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Supplementary Methods
S1 General

Commercially available reagents and chemicals were used without further purification
unless otherwise stated. Phenylboronic acid was received from Angene Chemical. The
initial precursor compound 1 was synthesized according to the methodology given for the

synthesis of compound 3 in the Sl of a previous report?.

Flash chromatography (FC) was performed using CombiFlash SiO2 columns. Chiral HPLC
separations were performed with a Chiralpak® |G semi-preparative column and
CHIRALPAK® IB-N (250 x 4.6 mm / Sum) preparative columns, with
hexane/dichloromethane as eluent.

'H and C NMR spectra were recorded in solution on Bruker-AVIII 400 MHz and 500
MHz spectrometers using tetramethylsilane (TMS) as the external standard. The spectra

were recordedusing chloroform-d as the solvent. Chemical shifts are expressed in 6 units.

UV-vis absorption spectra were recorded with an Agilent Cary-5000 spectrophotometer.
The spectra were measured using a quartz cuvette (1 cm) at 25 °C. The absorption
wavelengths are reported in nm with the extinction coefficient ¢ (M~'cm™) given in

brackets.

Steady state fluorescence measurements were performed on a HORIBA JOBIN YVON
Fluoromax-4 spectrofluorometer with the excitation/emission geometry at a right angle.
Fluorescence quantum yields (®r) were determined using HORIBA-@ integrating sphere.
The lifetimes of the excited species were measured using an NL-C2 Pulsed Diode
Controller NanoLED light source with time-correlated single proton counting (TSCPC)
Controller DeltaHub (HORIBA), referenced against colloidal Ludox solution (50 wt. %
solution in water) obtained from Aldrich. Electronic circular dichroism (ECD) spectra were

recorded on aMOS-500 spectrophotometer from BioLogic Science Instruments.

High resolution mass spectra were measured on: Quadrupole Time-of-Flight (QTOF) Mass
Spectrometry SCIEX X500R QTOF.



S2 Synthesis

S2.1 Synthesis of untethered S-shaped double [4] helicene (DH-CO0)

. 0

4 DH-CO0
Scheme 1. Synthesis of DH-CO. (I) Pd(PPh;)s,dioxane/water (4:1), 94 °C, 3 d; (ll) 3,3-Dimethyl-
1-butyne, n-BuLi, THF, —=5 °C—RT, 10 h; (lll) SnCl, THF, 4 h; (IV) N,N,N,N-tetra n-
butylammonium fluoride, THF, 0 °C—RT, 0.5 h; (V) PtCl,, toluene, 90 °C 12h. Bu, butyl; Ph, phenyl;
THF, tetrahydrofuran.

Synthesis of 2
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A two-necked round-bottomed (RB) flask fitted with a condenser was evacuated and
refilled with Ar three times. 1,4-Dioxane (80 mL) and water (20 mL) were added and the
mixture was purged with Ar for 20 min before adding 1 (5 g, 6.09 mmol), phenylboronic
acid (2.23 g, 18.28mmol), Na2COs (1.94 g, 18.28 mmol) and Pd(PPhs)4 (353 mg, 0.304
mmol) at once. The reaction mixture was then maintained at 94 °C for 3 days. Then, 1, 4-
dioxane was evaporated off and the resulting mixture was extracted with chloroform (3 x
90 mL). The combined organic layers are dried over MgSO, and concentrated to obtain a
brown-yellow crude. Purification of the crudebysilica gel column chromatography using
DCM/hexane (2:3) resulted in an orange solid. Washing the solid with hexane (50 mL)
afforded 2 as a golden-yellow solid (2.70 g, yield = 62%).



IH NMR (400 MHz, CDCls) & 8.11 (d, J = 8.1 Hz, 2H), 7.85 (d, J = 8.1 Hz, 2H), 7.47 -
7.37 (m, 6H), 7.24 — 7.21 (m, 4H), 0.92 (s, 36H).

