Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Visible-Light Photocatalyzed C-N Bond Activation of Tertiary Amines: A Three-Component Approach to Synthesize Quinazolines

Ajithkumar Arumugam, Gopal Chandru Senadi*

Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu.

Email: chandrug@srmist.edu.in

S. No.	Table of Contents	Page No.	
1	General Information	03	
2	Complete Optimization Studies	03	
3	Experimental Section	06	
4	TLC & Experimental Setup for 3aa	08	
5	GC-MS Studies for 3aa	09	
6	Cyclic-voltammetry Data	10	
7	Spectral Characterization	11	
8	References	17	
9	Copies of ¹ H and ¹³ C	19	

(1) General Information

A Bruker 500 MHz and 400 MHz were used to record ¹H NMR spectra, and a Bruker 125.8 MHz/100.61 MHz was used to record ¹³C NMR spectra. Parts per million (ppm) is used to express the chemical shift (δ) values, whereas hertz (Hz) is used to express the coupling constants (J). The spectra were recorded using CDCl₃ solvent. ¹H NMR chemical shifts are referenced to tetramethylsilane (TMS, 0 ppm) and ¹³C NMR is referenced to CDCl₃ (77.16 ppm). HRMS was recorded with QTOF-ESI source M/S Bruker Daltonik GmbH, Germany. Cyclic voltammetry measurements were carried out with Multi Autolab M204 (Serial number: MAC90963). The progress of the reaction was monitored by TLC using Merck pre-coated TLC sheets. The Melting points of compounds were determined using a digital melting point apparatus (Model 935) from Deep Vision Electronics PVT. LTD. IP66 50 W Blue LED light used for irradiation of the reaction mixture from VistaRa fine lighting, China. Column chromatography was performed on 100-120 mesh silica gel using hexane/ethyl acetate as eluent and solvents were used without further distillation. All commercial chemicals were purchased from Sigma-Aldrich, Avra, Alfa Aesar, SRL Spectrochem and Carbanio. Compounds **1b-f**, **1m**, **1n**, **1o** were prepared according to the previously reported literatures¹⁻⁴ and **1a**, **1g – 1l**, **1p** were purchased commercially.

(2) Complete Optimization Studies

0 + NH ₂ + 1a	N PC (5.0 mol%), CH Blue LED (50 W) 2a	equiv.) ₃ CN:H ₂ O (1:1) , air, rt, 13 h 3aa
S.No	Photocatalyst	Yield (%) ^b
1	Rose bengal	71
2	Riboflavin	54
3	Ru(bpy) ₃ Cl ₂	48
4	EY-Na ₂	83
5	Eosin Y	98
6	Fluorescein	18
7	Methylene blue	14
8	4-CzIPN	trace
9	Without Photocatalyst	0

Table S1. Photocatalyst Screening^a

^{*a*}All reactions were carried out using 0.5 mmol of **1a** and 2.5 mmol of **2a**. ^{*b*}Isolated yield.

Table S2. Solvent Screening^a

S.No	Solvent	Yield $(\%)^b$
1	EtOAc:H ₂ O	55
2	Butanol:H ₂ O	78
3	DMF:H ₂ O	19
4	DMSO:H ₂ O	09
5	Dioxane:H ₂ O	24
6	DMA:H ₂ O	26
7	THF:H ₂ O	49
8	CH ₃ CN:H ₂ O	98
9	CH ₃ CN	14

^{*a*}All reactions were carried out using 0.5 mmol of **1a** and 2.5 mmol of **2a**. ^{*b*}Isolated yield.

Table S3. Nitrogen Source Screening^a

^{*a*}All reactions were carried out using 0.5 mmol of **1a** and 2.5 mmol of **2a**. ^{*b*}Isolated yield.

Table S4. Alkyl Synthon/Electron Donor Screening^a

	O NH₄Cl (3.0 equiv.) Alkyl Synthon (5.0 equiv.)) N N 3aa
S.No	Alkyl Synthon / Electron Donor	Yield (%) ^b
1	DEA	31 (21 h)
2	DIPEA	34 (21 h)
3	TEA	98 (13 h)
4	Without TEA	0

^{*a*}All reactions were carried out using 0.5 mmol of **1a**. ^{*b*}Isolated yield.

