Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Catalyst- and excess reagent recycling in *aza*-Michael additions

Lilla Maksó,^a Boglárka Szele,^a Dávid Ispán,^a Ágnes Gömöry^b, Sándor Mahó^c, Rita Skoda-

Földes^a*

^aUniversity of Pannonia, Department of Organic Chemistry, Egyetem u. 10. (P.O.Box 158) H-8200 Veszprém, Hungary

 ^b Hungarian Research Network, Research Centre for Natural Sciences, Magyar tudósok körútja 2. H-1117 Budapest, Hungary
 ^c Chemical Works of Gedeon Richter Plc., 1103 Budapest, Gyömrői út 19-21; Hungary

Corresponding author: Rita Skoda-Földes, University of Pannonia, Department of Organic

Chemistry, Egyetem u. 8. (P.O.Box 158) H-8200 Veszprém, Hungary

skodane.foldes.rita@mk.uni-pannon.hu

Contents

Supplementary data	S 1
Characterisation of the products	S 5
¹ H- and ¹³ C NMR spectra of the products	S 9
References	S24

Supplementary data

ontru	imidazole (2a) <i>n</i> -Bu-TMG		leach	ning
entry	(mmol)	(mmol)	imidazole	n-Bu-TMG
1	0.5	0.5	yes	yes
2	0.5	0.75	no	yes
3	0.5	1	no	yes

Table S1 Leaching of the components of the *n*-Bu-TMG/imidazole/CO₂ mixture^a

^a 4h, rt, CO_2 bubbling, then extraction with 1.2 ml ethyl acetate, leaching determined by GC-MS detection of the extract.

Table	S2 Leaching	of the comp	ponents of the	<i>n</i> -Bu-TMG/	[bmim][BF ₄]	CO ₂ mixture ^a
	0	1				

entry	n-Bu-TMG (mmol)	[bmim][BF ₄] (mmol)	leaching <i>n</i> -Bu-TMG
1	0.75	0.75	yes
2	0.75	1	no
3	0.75	1.5	no

^a 4h, rt, CO₂ bubbling, then extraction with 1.2 ml ethyl acetate, leaching determined by GC-MS detection of the extract.

Table S3 Calculation	of E-factors of the	e reaction of 16-DH	P (1) and	imidazole (2a)
----------------------	---------------------	---------------------	-----------	----------------

	after run 1	after run 2	after run 3	after run 4	after run 5
steroid 1 (mg) ^a	31.4	62.8	94.2	125.6	157
imidazole 2a (mg) ^a	34.04	40.848	47.656	54.464	61.272
[bmim][BF ₄] (recycled) (mg) ^a	340	340	340	340	340
<i>n</i> -Bu-TMG (recycled) (mg) ^a	129	129	129	129	129
Σ starting material (mg) ^a	534.44	572.648	610.856	649.064	687.272
yield (%)	96	95	90	93	94
product 3a (mg) ^a	36.68	72.98	107.37	142.90	178.82
solvent for extraction (mg) ^{a,b}	594.68	1189.35	1784.03	2378.70	2973.38
Σ (starting material and solvent ^b) (mg) ^a	1129.12	1762.00	2394.88	3027.76	3660.65
E-factor	29.78	23.14	21.31	20.19	19.47

^a cumulative values, ^b assuming 85% recycle of the solvent

E a tama	Nucleartile	Deer	pKa ^b	рКа ^ь	Due du et	Yield
Entry	Nucleophile	Base	(nucleophile)	(base)	Product	$(\%)^d$
1		n-Bu-TMG				96
2	imidazole (2a)	t-Bu-TMG	15.07	(23.35) ^c	39	73
3	······································	TBD	10107	26.02		67
4		DABCO		18.29		traces
5		n-Bu-TMG				76
6	pyrazole (2b)	t-Bu-TMG	9.1	$(23.35)^{c}$	3b	62
7		DABCO		18.29		22
8	1 2 4-triazole (2c)	n-Bu-TMG			30	87
9	1,2,4-u1azoie (2c)	DABCO		18.29		65
10		n-Bu-TMG				88
11	indazole (2f)	MTBD	7.61	25.47	3f	79
12		MIDD		23.47		75 ^d
13		n-Bu-TMG				55
14	indole (2g)	MTBD		25 47	3g	55
15		WIDD		23.17		51 ^d
16	1 2 3-benzotriazole	n-Bu-TMG				-
17	(2h)	t-Bu-TMG	6.89	(23.35) ^c	3i	-
18	(/	DABCO		18.29		-