13C NMR (101 MHz, CDCls) & 183.10, 145.94, 140.45, 137.69, 135.01, 131.43, 130.89,
128.46, 128.34, 127.58, 127.40, 104.64, 101.28, 77.68, 77.56, 77.36, 77.04, 18.82, 11.39.

HR-ESI-MS m/z (%): 721.3885 (100, [M+H]") calcd. for C,sHs;02Si,*: 721.38916

Synthesis of 3

Step 1: An oven-dried two-necked RB flask was charged with anhydrous tetrahydrofuran
and maintained at -5 °C for 10 min and then 3,3-dimethyl-1-butyne (2.28 g, 27.73 mmol)
was added to it. To the chilled solution, n-BuLi (1.6 M in hexanes, 17.33 mL) was added
slowly to maintain the temperature and the reaction mixture was kept at the same
temperature for one hour to complete lithiation. The lithium-alkynide salt was quenched by
dropwise addition of a solution of 2 (2gm, 2.77 mmol) in 20 mL of anhydrous
tetrahydrofuran, and fading of the golden-yellow color of 2 was observed. The resulting
reaction mixture was kept at -5 °C for 0.5 h before allowing it rise to RT, at which
temperature it was then stirred for an additional hour. Then, the reaction mixture was
quenched with water and the solvents were evaporated off in a rotavapor, producing an off-
white solid. The solid was washed with water and hexane and dried under vacuum to afford
a whitesolid (1.8 g) that was immediately used in the next step without further purification

and characterization.

Step 2: The white solid produced at the end of Step 1 was reacted with SnCl,-5H20 for 4 h
in THF under Ar to accomplish full conversion as monitored by thin layer chromatography
and by the appearance of a bright yellow color and a bright green emission under a 365 nm
lamp. The THF was distilled off and the resulting orange crude product was purified by silica
gel column and eluted with DCM/hexane (5:95) to afford a bright yellow solid 3 (1.25 g,
53% of two steps).



IH NMR (400 MHz, CDCls) & 8.53 (dd, J = 9.1, 0.8 Hz, 2H), 7.56 (dd, J = 9.1, 0.9 Hz,
2H), 7.44 — 7.39 (m, 4H), 7.37 (g, J = 2.9 Hz, 6H), 1.08 (d, J = 0.8 Hz, 18H), 0.99 (d, J =
1.9 Hz, 36H).

13C NMR (400 MHz, CDCls) & 143.64, 141.89, 135.21, 132.69, 131.45, 131.28, 130.46,
130.10, 128.04, 127.96, 127.55, 127.23, 123.56, 119.75, 117.56, 107.63, 97.02, 78.59,
77.62,77.56, 77.36, 77.10, 30.99, 30.67, 28.83, 18.96, 18.86, 11.59, 11.45.

HR-ESI-MS m/z (%): 851.53964 (100, [M+H]") calcd. for CgoH5Si,": 851.54018.

Synthesis of 4

To a solution of 3 (1.2 g, 1.41 mmol) in 20 mL THF kept under Ar in a single-neck RB
flask, N,N,N,N-tetrabutylammonium fluoride (TBAF) solution (1 M in THF, 1.42 mL) at
0°C was added in a dropwise manner. Then, the reaction mixture was stirred at room
temperature for an additional 0.5 h. The THF was evaporated off in a rotavapor and the
resulting semisolid crude was directly subjected to silica gel column chromatography using
DCM/hexane (1:4) to obtain a bright yellowsolid 4 (0.560 g, yield = 74%;) with green

emission under a 365 nm lamp.

IH NMR (500 MHz, CDCls) § 8.55 (d, J = 9.1 Hz, 2H), 7.58 (d, J = 9.1 Hz, 2H), 7.44 (d,
J=0.9 Hz, 10H), 3.05 (s, 2H), 1.09 (s, 18H).

13C NMR (400 MHz, CDCls) & 144.28, 141.59, 135.34, 131.40, 130.48, 129.75, 127.93,
127.81, 127.46, 127.00, 125.97, 122.28, 119.95, 117.95, 84.18, 82.68, 78.43, 77.61, 77.56,
77.36, 77.10, 30.97, 28.85.

