\left(\mathbf{T}_{d 80}\right)$ took place at $157{ }^{\circ} \mathrm{C}$. PXRD: 20: $11.2^{\circ}, 18.6^{\circ}, 20.6^{\circ}, 22.3^{\circ}$, $23.0^{\circ}, 24.7^{\circ}, 27.8^{\circ}, 32.0^{\circ}, 35.3^{\circ}, 36.1^{\circ}, 39.6^{\circ}, 50.3^{\circ}, 51.4^{\circ}, 56.9^{\circ}$.

1.8. Dissolution Protocol of M-POP/DBU Binary System

In a sealed 12 mL glass vial coupled with magnetic stirrer, 10 mg of M -POP was added under a constant flow of N_{2} followed by the addition of 0.5 mL DBU at RT. The suspension reaction left to stir for 48 h under atmospheric $\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{O}$ conditions.

2. Characterization of nano materials

2.1. Z-POPs (Z: O, S, SO_{2})

ATR-FTIR analysis was performed to further prove the synthesis of our materials. Herein, we report the co-condensation of 6-8 (Figure S1) by the formation of $\mathrm{C}=\mathrm{N}$ stretching band at $c a .1623$ cm^{-1} which clearly confirm the formation of imine bond. ${ }^{[1]}$ The signal at $c a .1697 \mathrm{~cm}^{-1}$ represents stretching band of $\mathrm{C}=\mathrm{O}$ for the aldehyde moiety within the network of imine POPs which has been observed in another literature published when the material have been synthesized using DMF. ${ }^{[2]}$ Further, disappearance of $3421 \mathrm{~cm}^{-1}$ and $3405 \mathrm{~cm}^{-1}$ bands in 1 which corresponds to asymmetric and symmetric stretching vibrations of primary amine respectively (Figure S1), except for $\mathbf{8}$ which exhibited the presence of primary amine end group asymmetric and symmetric stretching bands at $3475 \mathrm{~cm}^{-1}$ and $3361 \mathrm{~cm}^{-1}$, respectively. That might be attributed to the reversibility of the reaction due to high electron withdrawing effect of the sulfone group which has weakened the nucleophilicity of the amine group. For the aromatic $\mathrm{C}=\mathrm{C}$ vibrations, it was observed at $c a .1500$ cm^{-1}, aryl C-H and alkylene C-H vibrations were obtained at $c a .3018 \mathrm{~cm}^{-1}$ and $2860 \mathrm{~cm}^{-1}$ respectively. The TGA profile (Figure S2) for $\mathbf{6}$ started to decompose at $486^{\circ} \mathrm{C}$ together with 7 and 8 at $467{ }^{\circ} \mathrm{C}$ and $466{ }^{\circ} \mathrm{C}$, respectively. While the $\mathrm{T}_{\mathrm{d} 80} 535{ }^{\circ} \mathrm{C}, 520^{\circ} \mathrm{C}$, and $466^{\circ} \mathrm{C}$ for $\mathbf{6 - 8}$, respectively. The materials exhibited high thermal stability due to rigidity of the structures where the results indicated the nature of polymeric materials. The PXRD results for (6-8, Figure S3) suggests an amorphous nature of the synthesized imines due to inherent stacking disorder that affects crystallinity pattern. ${ }^{[3]}$

Figure S1. ATR-FTIR spectra of 6-8; (O-POP, green), (S-POP, red), and ($\mathrm{SO}_{2}-\mathrm{POP}$, blue).

Figure S2. TGA analyses of 6-8; (O-POP, green), (S-POP, red), and ($\mathrm{SO}_{2}-\mathrm{POP}$, blue).

Figure S3. PXRD analyses of 6-8; (O-POP, green), (S-POP, red), ($\mathrm{SO}_{2}-\mathrm{POP}$, blue), (Aluminum sample holder, black).