 Table S4 Aza-Michael additions with other base catalysts

^aReaction conditions: 0.1 mmol of substrate (1) in 1.5 mmol [bmim][BF₄] and 0.75 mmol base , substrate (1) /nucleophile (2) = 1/5; 65°C, 8 h, Ar atmosphere; ^b basicity in MeCN [1]; ^c basicity of TMG, very similar basicities were reported for TMG (14.0) and *t*-Bu-TMG (13.3) in 50% aqueous ethanol [2]; ^d 2nd run, conditions: 0.1 mmol of substrate (1) and 0.1 mmol nucleophile (added to the recycled mixture obtained via the removal of CO₂), 65°C, 8 h, Ar atmosphere.

Table S5	Acid-base	properties	of some	N-heterocycles
----------	-----------	------------	---------	----------------

<i>N</i> -heterocycle	р <i>К</i> _а (N-H) ^а	p K_a (N-H) ^a N parameter (nucleophilicity) ^b	
imidazole (2a)	18.3 (H ₂ O)	11.58 (DMSO) 11.47 (MeCN)	21.09 (DMSO)
benzimidazole (2e)	16.8 (H ₂ O)	10.50 (DMSO)	19.13 (DMSO)
1,2,3-benzotriazole (2h)	11.92 (H ₂ O)	7.69 (MeCN)	16.29 (DMSO)

^a ref. [3], ^b ref. [4]

Figure S1. ¹³C NMR spectrum of the *n*-Bu-TMG/imidazole $(1/1) + CO_2$ system in DMSO-d₆ (red arrow: signal of carbamate)

Figure S2. ¹³C NMR spectrum of the *n*-Bu-TMG/[bmim][BF₄] (1/1) + CO₂ system in CDCl₃ (red arrow: signal of carboxylate)

Figure S3. Monitoring the reversibility of the n-Bu-TMG /imidazole (2a) system by conductivity measurements

Characterisation of the products

16a-(1H-Imidazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3a) [5]

Mp. 98-100°C; R_f = 0.29 (toluene/EtOAc, 1/1). $[\alpha]_D^{20}$ = +12.4° (EtOH, c=0.5) IR (KBr): v=3460, 2924, 2849, 2359, 2342, 1701, 1541, 1232, 1049, 902 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (s, 1 H, 2'-H), 7.03 (s, 1 H, 5'-H), 6.90 (s, 1 H, 4'-H), 5.31-5.37 (m, 1 H, 6-H), 5.25 (ddd, *J*=3.1 Hz, 8.1 Hz, 10.9 Hz, 1 H, 16-H), 3.49-3.59 (m, 1 H, 3-H), 2.77 (d, *J*=8.1 Hz, 1 H, 17-H), 1.04-2.59 (m, 18 H, ring protons, OH), 2.09 (s, 3 H, COCH₃), 1.02 (s, 3 H, 19-H₃), 0.72 (s, 3 H, 18-H₃). ¹³C NMR (101 MHz, CDCl₃): δ = 206.0, 141.2, 136.3, 129.6, 120.8, 116.9, 73.2, 71.6, 56.6, 55.8, 49.9, 45.31, 42.3, 38.8, 37.3, 36.6, 33.6, 31.8, 31.7, 31.6, 31.6, 20.9, 19.5, 14.1. HRMS: m/z calcd for C₂₄H₃₅N₂O₂ [M+H] ⁺ 383.2699, found 383.2693.