HR-ESI-MS m/z (%): 539.27368 (100, [M+H]") calcd. for CyHas™: 539.27333.



Synthesis of DH-CO

A solution of alkyne 4 (300 mg, 0.556 mmol) and PtCl> (15 mg, 0.055 mmol) in toluene (10
mL) was stirred for 24 h at 90 °C under Ar until complete conversion of the substrate. The
solvent was then evaporated, and the residue was purified by flash chromatography (silica gel,
hexanes) to give DH-CO as an orange solid (110 mg, 37%):

IH NMR (400 MHz, CDCls) § 8.64 (d, J = 8.8 Hz, 2H), 8.57 — 8.52 (m, 2H), 8.08 — 8.04
(m, 2H), 8.03 — 7.99 (m, 2H), 7.95 — 7.90 (M, 4H), 7.61 — 7.53 (m, 4H), 0.95 (s, 18H).

13C NMR (101 MHz, CDCls) § 132.64, 132.37, 132.04, 131.67, 130.78, 129.83, 129.02,
128.42, 127.74, 127.68, 125.93, 125.84, 125.80, 125.27, 119.31, 111.67, 79.44, 77.68,
77.36, 77.04, 30.79, 28.68.

HR-ESI-MS m/z (%): 539.27314 (100, [M+H]") calcd. for CyHas*: 539.27333.

S2.2 Synthesis of tethered S-shaped double [4]helicene (DH-C4, DH-C6, and DH-C8)

Compounds Ant-C4, Ant-C6 and Ant-C8 were synthesized according to a previous report.t

PtCl,, toluene

90 °C, 12h
Ant-C4; n=4 DH-C4; n=4, 34%
Ant-C6; n=6 DH-C6; n= 6, 23%
Ant-C8; n=8 DH-C8; n=8, 15%

Scheme 2. Synthesis of DH-Cn (n=4, 6, 8).



S2.2.1 General procedure for PtCl,-mediated benzannulation of the tethered compounds

A solution of alkyne Ant-Cn; n=4, 6, 8 (1 equiv.) and PtCl> (10 mol%) in toluene (5 mL) was
stirred for 24 h at 90 °C under Ar until complete conversion of the substrate was achieved. The
solvent was then evaporated, and the residue was purified by flash chromatography (silica gel,
hexanes) to give DH-Cn; n=4, 6, 8.

Synthesis of DH-C4

A solution of alkyne Ant-C4 (50 mg, 0.0801 mmol) and PtCl, (3 mg, 0.008 mmol) in toluene
(5 mL) was stirred for 24 h at 90 °C under Ar until complete conversion of the substrate was
achieved. The solvent was then evaporated, and the residue was purified by flash
chromatography (silica gel, hexane) to give DH-C4 as a greenish yellow solid (17 mg, 34%):
'H NMR (400 MHz, CDCls) § 8.32 (d, J = 8.6 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.82 (d,
J=8.4Hz, 2H), 7.72 (d, J = 8.7 Hz, 2H), 7.64 (dd, J = 8.3, 1.1 Hz, 2H), 7.52 (dd, J = 8.1,
7.5 Hz, 2H), 6.83 (dd, J = 7.6, 1.1 Hz, 2H), 3.97 (dd, J = 8.1, 3.8 Hz, 2H), 2.97 — 2.85 (m,
2H), 0.95 (s, 18H), 0.82 — 0.78 (m, 2H), 0.74 — 0.67 (m, 2H).

13C NMR (101 MHz, CDCls) § 157.36, 133.67, 132.17, 132.04, 128.54, 128.06, 126.71,
126.53, 125.53, 125.38, 124.78, 124.28, 120.26, 119.40, 108.46, 106.39, 77.95, 77.68,
77.36, 77.04, 69.19, 31.24, 30.06, 28.43, 26.78.