Table S5. Equivalent Studies of Photocatalyst, Alkyl Synthon and Nitrogen Source^a

0 + NH ₂ + 1a	N S Eosin Y (5.0 Blue LE 2a (x equiv.)	<mark>ource" (y equiv.)</mark>) mol%), CH ₃ CN:H ED (50 W), air, rt, 1	20 (1:1) 3 h 3aa
S.No	Equivalent Studies	Yield (%) ^b	Time (h)
1	NH ₄ Cl (2.0 equiv.)	95	38
2	TEA (4.0 equiv.)	97	21
3	EY (3 mol %)	97	21

^{*a*}All reactions were carried out using 0.5 mmol of **1a**. ^{*b*}Isolated yield.

Optimized Condition

Scheme S1. Optimized Conditions for Synthesis of Quinazolines.

(3) Experimental Section

3a. General Experimental Procedure (A) for the Synthesis of Compounds **3aa-3pa**

Compound **1a-1p** (0.5 mmol) was dissolved in 0.15 M of CH₃CN:H₂O (1:1, 3.3 mL) followed by the addition of triethylamine (2.5 mmol), NH₄Cl (1.5 mmol) and Eosin Y (5.0 mol%). The reaction mixture was allowed to stir under the 50 W blue LED in the open air. The reaction completion was monitored by TLC chromatography (~13-48 h). After completion, the reaction was diluted with 10 mL of water and extracted with ethyl acetate (3 x 10 mL). The combined ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get a crude compound. The obtained crude was purified using column chromatography by eluting hexane/ethyl acetate to afford the desired product **3aa-pa** in 52 % to 98 % yields.

3b. General Experimental Procedure (B) for the Synthesis of Compounds 3ab-gj'

Compound **1a** (0.5 mmol) was dissolved in 0.15 M of CH₃CN:H₂O (1:1, 3.3 mL) followed by the addition of trialkylamines **2b-j** (2.5 mmol), NH₄Cl (1.5 mmol) and Eosin Y (5.0 mol%). The reaction mixture was allowed to stir under the 50 W blue LED in the open air. The reaction completion was monitored by TLC chromatography (~15-72 h). After completion, the reaction was diluted with 10.0 mL of water and extracted with ethyl acetate (3 x 10 mL). The combined ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to get a crude compound. The obtained crude was purified using column

chromatography by eluting hexane/ethyl acetate to afford the desired product **3ab-ah**, **3aj**, **3gj** and **3gj'** in 41

% to 96 % yields.

3c. General Experimental Procedure (C) for the Gram Scale Synthesis of Compounds **3ga**, **3ja** and **3ma**

Compound **1g** (5.1 mmol) was dissolved in 0.15 M of CH₃CN:H₂O (1:1) followed by the addition of triethylamine (5.0 equiv.), NH₄Cl (3.0 equiv.) and Eosin Y (5.0 mol%). The reaction mixture was stirred under the 50 W blue LED in the open air for 16 h and the completion of the reaction was monitored by TLC chromatography. The reaction mixture was diluted with 100 mL of water and extracted with ethyl acetate (3 x 75 mL). The combined ethyl acetate layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure to get a crude compound. The obtained crude was purified using column chromatography by eluting hexane/ethyl acetate to afford the desired product **3ga** in 93%. The above same procedure was used to synthesize **3ja** in 73 % yield and **3ma** in 72 % yields respectively.

(4) TLC & Experimental Setup

Figure S2. Start of the Reaction.

Figure S3. Completion of the Reaction.

(5) GC-MS Studies

GC-MS chromatogram analysis of the reaction mixture of **3aa** was performed on GCMS - QP2010 Plus – Shimadzu during the courses of the reaction (2 h and 10 h) and the intermediates were verified. We have detected the following intermediates, product **3aa** and the minor side products. This strongly suggests that the mechanism goes via proposed in the manuscript.