16α-(1H-Pyrazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3b)

Mp. 148-150°C; $R_f = 0.50$ (toluene/EtOAc, 1/1). $[\alpha]_D^{20} = +8.4^\circ$ (EtOH, c=0.5)

¹H NMR (400 MHz, CDCl₃): δ= 7.49 (d, *J*=1.1 Hz, 1 H, 5'-H), 7.38-7.42 (d, *J*=1.8 Hz, 1 H, 3'-H), 6.15 (d, *J*=1.1 Hz, 1.8 Hz, 1 H, 4'-H), 5.24-5.34 (m, 2 H, 6-H, 16-H), 3.48-3.59 (m, 1 H, 3-H), 3.25 (d, *J*=8.1 Hz, 1 H, 17-H), 1.05-2.34 (m, 18 H, ring protons, OH), 2.07 (s, 3 H, COCH₃), 1.00 (s, 3 H, 19-H₃), 0.71 (s, 3 H, 18-H₃).

¹³C NMR (101 MHz, CDCl₃,): δ= 207.3, 140.8, 140.0, 130.0, 121.2, 104.8, 71.6, 70.7, 60.1, 55.3, 49.7, 45.0, 42.3, 38.4, 37.3, 36.6, 33.0, 31.7, 31.58, 31.56, 31.5, 20.9, 19.5, 14.2.
IR (KBr): v= 3450, 2926, 2851, 2359, 2342, 1697, 1541, 1236, 1049, 962 cm⁻¹.

HRMS: m/z calcd for $C_{24}H_{34}N_2O_2Na$ [M+Na]⁺ 405.2518, found 405.2515.

16α-(1H-1,2,4-Triazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3c)

Mp. 97-100°C; $R_f = 0.30$ (toluene/MeOH, 1/1). $[\alpha]_D^{20} = +2.4^{\circ}$ (EtOH, c=0.3)

¹H NMR (400 MHz, CDCl₃): δ= 8.04 (s, 1 H, 5'-H), 7.89 (s, 1 H, 3'-H), 5.42 (ddd, *J*=2.7 Hz, 8.0 Hz, 9.7 Hz, 1 H, 16-H), 5.28-5.35 (m, 1 H, 6-H), 3.48-3.59 (m, 1 H, 3-H), 3.12 (d, *J*=8.0 Hz, 1 H, 17-H), 1.03-2.33 (m, 18 H, ring protons, OH), 2.09 (s, 3 H, COCH₃), 1.00 (s, 3 H, 19-H₃), 0.72 (s, 3 H, 18-H₃).

¹³C NMR (101 MHz, CDCl₃,): δ= 206.5, 152.4, 143.3, 140.9, 121.1, 71.6, 70.7, 57.9, 55.4, 49.7, 45.1, 42.2, 38.4, 37.3, 36.6, 32.6, 31.63, 31.57, 31.5, 31.3, 20.9, 19.5, 14.1.

IR (KBr): v= 3456, 2932, 2855, 2359, 2342, 1701, 1541, 1275, 1049, 910 cm⁻¹.

HRMS: m/z calcd for $C_{23}H_{33}N_3O_2Na [M+Na]^+ 406.2470$, found 406.2470.

16a-(1H-1,2,3-Triazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3d)

Mp. 144-146°C; $R_f = 0.45$ (toluene/MeOH, 3/1). $[\alpha]_D^{20} = -13.9^\circ$ (EtOH, c=0.5)

¹H NMR (400 MHz, CDCl₃): δ= 7.55 (brs, 2 H, 4'-H, 5'-H), 5.70 (ddd, J=2.6 Hz, 8.1 Hz, 10.2 Hz, 1 H, 16-H), 5.31-5.36 (m, 1 H, 6-H), 3.48-3.58 (m, 1 H, 3-H), 3.39 (d, *J*=8.1 Hz, 1 H, 17-H), 1.05-2.34 (m, 18 H, ring protons, OH), 2.15 (s, 3 H, COCH₃), 1.02 (s, 3 H, 19-H₃), 0.77 (s, 3 H, 18-H₃).