2.2. POP-5s (Zn, I, SA, A)

The following chemical transformations: I. Reduction, II. Coordination with zinc metal, and III. Quaternarization reactions were performed to enhance the performance of POP-5s for the purpose of CO_{2} capture and utilization. These modifications were chosen for the commercial availability and cost-effectiveness of $\mathbf{1}$, which serves as a precursor of compound $\mathbf{5}$.
I. Imine reduction: Sodium borohydride was used as a reducing agent for the production of a secondary amine $\operatorname{COF}(\mathbf{S A - C O F}, 11)$, in which the chemical shift of the methylene carbon $\left(\mathrm{CH}_{2^{-}}\right.$ NH) appeared at 66.9 ppm , alongside the imine carbon centered at 160.9 ppm as indicated by CP-

MAS (Figure S4), this fortified a partial reduction process. ${ }^{[4]}$ Moreover, as shown in the ATRFTIR spectrum, a shoulder appeared at $1610 \mathrm{~cm}^{-1}$ together with an intense peak centered at 1340 cm^{-1} associated with the bending mode of $(\mathrm{CN}-\mathrm{H})$, along with the stretching mode of (C-N-C), ${ }^{[5]}$ respectively, (Figure S5). Also, the low chemoselectivity of NaBH_{4} resulted in the transformation of the aldehyde contained within the network into a primary alcohol as a broadened band was observed as a result of the stretching mode of both functional groups $(\mathrm{O}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H})$ coupled peaks positioned at $3417 \mathrm{~cm}^{-1}$. The thermal stability exhibited an initial decomposition temperature of $457{ }^{\circ} \mathrm{C}$ (with a $\mathrm{T}_{\mathrm{d} 80}$ value of $483{ }^{\circ} \mathrm{C}$) as compared to 5 which started at $481^{\circ} \mathrm{C}$. It is noteworthy that PXRD demonstrated enhanced crystallinity due to the introduction of H-bonding along with the $\pi-\pi$ stacking.
II. Coordination with Zinc metal: Successful coordination of $\mathbf{5}$ with ZnBr_{2} was performed under anhydrous conditions, which resulted in a macro-layered zinc complex ($\mathbf{Z n}-\mathrm{COF}, \mathbf{9}$) as indicated by a new $\mathrm{Zn}-\mathrm{N}$ band at $503 \mathrm{~cm}^{-1} .{ }^{[6]}$ TGA trace showed an initial decomposition that started at 453 ${ }^{\circ} \mathrm{C}$, (less thermal stability than $\mathbf{5}$), which might be attributed to the weakly-coordinated metal dative bond $(\mathrm{Zn}-\mathrm{N})$. The PXRD revealed better crystallinity behavior, where this change is referred to the insertion of the metallic nuclei. As revealed by the Atomic Absorption Spectroscopy (AAS) measurements, the percentage of Zn was 31.7% (by mass) (Figure S6).
III. Quaternarization of imines/amines: Reaction of either 5 or 11 with hydrobromic acid obtained the iminium $\operatorname{COF}(\mathbf{I}-\mathrm{COF}, \mathbf{1 0})$ and the ammonium-based $\operatorname{COF}(\mathbf{A}-\mathrm{COF}, \mathbf{1 2})$, respectively. ${ }^{13} \mathrm{C}$ NMR analysis in DMSO- d_{6} indicated the quaternarization by the appearance of a peak at $c a$. 170.8 and 60.2 for imine and amine carbon respectively. This was further confirmed by the ATRFTIR spectroscopy of I-COF, in which formation of iminium moiety $\mathrm{C}=\mathrm{N}^{+}$stretching band at 1660 cm^{-1} and $\mathrm{N}^{+}-\mathrm{H}$ vibrations observed at $3432 \mathrm{~cm}^{-1}$. Nevertheless, the neutral imine presence at 1625
cm^{-1} indicated a partial quaternarization. A-COF was configured by the clear shift of $\mathrm{CN}^{+}-\mathrm{H}$ band of $\mathbf{1 1}$ at 1610 to $1569 \mathrm{~cm}^{-1}$. Further, a shift observed from $1512 \mathrm{~cm}^{-1}$ for the secondary amine N-H bending mode to $1430 \mathrm{~cm}^{-1}$. Moreover, $\mathrm{C}=\mathrm{N}^{+}$vibrations are observed at $1658 \mathrm{~cm}^{-1}$ as a result of the aforementioned partial reduction process. The presence of $\mathrm{N}^{+}-\mathrm{H}$ stretching vibrations at 3380 cm^{-1} further proved the quaternarization of $\mathbf{1 1}$. TGA traces of $\mathbf{1 0}$ and $\mathbf{1 2}$ were examined in which a prominent decrease in the stability was observed with initial decomposition temperatures recorded at 150 and $157^{\circ} \mathrm{C}$, respectively. In addition, $\mathrm{T}_{\mathrm{d} 80}$ for $\mathbf{1 0}$ and $\mathbf{1 2}$ was $244^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}$ respectively. This might be attributed to Hofmann degradation pathways. ${ }^{[7]}$ Also, PXRD for 10 and $\mathbf{1 2}$ showed a good crystallinity upon the appearance of sharper peaks as a result of the strong intermolecular forces introduced viz., ionic bonding together with interlayer interactions that enhanced stacking of the imine-derived COFs. ${ }^{[8]}$