S9 | Page

Figure S4. GC-MS observed fragments.

(6) Cyclic-Voltammetry Data

Samples for electrochemical measurements were prepared with 0.1 M of *tetra-n*-butylammonium hexafluorophosphate solution in acetonitrile and 0.05 M of 2-aminoacetophenone (**1a**). Cyclic voltammetry measurements were carried out with Multi Autolab M204 (Serial number: MAC90963) and the data was recorded using an undivided cell equipped with glassy carbon as the working electrode, platinum wire as counter electrode and Ag/AgCl as a reference electrode. A scan rate was used 100 mV s⁻¹ μ .

Figure S5. Cyclic Voltammogram of 2-Aminoacetophenone (1a).

(7) Spectral Characterization

2,4-Dimethylquinazoline (3aa).⁵ The title compound was synthesized according to the general procedure (A)

and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (78mg, 98%); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.84 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 2.93 (s, 3H), 2.86 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 168.14, 163.61, 150.00, 133.63, 128.32, 126.63, 124.95, 122.27, 26.46, 21.70.

4-Ethyl-2-methylquinazoline (3ba).⁶ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (71mg, 82%); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.49 (t, J = 7.6 Hz, 1H), 3.21 (q, J =7.6 Hz, 2H), 2.81 (s, 3H), 1.38 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.58, 163.78, 150.31,

133.44, 128.47, 126.56, 124.58, 121.42, 27.98, 26.51, 13.36.

2-Methyl-4-propylquinazoline (3ca). The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (71mg, 76%); ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.56 (t, J = 7.6 Hz, 1H), 3.23 – 3.19 (m, 3ca 2H), 2.86 (s, 3H), 1.93 - 1.85 (m, 2H), 1.08 (t, J = 7.4 Hz, 3H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 171.70, 163.78, 150.47, 133.53, 128.53, 126.59, 124.83, 121.83, 36.85, 26.62, 22.99, 14.40; HRMS (ESI) calculated for $C_{12}H_{15}N_2 [M+H]^+$: 187.1235 found 187.1250.

2-Methyl-4-octylquinazoline (3da). The title compound was synthesized according to the general procedure

(A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (69mg, 54%); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 8.3 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.84 – 7.80 (m, 1H), 7.57 – 7.53 (m, 1H), 3.22 (t, J = 8.0 Hz, 2H), 2.86 (s, 3H), 1.87 – 1.81 (m, 2H), 1.50 – 1.44 (m, 2H), 1.37 – 1.33 (m, 2H), 1.30 – 1.25 (m, 6H), 0.88 (t,

J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.91, 163.74, 150.42, 133.46, 128.49, 126.53, 124.76,

121.71, 34.99, 31.91, 29.94, 29.67, 29.49, 29.27, 26.57, 22.72, 14.16; HRMS (ESI) calculated for C₁₇H₂₅N₂ [M+H]⁺ : 257.2018 found 257.2035.

4-Isopropyl-2-methylquinazoline (3ea).⁷ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (54mg, 58%); ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.56 – 7.52 (m, 1H), 3.92 – 3.87 (m, 1H), 2.86 (s, 3H), 1.43 (t, *J* = 1.5 Hz 3H), 1.42 (t, *J* = 1.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.68, 163.99, 150.54, 133.16, 128.64, 126.38, 124.15, 121.01, 30.99, 26.71, 21.80.

4-Cyclopentyl-2-methylquinazoline (**3fa**).⁸ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (71mg, 67%); ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.81 – 7.77 (m, 1H), 7.54 – 7.50 (m, 1H), 3.98 – 3.92 (m, 1H), 2.84 (s, 3H), 2.12 – 2.08 (m, 4H), 1.91 – 1.90 (m, 2H), 1.77 – 1.76 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.33, 163.81, 150.27, 133.05, 128.33, 126.22, 124.55, 121.82, 42.56, 32.61, 26.65, 26.20.

