Electronical Supporting Information

A new synthetic route towards multifunctionalized cyclic amidrazones for feeding chemical space

Johann Leblanc, Margaux Boutin, Clara Vega, Monique Mathé-Allainmat, Sandrine Grosse, Jérôme Guillemont, Jacques Lebreton and Arnaud Tessier*

Abstract

In the context of growing impetus to develop new molecular scaffolds as well as a variety of 3D fragments to escape from flatland, we have reintroduced the accessibility of the underexplored azaheterocyclic amidrazones as promising bioisosteres. Herein, we present an original and versatile approach to synthesize cyclic amidrazones functionalized at different positions of the scaffold in view of diversifying the substitution pattern towards multifunctionalizion, extension or fusion of the ring system and 3D-shaping of fragments. This unprecedented synthetic route represents a sweet achievement to cover further lead-like chemical space.

Table of Contents

General information 4
Experimental procedures 5
Synthesis of Tert-butyl 2-benzylhydrazine-1-carboxylate 6a5
Synthesis of Tert-butyl 2-methylhydrazine-1-carboxylate 6b 5
General procedure for the reductive amination reaction (step two) 6
Synthesis of Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)ethyl)hydrazine-1-carboxylate 7aa 7
Synthesis of Tert-butyl (S)-2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7ba 7
Synthesis of Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-2-phenylethyl)hydrazine-1-carboxylate 7ca 8
Synthesis of Tert-butyl (S)-2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7da 8
Synthesis of Tert-butyl 2-benzyl-2-((1-((tert-butoxycarbonyl)amino)cyclopropyl)methyl)hydrazine-1-carboxylate 7ea 9
Synthesis of Tert-butyl (R)-2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)pyrrolidine-1-carboxylate 7fa 9
Synthesis of Tert-butyl 2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)piperidine-1-carboxylate 7ga 10
Synthesis of Tert-butyl (S)-4-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)-2,2-dimethyloxazolidine-3- carboxylate 7ha 10
Synthesis of Tert-butyl 2-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methylhydrazine-1-carboxylate 7ab 11
Synthesis of Tert-butyl 2-benzyl-2-(3-((tert-butoxycarbonyl)amino)propyl)hydrazine-1-carboxylate 7ia 11
General procedure for the bis-Boc deprotection and the amidrazone ring closure reaction 12
Synthesis of 1-benzyl-1,4,5,6-tetrahydro-1,2,4-triazine 12aa 13
Synthesis of (S)-1-benzyl-5-cyclohexyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ba 13
Synthesis of 1-benzyl-5-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ca 14
Synthesis of (S)-1-benzyl-5-isopropyl-1,4,5,6-tetrahydro-1,2,4-triazine 12da 15
Synthesis of 7-benzyl-4,6,7-triazaspiro[2.5]oct-5-ene 12ea 15
Synthesis of 2-benzyl-1,2,6,7,8,8a-hexahydropyrrolo[1,2-d][1,2,4]triazine 12fa 16
Synthesis of 2-benzyl-1,6,7,8,9,9a-hexahydro-2H-pyrido[1,2-d][1,2,4]triazine 12ga 17
Synthesis of 1-benzyl-3-methyl-1,4,5,6-tetrahydro-1,2,4-triazine 13aa 17
Synthesis of 1-benzyl-3-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 14aa 18
Synthesis of 1-methyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ab 19
Synthesis of 1,3-dimethyl-1,4,5,6-tetrahydro-1,2,4-triazine 13ab 20
Synthesis of 1-methyl-3-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 14ab 20
Synthesis of 1-benzyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 12ia 21
Synthesis of 1-benzyl-3-methyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 13ia 21
Synthesis of 1-benzyl-3-phenyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 14ia 22
Spectroscopy data and NMR spectra 23
References 85
Author Contributions 85