HR-ESI-MS m/z (%): 625.30982 (100, [M+H]") calcd. for CasHaO2": 625.31011.

Synthesis of DH-C6

A solution of alkyne Ant-C6 (80 mg, 0.122 mmol) and PtCl, (4 mg, 0.0122 mmol) in toluene

(5 mL) was stirred for 24 h at 90 °C under Ar until complete conversion of the substrate was



achieved. The solvent was then evaporated, and the residue was purified by flash
chromatography (silica gel, hexane) to give DH-C6 as a Greenish Yellow solid (18 mg, 23%):

IH NMR (400 MHz, CDCls) & 8.59 (d, J = 8.7 Hz, 2H), 7.97 (d, J = 8.3 Hz, 2H), 7.83 (dd,
J=11.8,8.5Hz, 4H), 7.64 (d, J = 7.9 Hz, 2H), 7.58 (t, J = 7.8 Hz, 2H), 7.00 (d, J = 7.6 Hz,
2H), 3.90 (ddt, J = 14.0, 10.2, 6.3 Hz, 4H), 1.16 (d, J = 7.2 Hz, 2H), 0.96 (d, J = 0.9 Hz,
18H), 0.85 (s, 2H), 0.40 — 0.28 (m, 2H), 0.24 (t, J = 9.1 Hz, 2H).

13C NMR (101 MHz, CDCls) & 156.40, 134.28, 132.72, 131.18, 129.40, 128.47, 127.29,

126.54, 126.18, 126.15, 125.30, 123.76, 120.95, 120.21, 107.32, 105.98, 79.01, 77.68,
77.36, 77.04, 66.06, 31.41, 28.44, 27.94, 24.00.

HR-ESI-MS m/z (%): 653.34062 (100, [M+H]") calcd. for CagHas0," : 653.34141.

Synthesis of DH-C8

A solution of alkyne Ant-C8 (100 mg, 0.146 mmol) and PtCl> (4 mg, 0.0146 mmol) in toluene
(5 mL) was stirred for 24 h at 90 °C under Ar until complete conversion of the substrate was
achieved. The solvent was then evaporated, and the residue was purified by flash

chromatography (silica gel, hexane) to give DH-C8 as a greenish yellow solid (15 mg, 15%):

IH NMR (500 MHz, CDCls) § 8.69 (d, J = 8.7 Hz, 2H), 7.99 (d, J = 8.3 Hz, 2H), 7.89 (dd,
J=8.5, 7.3 Hz, 4H), 7.66 (dd, J = 8.0, 1.2 Hz, 2H), 7.61 (t, J = 7.8 Hz, 2H), 7.07 (dd, J =
7.7, 1.3 Hz, 2H), 4.23 (td, J = 6.6, 3.4 Hz, 2H), 3.99 — 3.94 (m, 2H), 1.37 (d, J = 9.0 Hz,
2H), 1.13 — 1.07 (m, 4H), 0.97 (s, 18H), 0.90 — 0.88 (m, 4H), 0.81 (d, J = 6.7 Hz, 2H), 0.71
—0.67 (M, 2H), 0.50 (d, J = 4.9 Hz, 2H).

13C NMR (126 MHz, CDCls) § 157.60, 134.48, 132.98, 130.27, 130.25, 128.59, 127.92,
126.67, 126.54, 126.32, 125.55, 122.68, 121.43, 120.41, 107.01, 106.47, 79.33, 77.62,
77.36, 77.11, 68.50, 32.28, 31.51, 30.06, 28.47, 27.06, 26.81, 26.12, 23.05, 14.47

HR-ESI-MS m/z (%): 681.37239 (100, [M+H]") calcd. for CsoHagO2" : 681.37271.