2-Methyl-4-phenylquinazoline (3ga).⁹ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (101mg, 92%); ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 12.4, 8.6 Hz, 2H), 7.88 – 7.84 (m, 1H), 7.76 – 7.74 (m, 2H), 7.56 – 7.50 (m, 3H), 7.52 (t, J = 7.6 Hz, 1H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.64, 163.91, 151.53, 137.39, 133.68, 129.93, 128.68, 128.24, 127.09, 126.78, 121.11, 26.70.

4-(4-Fluorophenyl)-2-methylquinazoline (3ha).⁹ The title compound was synthesized according to the

general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (98mg, 82%); mp 113-115 °C (lit. 116-117 °C); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.3 Hz, 2H), 7.88 (t, *J* = 7.5 Hz, 1H), 7.77 (q, *J* = 8.2, 5.5 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 8.5 Hz, 2H), 2.95 (s, 3H); ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 166.41 (J_F = 227.2 \text{ Hz}), 163.95, 162.79, 151.66, 133.86, 133.55, 132.04 (J_F = 9.0 \text{ Hz}),$ 128.42, 127.01, 126.83, 121.06, 115.90 (*J_F* = 22.1 Hz), 26.70.

4-(4-Chlorophenyl)-2-methylquinazoline (3ia).⁹ The title compound was synthesized according to the

general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (97mg, 83%); mp 120-122 °C (lit. 128-129 °C); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (t, J = 9.8 Hz, 2H), 7.88 (t, J = 7.6 Hz, 1H), 7.71 (d, J = 7.3 Hz, 2H), 7.55 (d, J = 7.4 Hz, 3H), 2.94 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.41, 163.98, 151.64, 136.38, 135.83, 133.92, 131.36, 129.04, 128.45, 127.07, 126.69, 120.96, 26.68.

4-(4-Bromophenyl)-2-methylquinazoline (3ja).⁹ The title compound was synthesized according to the

general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow solid (109mg, 73%); mp 124-126 °C (lit. 123-124 ^oC); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (q, J = 13.2, 8.4 Hz, 2H), 7.90 – 7.86 (m, 1H), 7.71 $(d, J = 8.2 \text{ Hz}, 2\text{H}), 7.64 (d, J = 8.2 \text{ Hz}, 2\text{H}), 7.54 (t, J = 7.6 \text{ Hz}, 1\text{H}), 2.94 (s, 3\text{H}); {}^{13}\text{C NMR}$

(101 MHz, CDCl₃) δ 167.43, 163.97, 151.62, 136.26, 133.92, 131.98, 131.57, 128.43, 127.07, 126.65, 124.67, 120.89, 26.67.

6-Chloro-4-(2-fluorophenyl)-2-methylquinazoline (3ka).¹⁰ The title compound was synthesized according

to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (71mg, 52%); mp 134-136 °C (lit. 138-140 ^oC); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 9.0 Hz, 2H), 7.81 (dd, J = 9.0, 2.2 Hz, 2H), 7.72 (t, J = 2.5 Hz, 2H), 7.60 – 7.56 (m, 4H), 7.38 (td, J = 7.6, 0.9 Hz, 2H), 7.31 –

7.27 (m, 3H), 2.95 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.46, 163.99, 159.87 (J_F = 249.5 Hz), 149.59, 135.09, 132.78, 132.21, 132.13, 131.58, 129.98, 125.68, 125.01, 122.52, 116.47 ($J_F = 21.1 \text{ Hz}$), 26.65.

6-Bromo-2-methyl-4-(pyridin-2-yl)quinazoline (3la). The title compound was synthesized according to the

general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow solid (104mg, 69%); mp 158-160 °C; ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 9.02 \text{ (d, } J = 2.1 \text{ Hz}, 1\text{H}), 8.86 - 8.84 \text{ (m, 1H)}, 8.20 - 8.18 \text{ (m, 1H)},$ 7.98 – 7.93 (m, 2H), 7.88 (d, *J* = 8.9 Hz, 1H), 7.51 – 7.49 (m, 1H), 2.95 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.07, 163.47, 156.17, 150.94, 149.19, 137.47, 137.31, 130.21, 129.90, 125.33, 124.81, 121.90, 121.01, 26.62; HRMS (ESI) calculated for C₁₄H₁₁BrN₃ [M+H]⁺ : 300.0136 found 300.0135.