¹³C NMR (101 MHz, CDCl₃,): δ= 206.4, 140.9, 134.1 (2C), 121.2, 71.7, 70.1, 63.8, 55.1, 49.9, 45.1, 42.3, 38.6, 37.3, 36.6, 33.1, 31.7, 31.62, 31.60 (2C), 20.9, 19.5, 14.3. IR (KBr): v= 3456, 2953, 2850, 2358, 2342, 1705, 1539, 1234, 1043, 962 cm⁻¹. HRMS: m/z calcd for C₂₃H₃₃N₃O₂Na [M+Na]⁺ 406.2470, found . 406.2467

16α-(1H-Benzimidazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3e)

Mp. 127-129°C; R_f = 0.45 (toluene/MeOH, 3/1). $[\alpha]_D^{20}$ = +10.1° (EtOH, c=0.5) ¹H NMR (400 MHz, CDCl₃): δ = 8.06 (s, 1 H, 2'-H), 7.76-7.81 (m, 1 H, Ar-H), 7.48-7.54 (m, 1 H, Ar-H), 7.25-7.30 (m, 2 H, Ar-H), 5.58 (ddd, J=3.7 Hz, 8.6 Hz, 12.1 Hz, 1 H, 16-H), 5.325.38 (m, 1 H, 6-H), 3.51-3.61 (m, 1 H, 3-H), 3.07 (d, *J*=8.6 Hz, 1 H, 17-H), 0.87-2.48 (m, 18 H, ring protons, OH), 2.06 (s, 3 H, COCH₃), 1.05 (s, 3 H, H₃19-H₃), 0.80 (s, 3 H, 18-H₃). ¹³C NMR (101 MHz, CDCl₃,): δ= 206.2, 143.6, 142.1, 141.2, 132.9, 123.2, 122.5, 120.8, 120.4, 110.7, 71.7, 70.8, 56.8, 54.8, 49.9, 45.5, 42.3, 38.8, 37.3, 36.7, 32.3, 31.81, 31.77, 31.65 (2C), 20.9, 19.5, 14.0.

IR (KBr): v= 3453, 2926, 2851, 2359, 2332, 1715, 1541, 1233, 1049, 800 cm⁻¹.

HRMS: m/z calcd for $C_{28}H_{37}N_2O_2$ $[M+H]^+$ 433.2855, found 433.2843.

16α-(1H-Indazol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3f)

Mp. 201-203°C; $R_f = 0.47$ (toluene/EtOAc, 1:1). $[\alpha]_D^{20} = +59.7^{\circ}$ (EtOH, c=0.5)

¹H NMR (400 MHz, CDCl₃): δ= 8.00 (brs, 1 H, 3'-H), 7.65-7.67 (m, 1 H, Ar-H), 7.59-7.61 (m, 1 H, Ar-H), 7.33-7.39 (m, 1 H, Ar-H), 7.07-7.13 (m, 1 H, Ar-H), 5.75 (ddd, *J*=2.4 Hz, 7.9 Hz, 9.8 Hz, 1 H, 16-H), 5.31-5.37 (m, 1 H, 6-H), 3.50-3.61 (m, 1 H, 3-H), 3.43 (d, *J*=7.9 Hz, 1 H, 17-H), 0.86-2.40 (m, 18 H, ring protons, OH), 2.06 (s, 3 H, COCH₃), 1.04 (s, 3 H, 19-H₃), 0.82 (s, 3 H, 18-H₃).

¹³C NMR (101 MHz, CDCl₃,): δ= 207.6, 140.8, 139.9, 133.7, 126.3, 123.8, 121.4, 120.8, 120.7, 109.9, 71.8, 70.6, 56.4, 55. 6, 49.8, 45.2, 42.4, 38.6, 37.4, 36.7, 33.3, 31.8, 31.70 (2C), 31.6, 21.0, 19.5, 14.4.

IR (KBr): v= 3455, 2926, 2851, 2357, 2342, 1701, 1541, 1223, 1049, 906 cm⁻¹.

HRMS: m/z calcd for $C_{28}H_{36}N_2O_2Na [M+Na]^+ 455.2674$, found . 455.2676

16α-(1H-Indol-1-yl)-3β-hydroxy-pregn-5-ene-20-one (3g)

Mp. 183-185°C; $R_f = 0.51$ (toluene/MeOH, 3/1).