S3 Chiral HPLC

Racemic DH-C4, DH-C6 and DH-C8 were resolved using semi-preparative
CHIRALPAK-IG with eluents of 20% DCM/hexane for DH-C4, 10% DCM/hexane for
DH-C6, and hexane for DH-C8. The M-enantiomer was eluted first, followed by the P-

enantiomer, with baseline separation between them.
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Figure S1. Chiral HPLC of racemic-DH-C4.
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Figure S2. Chiral HPLC of racemic- DH-C6.
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Figure S3. Chiral HPLC of racemic- DH-C8.
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Figure S5. *C NMR (101 MHz) of 2 in CDCl;, measured at 298 K.
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Figure S6. COSY NMR (400 MHz) of 2 in CDCl;, measured at 298 K.
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Figure S7. COSY NMR (400 MHz) of 2 in CDCl;, measured at 298 K
(expansion in aromatic region).
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Figure S10. HMBC NMR (400 MHz) of 2 in CDCl;, measured at 298 K.
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Figure S12. *H NMR (400 MHz) of 3 in CDCl;, measured at 298 K.
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Figure S14. COSY NMR (400 MHz) of 3 in CDCl3, measured at 298 K.
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Figure S18. HMBC NMR (400 MHz) of 3 in CDCl;, measured at 298 K.
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Figure $S20. *H NMR (400 MHz) of 4 in CDCl,, measured at 298 K.
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Figure S21. **C NMR (101 MHz) of 4 in CDCls, measured at 298 K.
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Figure S22. COSY NMR (400 MHz) of 4 in CDCl;, measured at 298 K.
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Figure S23. COSY NMR (400 MHz) of 4 in CDCl;, measured at 298 K
(expansion in aromatic region).
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Figure S24. HSQC NMR (400 MHz) of 4 in CDCl;, measured at 298 K.
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Figure S25. HSQC NMR (400 MHz) of 4 in CDCl;, measured at 298 K (expansion in
aromatic region).
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Figure S26. HMBC NMR (400 MHz) of 4 in CDCl;, measured at 298 K.
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Figure S27. HMBC NMR (400 MHz) of 4 in CDCl;, measured at 298 K (expansion in

aromatic region).
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Figure $28. *H NMR (400 MHz) of DH-CO0 in CDCl;, measured at 298 K.
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Figure $29. **C NMR (101 MHz) of DH-CO0 in CDCl,, measured at 298 K.
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Figure S30. COSY NMR (400 MHz) of DH-CO in CDCl;, measured at 298 K.
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Figure S31. COSY NMR (400 MHz) of DH-CO in CDCl;, measured at 298 K (expansion
in aromatic region).
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Figure S32. HSQC NMR (400 MHz) of DH-CO in CDCl;, measured at 298 K.
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Figure S33. HSQC NMR (400 MHz) of DH-CO in CDCl;, measured at 298 K (expansion

in aromatic region).
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Figure S34. HMBC NMR (400 MHz) of DH-CO in CDCl;, measured at 298 K.
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Figure $36. *"H NMR (400 MHz) of DH-C4 in CDCl,;, measured at 298 K.
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Figure S39. COSY NMR (400 MHz) of DH-C4 in CDCl;, measured at 298 K (expansion
in aromatic region).
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Figure S41. HSQC NMR (400 MHz) of DH-C4 in CDCl;, measured at 298 K (expansion
in aromatic region).
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Figure S42. HMBC NMR (400 MHz) of DH-C4 in CDCl;, measured at 298 K.
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Figure S43. HMBC NMR (400 MHz) of DH-C4 in CDCl3, measured at 298 K (expansion

in aromatic region).
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Figure S44. *H NMR (400 MHz) of DH-C6 in CDCl,;, measured at 298 K.
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Figure S45. **C NMR (101 MHz) of DH-C6 in CDCl,, measured at 298 K.
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Figure S46. COSY NMR (400 MHz) of DH-C6 in CDCl;, measured at 298 K.
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Figure S47. COSY NMR (400 MHz) of DH-C6 in CDCl;, measured at 298 K (expansion
in aromatic region).
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Figure S48. HSQC NMR (400 MHz) of DH-C6 in CDCl;, measured at 298 K.
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Figure S49. HSQC NMR (400 MHz) of DH-C6 in CDCl3, measured at 298 K (expansion