6-Bromo-2,4-dimethylquinazoline (3ma).⁷ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (85mg, 72%); mp 99-101 °C (lit. 130-132 °C); ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 2.1 Hz, 1H), 7.90 (dd, *J* = 8.9, 2.1 Hz, 1H), 7.80 (d, *J* = 8.9 Hz, 1H), 2.89 (s, 3H), 2.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.48, 164.28, 148.87, 137.26, 130.37, 127.56, 123.54, 120.33, 26.66, 21.94.

6-Iodo-2,4-dimethylquinazoline (3na). The title compound was synthesized according to the general

procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow solid (87mg, 61%); mp 130-132 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.43 (s, 1H), 8.06 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.66 (d, *J* = 8.8 Hz, 1H), 2.89 (s, 3H), 2.83

(s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.12, 164.28, 149.10, 142.41, 134.11, 130.18, 124.04, 91.62, 26.61, 21.83. HRMS (ESI) calculated for C₁₀H₁₀IN₂ [M+H]⁺ : 284.9889 found 284.9896.

2,4-Dimethyl-6-(phenylethynyl)quinazoline (30a). The title compound was synthesized according to the

general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow solid (79mg, 61%); mp 124-126 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 1.2 Hz, 1H), 7.94 – 7.88 (m, 2H), 7.60 –

7.58 (m, 2H), 7.41 – 7.38 (m, 3H), 2.93 (s, 3H), 2.86 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 167.99, 164.35, 149.51, 136.36, 131.85, 128.90, 128.61, 128.34, 122.80, 122.19, 121.85, 91.15, 88.67, 26.59, 21.85. HRMS (ESI) calculated for C₁₈H₁₅N₂ [M+H]⁺ : 259.1235 found 259.1245.

2-methylquinazoline (**3pa**).¹¹ The title compound was synthesized according to the general procedure (A) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain

and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (50mg, 69%); ¹H NMR (400 MHz, CDCl₃) δ 9.28 (s, 1H), 7.91 (d, *J* = 8.4 Hz,

1H), 7.84 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 7.1 Hz, 1H), 2.87 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.46, 160.37, 150.31, 134.19, 127.67, 127.13, 127.02, 122.87, 26.40.

4-Methylquinazoline (3ab).¹² The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (69mg, 96%); ¹H NMR (500 MHz, CDCl₃) δ 9.15 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.84 (m, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 2.93 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.38, 154.66, 149.69, 133.81, 129.15, 127.73, 125.15, 124.64, 21.89.

2-Ethyl-4-methylquinazoline (**3ac**).¹⁰ The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (79mg, 92%); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 1H), 7.81 (t, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 3.10 (q, *J* = 7.6 Hz, 2H), 2.91 (s, 3H), 1.46 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 167.85, 167.50, 149.77, 133.19, 128.25, 126.30, 124.65, 122.21, 32.92, 21.48, 12.86.

4-Methyl-2-propylquinazoline (**3ad**).⁵ The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (87mg, 93%); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.83 (td, J = 8.0, 1.3 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 3.08 – 3.01 (m, 2H), 2.93 (s, 3H), 2.00 – 1.90 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.20, 166.94, 150.05, 133.57, 128.57, 126.66, 125.02, 122.56, 42.09, 22.55, 21.84, 14.18.

2-Butyl-4-methylquinazoline (3ae).⁷ The title compound was synthesized according to the general procedure

(B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (82mg, 82%); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.84 – 7.81 (m, 1H), 7.55 (td, *J* = 7.5 Hz, 1H), 3.23 (t, *J* = 8.0 Hz,

2H), 2.86 (s, 3H), 1.86 – 1.80 (m, 2H), 1.54 – 1.47 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.82, 163.64, 150.30, 133.39, 128.37, 126.46, 124.67, 121.62, 34.60, 31.65, 26.45, 22.97, 13.91.