Figure S4. CP-MAS analyses for 9 (blue) and 11 (maroon).

Figure S5. Schematic illustration of post-modified COFs synthesis. (A-C) TGA, ATR-FTIR, and PXRD analyses for POP-5 (5, black), Zn-COF (9, green), I-COF (10, blue), SA-COF (11, red), A-COF (12, pink), and aluminum sample holder (C. dark blue).

2.3. AAS, BET, and DFT Analyses

Figure S6. AAS calibration curve for the determination of zinc(II) content in 9.

2.3.1. Conductivity and pH Sample Preparation Protocol

The aqueous solution of E-COF (500 ppm) was prepared and used to measure the conductivity of 14, E-COF/N \mathbf{N}_{2} (bubbled with N_{2} for 1 h at RT), and $\mathbf{E - C O F} / \mathbf{C O}_{2}$ (bubbled with CO_{2} for 1 h at RT). Also, two separate blank experiments were prepared; (EDA-carbamate) 500 ppm aqueous solution of EDA, and (DIW+CO2 50 mL of DIW (both were bubbled with CO_{2} for 1 h at RT before measuring the conductivity). The conductance of DI water was taken into consideration upon measuring the conductivity for all samples.

2.3.2. Atomic Absorption Spectroscopy

The calibration curve points were prepared following the following recipe: A stock solution of $1000 \mathrm{ppm} \mathrm{ZnBr}_{2}$ prepared by the addition of $0.1 \mathrm{~g} \mathrm{ZnBr}_{2}$ in a 100 mL volumetric flask using 1% HCl as solvent. From the stock solution of ZnBr_{2}, starting from $0.01,0.50,1.00$ to 2.00 ppm , a
calibration curve was made. Herein, samples were prepared by weighing 25 mg of 9 in 100 mL volumetric flask, digested using 5 mL of $33 \% \mathrm{HCl}$ and filled up to volume using DI water.

2.3.3. BET Analysis

Table S1. The Brunauer-Emmett-Teller measurements of the synthesized COFs (5, 6, 10-14).