in aromatic region).
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Figure S50. HMBC NMR (400 MHz) of DH-C6 in CDCl;, measured at 298 K.
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Figure S51. HMBC NMR (400 MHz) of DH-C6 in CDCl;, measured at 298 K
(expansion in aromatic region).
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Figure S52. *H NMR (400 MHz) of DH-C8 in CDCl;, measured at 298 K.
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Figure S53. *C NMR (101 MHz) of DH-C8 in CDCl,;, measured at 298 K.
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Figure S54. COSY NMR (400 MHz) of DH-C8 in CDCl;, measured at 298 K.
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Figure S55. COSY NMR (400 MHz) of DH-C8 in CDCl;, measured at 298 K
(expansion in aromatic region).
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Figure S56. HSQC NMR (400 MHz) of DH-C8 in CDCl;, measured at 298 K.
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Figure S59. HMBC NMR (400 MHz) of DH-C8 in CDCl;, measured at 298 K (expansion
in aromatic region).
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Figure S61. Comparison of O-CH: proton for DH-C4, DH-C6 and DH-C8,



S5 Photophysical Properties

All photophysical studies were performed with dilute solutions of the compounds
keeping the absorbance from the lowest energy band in the range of 0.05 to exclude self-
absorption.
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Figure S62. UV-vis absorption spectra of compounds DH-C4, DH-C6, DH-C8, and
DH-CO0
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Figure S63. Experimental ECD spectra of the tethered S-shaped double [4] helicene
enantiomers DH-C4, DH-C6, and DH-C8.
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Figure S64. G values of the tethered S-shaped double [4] helicene enantiomers DH-C4,

DH-C6, and DH-CS8.
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Figure S65. Emission spectra of compounds DH-C4, DH-C6, and DH-CS8.

Table 1. Quantum yield, and Fluorescence lifetime of the S-shaped double [4] helicene

molecules.

Molecule Quantum yield % Life time (ns)
DH-C4 6 1.12
DH-C6 12 1.99
DH-C8 12 2.24
DH-CO 26 3.77




S6 Single crystal X-ray diffraction crystallography (SCXRD)

Single crystals of DH-CO, DH-C4 and DH-C6 were grown in DCM/hexane, by the slow
evaporation method. A single crystal of the tethered S-shaped double [4] helicene was attached to
a 400/50 MicroMesh™ with NVH Oil, and transferred to a Bruker SMART APEX CCD X-
ray diffractometer equipped with a graphite monochromator. Maintaining the crystals at -150
°C was achieved with a Bruker KRYOFLEX nitrogen cryostat (for the relevant materials). The
system was controlled by a Pentium-based PC running the SMART software package. Data
were collected at room temperature using Mo-Ka radiation (A=0.71073 A). Immediately after
collection, the raw data frames were subjected to integration and reduction by the SAINT
program package. The structure was solved and refined by the SHELXTL software package.

Figure S66. Crystal structures of (a) DH-CO, (b—c) DH-C4 and (d-e) DH-C6.



Table 2. Crystallographic refinement parameters

collection/®

Parameters DH-CO DH-C4 DH-C6
Empirical formula CazHas Ca6H1002 CagHa402
Formula weight 538.69 703.66 662.83
Temperature/K 150.0(1) 150.0(1) 149.99(10)
Crystal system monoclinic triclinic monoclinic
Space group P2i/c P-1 P21/n
alA 13.7697(4) 11.2461(3) 17.9449(7)
b/A 15.4363(5) 11.4386(4) 9.9148(4)
c/A 14.6704(5) 15.5025(5) 22.8990(9)
a/° 90 92.762(3) 90
B/° 96.138(3) 99.839(3) 103.799(4)
v/° 90 103.088(3) 90
Volume/A3 3100.4(2) 1906.0(1) 3956.6(3)
Z 4 2 4
peaicg/cm’ 1.154 1.226 1.113
w/mm™ 0.065 0.208 0.067
F(000) 1144.0 740.0 1412.0
Crystal size/mm? 0.25x0.16 x 0.11 0.17x 0.1 x0.03 0.253 x 0.047 x
0.042
Radiation Mo Ka (A= Mo Ka (A= Mo Ka (A=
0.71073) 0.71073) 0.71073)
20 range for data 4.672 to 64.604 4.602 to 53.998 4.498 to0 51.998