4-Methyl-2-pentylquinazoline (3af).¹³ The title compound was synthesized according to the general

21.81, 14.15.

procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (85mg, 79%); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.55 (t, J = 7.6 Hz, 1H), 3.05 (t, J = 7.9 Hz, 2H), 2.93 (s, 3H), 1.93 – 1.88 (m, 2H), 1.44 – 1.36 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (101) MHz, CDCl₃) & 168.16, 167.13, 150.02, 133.53, 128.52, 126.60, 124.98, 122.50, 40.18, 31.97, 28.94, 22.69,

2-Heptyl-4-methylquinazoline (3ag). The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain yellow oil (90mg, 74%); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.3 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.85 – 7.82 (m, 1H), 7.58 – 7.54 (m, 1H), 3.05 (t, 3ag J = 7.9 Hz, 2H), 2.93 (s, 3H), 1.93 – 1.86 (m, 2H), 1.45 – 1.27 (m, 8H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.80, 159.79, 142.69, 126.17, 121.19, 119.24, 117.63, 115.17, 32.87, 24.53, 22.37,

21.95, 21.90, 15.39, 14.45, 6.82; HRMS (ESI) calculated for $C_{16}H_{23}N_2 [M+H]^+$: 243.1861 found 243.1865.

2-Isobutyl-4-methylquinazoline (3ah).¹⁴ The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl 'N acetate) to obtain yellow oil (76mg, 76%); ¹H NMR (500 MHz, CDCl₃) δ 8.07 (dd, J = 3ah 0.5, 1 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.59 – 7.55 (m, 1H), 2.94 $(t, J = 3.6 \text{ Hz}, 5\text{H}), 2.44 - 2.36 \text{ (m, 1H)}, 1.00 \text{ (d, } J = 6.7 \text{ Hz}, 6\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 168.01,$ 166.43, 150.06, 133.51, 128.69, 126.65, 125.02, 122.57, 48.99, 28.77, 22.69, 21.87.

(4-Methylquinazolin-2-yl)methanol (3aj). The title compound was synthesized according to the general procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (44mg, 51%); mp 76-78°C; ¹H NMR (500 MHz, CDCl₃) .OH 3aj δ 8.11 (d, J = 8.3 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.92 - 7.88 (m, 1H), 7.63 (t, J = 7.6) Hz, 1H), 4.95 (d, J = 3.4 Hz, 2H), 4.16 (s, 1H), 2.96 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.07, 163.73, 149.23, 134.18, 128.47, 127.37, 125.34, 123.41, 64.69, 21.89. HRMS (ESI) calculated for C₁₀H₁₁N₂O [M+H]⁺ : 175.0871 found 175.0874.

(4-Phenylquinazolin-2-yl)methanol (3gi).¹⁵ The title compound was synthesized according to the general

procedure (B) and the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain white solid (63mg, 53%); mp 147-149 °C (lit. 153-155 °C); ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 8.09 (m, 2H), 7.95 – 7.92 (m, 1H), 7.79 – 7.77 (m, 2H), 7.62 -7.58 (m, 4H), 5.05 (d, J = 4.4 Hz, 2H), 4.14 (t, J = 4.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 169.21, 163.99, 150.84, 137.06, 134.24, 130.35, 130.08, 128.83, 128.39, 127.51, 122.21, 64.92.

4-Phenylquinazoline (3gj').⁹ The title compound was synthesized according to the general procedure (B) and

the product was isolated by column chromatography (Hexane/Ethyl acetate) to obtain colourless oil (42mg, 41%); ¹H NMR (500 MHz, CDCl₃) δ 9.26 (s, 1H), 7.97 (d, J = 8.2 Hz, 2H), 7.73 (t, J = 7.6 Hz, 1H), 7.64 (s, 2H), 7.42 (s, 4H); ¹³C NMR (101 MHz, CDCl₃) δ

167.99, 154.35, 150.78, 136.79, 133.37, 129.78, 129.72, 128.58, 128.34, 127.44, 126.76, 122.80.