Material	$\mathbf{S}_{\text {BET }}\left(\mathbf{m}^{\mathbf{2} . \mathbf{g}^{\mathbf{-}} \mathbf{)}}\right.$	Pore Size (nm)	Average Particle Size ($\mathbf{\AA})$
$\mathbf{5}$	198.7	3.48	301.9
$\mathbf{6}$	205.1	3.88	292.6
$\mathbf{1 0}$	43.4	1.78	1383.1
$\mathbf{1 1}$	18.1	2.73	3309.5
$\mathbf{1 3}$	non-porous	N/A	N/A
$\mathbf{1 4}$	55.4	$\mathrm{~N} / \mathrm{A}$	N/A

2.3.4. DFT Calculations

Figure S7. Postulated assembly structures based on DFT-calculations (B3LYP-D3/6-31+G*, in gas phase): A. and B. 2D-sheets and C. 3D-capsule. Distances are given in Angstrom.

A)

B)

Figure S8. CO_{2}-capture reactions calculated at B3LYP-D3/6-311++G**: A. COF-terminated amine and B. POPterminated alcohol. Distances are given in Angstrom.

3. CO_{2} Adsorption Isotherms

Table S2. CO_{2} sorption capacity ($\mathrm{mmol} \mathrm{CO} / \mathrm{g}$ sorbent) at 273 and 293 K .

Material	Sorption Capacity	
	$\mathbf{2 7 3} \mathbf{~ K}$	$\mathbf{2 9 8} \mathbf{~ K}$
POP-5	0.331	0.171
O-POP (6)	0.334	0.167
S-POP (7)	0.286	0.138
SO2-POP (8)	0.192	0.131
Zn-COF (9)	0.317	0.114
SA-COF (11)	0.207	0.026
M-POP (13)	0.405	0.120
E-COF (14)	0.021	N/A

Figure S9. CO_{2} adsorption (square)/desorption (triangle) isotherm of 5 at 273 K .

Figure S10. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{5}$ at 298 K.

Figure S11. CO_{2} adsorption (square)/desorption (triangle) isotherm of 6 at 273 K .

Figure S12. CO_{2} adsorption (square)/desorption (triangle) isotherm of 6 at 298 K .

Figure S13. CO_{2} adsorption (square)/desorption (triangle) isotherm of 7 at 273 K .

Figure S14. CO_{2} adsorption (square)/desorption (triangle) isotherm of 7 at 298 K .

Figure S15. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{8}$ at 273 K .

Figure S16. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{8}$ at 298 K .

Figure S17. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{1 1}$ at 273 K .

Figure S18. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{1 1}$ at 298 K .

Figure S19. CO_{2} adsorption (square)/desorption (triangle) isotherm of 9 at 273 K .

Figure S20. CO_{2} adsorption (square)/desorption (triangle) isotherm of $\mathbf{9}$ at 298 K .

4. References

[1] P. Bhanja, S. Mishra, K. Manna, K. Das Saha, A. Bhaumik, ACS Omega 2018, 3, 529-535.
[2] P. Puthiaraj, H. S. Kim, K. Yu, W.-S. Ahn, Microporous Mesoporous Mater. 2020, 297, 110011.
[3] O. M. Yaghi, M. J. Kalmutzki, C. S. Diercks, in Introd. Reticular Chem., John Wiley \& Sons, Ltd, 2019, pp. 197-223.
[4] L. Grunenberg, G. Savasci, M. W. Terban, V. Duppel, I. Moudrakovski, M. Etter, R. E. Dinnebier, C. Ochsenfeld, B. V. Lotsch, J. Am. Chem. Soc. 2021, 143, 3430-3438.
[5] H. Liu, J. Chu, Z. Yin, X. Cai, L. Zhuang, H. Deng, Chem 2018, 4, 1696-1709.
[6] D. A. Köse, H. Necefoğlu, J. Therm. Anal. Calorim. 2008, 93, 509-514.
[7] K. L. Wert, S. Chackalamannil, E. Miller, D. R. Dalton, D. E. Zacharias, J. P. Glusker, J. Org. Chem. 1982, 47, 5141-5150.
[8] L. Ascherl, T. Sick, J. T. Margraf, S. H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K. W. Chapman, F. Auras, T. Bein, Nat. Chem. 2016, 8, 310-316.