¹H NMR (400 MHz, CDCl₃): δ= 7.57-7.59 (m, 1 H, Ar-H), 7.50-7.52 (m, 1 H, Ar-H), 7.17-7.21 (m, 1 H, Ar-H), 7.15-7.16 (m, 1 H, Ar-H), 7.05-7.09 (m, 1 H, Ar-H), 6.50-6.51 (m, 1 H, Ar-H), 5.60 (ddd, J=5.0 Hz, 8.2 Hz, 13.3 Hz, 1 H, 16-H), 5.34-5.40 (m, 1 H, 6-H), 3.51-3.61 (m, 1 H, 3-H), 3.01 (d, *J*=8.2 Hz, 1 H, 17-H), 1.09-2.39 (m, 18 H, ring protons, OH), 2.03 (s, 3 H, COCH₃), 1.05 (s, 3 H, 19-H₃), 0.81 (s, 3 H, 18-H₃).

¹³C NMR (101 MHz, CDCl₃,): δ= 206.7, 140.8, 135.6, 128.3, 124.5, 121.4, 120.8, 120.6, 119.2, 110.1, 102.0, 71.5, 71.3, 56.4, 54.6, 49.7, 45.0, 42.0, 38.6, 37.0, 36.4, 33.0, 31.7, 31.6, 31.5, 31.4, 20.6, 19.2, 14.00.

IR (KBr): v= 3461, 2912, 2852, 2359, 2342, 1691, 1541, 1229, 1060, 1010 cm⁻¹.

HRMS: m/z calcd for $C_{29}H_{37}NO_2Na [M+Na]^+ 454.2722$, found 454.2719.

¹H- and ¹³C NMR spectra of the products

Figure S4 ¹H NMR spectrum of 16α -(1*H*-imidazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3a**) in CDCl₃

Figure S5 ¹³C NMR spectrum of 16α -(1*H*-imidazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3a**) in CDCl₃

Figure S6 ¹H NMR spectrum of 16 α -(1*H*-pyrazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3b**) in CDCl₃

Figure S7 ¹³C NMR spectrum of 16α -(1*H*-pyrazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3b**) in CDCl₃

Figure S8 NOESY spectrum of 16α -(1*H*-pyrazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3b**) in CDCl₃

Figure S9 ¹H NMR spectrum of 16α -(1*H*-1,2,4-triazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3c**) in CDCl₃

Figure S10 ¹³C NMR spectrum of 16α -(1*H*-1,2,4-triazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3c**) in CDCl₃ (*: toluene)

Figure S11 ¹H NMR spectrum of 16α -(1*H*-1,2,3-triazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3d**) in CDCl₃

Figure S12 ¹³C NMR spectrum of 16α -(1*H*-1,2,3-triazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3d**) in CDCl₃

Figure S13 ¹H NMR spectrum of 16α -(1*H*-benzimidazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3e**) in CDCl₃

Figure S14 ¹³C NMR spectrum of 16α -(1*H*-benzimidazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3e**) in CDCl₃

Figure S15 ¹H NMR spectrum of 16α -(1*H*-indazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3f**) in CDCl₃

Figure S16 ¹³C NMR spectrum of 16α -(1*H*-indazol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3f**) in CDCl₃

Figure S17 ¹H NMR spectrum of 16α -(1*H*-indol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3g**) in CDCl₃

Figure S18 ¹³C NMR spectrum of 16α -(1*H*-indol-1-yl)-3 β -hydroxy-pregn-5-ene-20-one (**3g**) in CDCl₃

References

- S. Tshepelevitsh, A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering and I. Leito, *Eur. J. Org. Chem.*, 2019, 6735-6748.
- 2 D. H. R. Barton, J. D. Elliott and S. D. Gdro, J. Chem. Soc. Perkin Trans. I 1982, 2085-2090.
- 3 J. Catalan and J. Elguero, Adv. Heterocycl. Chem. 1987, 41, 187–274.
- 4 Mayr's database: https://<u>www.cup.lmu.de/oc/mayr/reaktionsdatenbank2</u> (accessed October 2023)
- 5 E. Szánti-Pintér, L. Maksó, Á. Gömöry, J. Wouters, B. E. Herman, M. Szécsi, G. Mikle, L. Kollár and R. Skoda-Földes, *Steroids*, 2017, 123, 61-66.