(8) References

- 1. C. M. Counceller, C. C. Eichman, B. C. Wray and J. P. Stambuli, Org. Lett., 2008, 10, 1021-1023.
- 2. Z. Huang, Y. Yang, Q. Xiao, Y. Zhang and J. Wang, Eur. J. Org. Chem., 2012, 2012, 6586-6593.
- 3. E. A. Krasnokutskaya, N. I. Semenischeva, V. D. Filimonov and P. Knochel, Synthesis, 2007, 81-84.

4. C. M. Le, T. Sperger, R. Fu, X. Hou, Y. H. Lim, F. Schoenebeck, and M. Lautens, J. Am. Chem. Soc., 2016, **138**, 14441-14448.

- 5. L. Tang, Y. Yang, L. Wen, S. Zhang, Z. Zha and Z. Wang, Org. Chem. Front., 2015, 2, 114-118.
- 6. J. -T. Hahn and F. D. Popp, J. Heterocycl. Chem. 1989, 26, 1357-1372.
- 7. Y. Wu, H. Zhao, H. Huang and D. Zhang, Tetrahedron Lett., 2023, 116, 154313.
- 8. N. E. Behnke, Z. S. Sales, M. Li and A. T. Herrmann, J. Org. Chem., 2021, 86, 12945-12955.
- 9. S. Yuan, B. Yu and H. M. Liu, Chem. Eur. J., 2019, 25, 13109-13113.
- 10. U. P. Saikia, G. Borah and P. Pahari, Eur. J. Org. Chem., 2018, 2018, 1211-1217.
- 11. C. Huang, Y. Fu, H. Fu, Y. Jiang and Y. Zhaoa, Chem. Commun., 2008, 6333-6335
- 12. G. Satish, A. Polu, L. Kota and A. Ilangovan, Org. Biomol. Chem., 2019, 17, 4774-4782.
- 13. P. T. K. Arachchige and C. S. Yi, Org. Lett., 2019, 21, 3337-3341.
- 14. I. Mangalagiu, T. Benneche and K. Undheim, Tetrahedron Lett., 1996, 37, 1309-1312.

15. P. N. Giraldi, A. Fojanesi, G. P. Tosolini, E. Dradi and W. Logemann, J. Heterocycl. Chem., 1970, 7, 1429-1431.

(9) Copies of ¹H and ¹³C Data

Figure S6. ¹H NMR Spectrum of 2,4-Dimethylquinazoline (3aa).

Figure S7. ¹³C NMR Spectrum of 2,4-Dimethylquinazoline (3aa)

Figure S8. ¹H NMR Spectrum of 4-Ethyl-2-methylquinazoline (3ba)

Figure S9. ¹³C NMR Spectrum of 4-Ethyl-2-methylquinazoline (3ba)

Figure S11. ¹³C NMR Spectrum of 2-Methyl-4-propylquinazoline (3ca)

Figure S12. ¹H NMR Spectrum of 2-Methyl-4-octylquinazoline (3da)

Figure S13. ¹³C NMR Spectrum of 2-Methyl-4-octylquinazoline (3da)

Figure S14. ¹H NMR Spectrum of 4-Isopropyl-2-methylquinazoline (3ea)

Figure S15. ¹³C NMR Spectrum of 4-Isopropyl-2-methylquinazoline (3ea)

Figure S16. ¹H NMR Spectrum of 4-Cyclopentyl-2-methylquinazoline (3fa)

Figure S17. ¹³C NMR Spectrum of 4-Cyclopentyl-2-methylquinazoline (3fa)

Figure S18. ¹H NMR Spectrum of 2-Methyl-4-phenylquinazoline (3ga)

Figure S19. ¹³C NMR Spectrum of 2-Methyl-4-phenylquinazoline (3ga)

Figure S20. ¹H NMR Spectrum of 4-(4-Fluorophenyl)-2-methylquinazoline (3ha)

Figure S21. ¹³C NMR Spectrum of 4-(4-Fluorophenyl)-2-methylquinazoline (3ha)

Figure S22. ¹H NMR Spectrum of 4-(4-Chlorophenyl)-2-methylquinazoline (3ia)