Index ranges

-17<h<19,-22<k
<23,-21<1<20

-12<h<14,-14<
k<14,-19<1<19

-21<h<22,-12<
k<10,-28<1<28

Reflections collected 27445 25907 28702
Independent reflections | 9200 [Rin: = 0.0290, 8311 [Rint = 7751 [Rint =
Rsigma = 00369] 00338, Rsigma = 00699, Rsigma =
0.0395] 0.0674]
Data/restraints/parameters 9200/0/415 8311/0/502 7751/0/477
Goodness-of-fit on F? 1.056 1.052 1.002
Final R indexes [[>=2c6 | R1=0.0630, wR2 = | R1 =0.0667, wWR2 = | R1 =0.0791, wR> =
(N] 0.1677 0.1694 0.2177
Final R indexes [all data] | R1=0.0956, wR2= | R1 =0.0897, wR2 = | Ry = 0.1273, wR> =
0.1840 0.1810 0.2474
Largest diﬁj.&peak/hole /e 0.38/-0.22 0.91/-0.46 1.09/-0.31
-3
CCDC deposition number 2296411 2296412 2296413




S7 Computational details
All calculations were carried out using the Gaussian 09 program applying density functional

theory (DFT). 2 All molecules were optimized using a hybrid density functional and Becke’s
three parameter exchange functional combined with the LYP correlation functional (B3LYP)
and with the 6-31G(d) basis set (B3LYP/6-31G(d)) with gd3 dispersion correction. All
optimized structures were confirmed by frequency calculations and showed no negative
frequencies. The UV-vis and CD spectra was calculated using time dependent TD-DFT with
CAM-B3LYP basis set (CAM-B3LYP/6-31G(d)).

S7.1 Calculated structures of the tethered S-shaped double [4] helicene

Table 3. Optimized (DFT-B3LYP-6-31G(d)-GD3) structures of the synthesized molecules

Molecule Absolute energy (Hartree)
DH-CO -1620.9911
DH-C4 -1927.4714
DH-C6 -2006.12
DH-C8 -2084.752

S7.2 Calculated UV-vis absorption spectrum and CD spectrum of the S-shaped double
[4] helicene molecules
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Figure S 67. Calculated (TD-DFT/CAM-B3LYP/6-31G(d)) UV spectra of DH-Cn.
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Figure S 68. Calculated (TD-DFT/CAM-B3LYP/6-31G(d)) CD spectra of M-DH-Cn.

Transition state optimization: all the optimizations of the geometries in the transition state have
been also performed in DFT/B3LYP/6-31G(d) with gd3 dispersion correction. We verified that

this was indeed the transition state by checking that there was indeed one imaginary frequency

and by observing the movement of the imaginary coordinate which shows that indeed it passes
between one conformer and another (displacement vectors figure of the imaginary coordinate

is add below).

Figure S 69. Transition state geometry for the S-shape double [4]helicene backbone.

S-shaped double [4]helicene displacement vectors of the imaginary coordinate (-213 cm™). The
coordinate mainly contains the movement of hydrogen atoms (since the right side of the

molecule is almost planar).



Figure S 70. Transition state geometry for DH-CO.

S-shaped double [4]helicene with tert-butyl-acetylene substituents displacement vectors of the
imaginary coordinate (-47.35 cm™). The coordinate mainly contains the rotation of the tert-
butyl group and upward displacement of the aromatic rings that are close to the tertbutyl group.
This is the reason why the frequency is very low when the tertbutyl group is present (since the
effective mass of the coordinate really increases when the tertbutyl group is present).
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