Figure S23. ¹³C NMR Spectrum of 4-(4-Chlorophenyl)-2-methylquinazoline (3ia)

Figure S24. ¹H NMR Spectrum of 4-(4-Bromophenyl)-2-methylquinazoline (3ja)

Figure S25. ¹³C NMR Spectrum of 4-(4-Bromophenyl)-2-methylquinazoline (3ja)

Figure S26. ¹H NMR Spectrum of 6-Chloro-4-(2-fluorophenyl)-2-methylquinazoline (3ka)

Figure S27. ¹³C NMR Spectrum of 6-Chloro-4-(2-fluorophenyl)-2-methylquinazoline (3ka)

Figure S28. ¹H NMR Spectrum of 6-Bromo-2-methyl-4-(pyridin-2-yl)quinazoline (3la)

Figure S29. ¹³C NMR Spectrum of 6-Bromo-2-methyl-4-(pyridin-2-yl)quinazoline (**3la**)

Figure S30. ¹H NMR Spectrum of 6-Bromo-2,4-dimethylquinazoline (3ma)

Figure S31. ¹³C NMR Spectrum of 6-Bromo-2,4-dimethylquinazoline (3ma)

Figure S32. ¹H NMR Spectrum of 6-Iodo-2,4-dimethylquinazoline (3na)

Figure S33. ¹³C NMR Spectrum of 6-Iodo-2,4-dimethylquinazoline (3na)

Figure S34. ¹H NMR Spectrum of 2,4-Dimethyl-6-(phenylethynyl)quinazoline (30a)

Figure S35. ¹³C NMR Spectrum of 2,4-Dimethyl-6-(phenylethynyl)quinazoline (30a)

Figure S36. ¹H NMR Spectrum of 2-methylquinazoline (3pa)

Figure S37. ¹³C NMR Spectrum of 2-methylquinazoline (3pa)

Figure S38. ¹H NMR Spectrum of 4-Methylquinazoline (3ab)

Figure S39. ¹³C NMR Spectrum of 4-Methylquinazoline (**3ab**)

-10

Figure S41. ¹³C NMR Spectrum of 2-Ethyl-4-methylquinazoline (**3ac**)

Figure S42. ¹H NMR Spectrum of 4-Methyl-2-propylquinazoline (3ad)

Figure S43. ¹³C NMR Spectrum of 4-Methyl-2-propylquinazoline (3ad)

Figure S44. ¹H NMR Spectrum of 2-Butyl-4-methylquinazoline (3ae)

Figure S45. ¹³C NMR Spectrum of 2-Butyl-4-methylquinazoline (3ae)

Figure S46. ¹H NMR Spectrum of 4-Methyl-2-pentylquinazoline (3af)

Figure S47. ¹³C NMR Spectrum of 4-Methyl-2-pentylquinazoline (3af)

Parameter	Aalne 2532 2548 2548 2548 2548 2548 2548 2548 254	0666 0509 0349	9261 9109 8955 8801 8643
1 Solvent		5.2.3	1111
2 Spectrometer Frequer	icy 500.30	Ŷſ	

Figure S48. ¹H NMR Spectrum of 2-Heptyl-4-methylquinazoline (3ag)

1.2916 1.2880 1.8865 0.8730 0.8730

Figure S49. ¹³C NMR Spectrum of 2-Heptyl-4-methylquinazoline (3ag)

Figure S50. ¹H NMR Spectrum of 2-Isobutyl-4-methylquinazoline (3ah)

Figure S51. ¹³C NMR Spectrum of 2-Isobutyl-4-methylquinazoline (3ah)

Figure S53. ¹³C NMR Spectrum of (4-Methylquinazolin-2-yl)methanol (3aj)

Figure S54. ¹H NMR Spectrum of (4-Phenylquinazolin-2-yl)methanol (3gj)

Figure S55. ¹³C NMR Spectrum of (4-Phenylquinazolin-2-yl)methanol (3gj)

Figure S56. ¹H NMR Spectrum of 4-Phenylquinazoline (3gj')

Figure S57. ¹³C NMR Spectrum of 4-Phenylquinazoline (3gj')