General information

Tetrahydrofuran was distilled over sodium and benzophenone. All others solvents used were reagent grade. Solvents for water-sensible reactions were purchased in an anhydrous grade, stored on molecular sieves $4 \AA$ and were used without further purification. All reagents were purchased from various commercial suppliers (Sigma Aldrich $®$, Fluka $®$, Alfa Aesar $®$, Acros $®$, or TCI Chemical $®$) and stored according to the detailed specifications. Glassware used for reaction was either flame dried under vacuum or under argon stream for several minutes. Reactions were carried out under rigorous anhydrous conditions and argon stream/positive pressure of argon. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 300 spectrometer fitted with a 5 mm i.d. BBO probe carefully tuned to the recording frequency of $300.13 \mathrm{MHz}\left(\right.$ for ${ }^{1} \mathrm{H}$) and 75.47 MHz (for ${ }^{13} \mathrm{C}$), the temperature of the probe was set at room temperature (around 293-294 K), on a Bruker Avance 400 spectrometer fitted with a 5 mm i.d. BBFO+ probe carefully tuned to the recording frequency of 400.13 MHz (for ${ }^{1} \mathrm{H}$) and 100.61 MHz (for ${ }^{13} \mathrm{C}$). The spectra are referenced to the solvent in which they were run (7.26 ppm for ${ }^{1} \mathrm{H}_{\mathrm{CDCl}_{3}}$ and 77.16 ppm for ${ }^{13} \mathrm{C} \mathrm{CDCl}_{3}$, 2.5 ppm for ${ }^{1} \mathrm{H}$ DMSO and 39.52 ppm for ${ }^{13} \mathrm{C}$ DMSO). Chemical shifts (d) are given in ppm, and coupling constants (J) are given in Hz with the following splitting abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qt}=$ quintet, $s x=$ sextuplet, $s p=$ septuplet, $m=$ massif and $b r=$ broad. All assignments were confirmed with the aid of two-dimensional ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ (COSY), or ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ (HSQC, HMBC) experiments using standard pulse programs. Reactions were monitored by TLC on commercially available precoated plates (Kieselgel 60 F254), and the compounds were visualized with cerium molybdate stain (Hanessian's Stain) or by UV (254 nm). Combi-Flash chromatography were performed on a Buchi reveleris puriflash, using $40 \mu \mathrm{~m}$ silica pre-packed cartridges. Mobile phases are reported in relative composition. Infra-Red (IR) analyses were recorded on a FTIR-ATR Bruker Vertex 70 spectrometer. The wave numbers (v) are given in $\mathrm{cm}-1$ where the values represent the maximum absorption frequencies. HRMS characterizations, Electrospray (ESI)-time of flight (TOF) mass spectrometry (MS) measurements were performed by the analytical department on a Xevo G2-XS QTOF spectrometer (Waters, USA) for ESI, ESI-. An Atmospheric Solid Analysis Probe (ASAP) was also used for the direct analysis of samples by atmospheric pressure ionization (ASAP+ or ASAP-). Melting points (MP) were measured on a Tottoli Stuart ${ }^{T M}$ apparatus.

Experimental procedures

Synthesis of Tert-butyl 2-benzylhydrazine-1-carboxylate 6a

To a solution of tert-butyl hydrazinecarboxylate 5 ($1.05 \mathrm{eq} ., 31.4 \mathrm{~g}, 238 \mathrm{mmol}$) in THF (0.5 M) were added benzaldehyde ($1 \mathrm{eq} ., 23 \mathrm{~mL}, 227 \mathrm{mmol}$) and $\mathrm{AcOH}(2 \mathrm{eq} ., 26 \mathrm{~mL}, 454 \mathrm{mmol}$). The reaction mixture was stirred for 1 h at RT under argon atmosphere. $\mathrm{NaBH}_{3} \mathrm{CN}$ ($1.6 \mathrm{eq} ., 22.8 \mathrm{~g}, 363 \mathrm{mmol}$) was added by portion ($\sim 5 \mathrm{~g}$ every 10 min) to the reaction mixture which was then stirred for 22 h at RT. An aqueous solution of NaOH (6.6 eq., $37 \mathrm{~g}, 1.5 \mathrm{~mol}$) was added carefully in the mixture and stirred for 1 h . Then the layers were separated and the aqueous one was extracted three times with EtOAc. Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude material was purified using a puriflash device (eluent $\mathrm{cHex} / \mathrm{EtOAc}$) to afford $\mathbf{6 a}$ as a colourless oil ($48.85 \mathrm{~g}, 220 \mathrm{mmol}, 97 \%$ yield). $\mathbf{R f}=0.53$ (cHex/EtOAc: 1/1). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-$ 7.32 (m, 4H, H5 and H6), 7.32 - 7.27 (m, 1H, H7), 6.03 (s, 1H, NH), 4.20 (s, 1H, NH), 4.00 (s, 2H, H3), 1.47 (s, 9H, H10). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 156.8 (C8), 137.9 (C4), 129.1 (2*C5), 128.6 (2*C6), 127.6 (C7), 80.7 (C9), 56.0 (C3), 28.5 ($3^{*} \mathrm{C} 10$). HRMS (ESI) = Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 245.1266$ Da, found 245.1257 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3304,2976,1700,1453,1149$.

Synthesis of Tert-butyl 2-methylhydrazine-1-carboxylate 6b

To a solution of tert-butyl 2-benzylhydrazine-1-carboxylate $\mathbf{6 a}$ (1 eq., $1 \mathrm{~g}, 4.50 \mathrm{mmol}$), in MeOH (0.5 M) were added formaldehyde (37 wt . \% in $\mathrm{H}_{2} \mathrm{O}$) (1.5 eq., $0.5 \mathrm{~mL}, 6.75 \mathrm{mmol}$), and $\mathrm{AcOH}(4 \mathrm{eq} ., 1.1 \mathrm{~mL}$, 17.99 mmol). The reaction mixture was stirred for 3 h at RT under argon atmosphere. $\mathrm{NaBH}_{3} \mathrm{CN}$ (2 eq., $565 \mathrm{mg}, 9.00 \mathrm{mmol}$) was added to the reaction which was then stirred for 3 h at RT. EtOAc and an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{M})$ were added to the mixture and stirred for 30 min . Then the layers were separated and the aqueous one was extracted three times with EtOAc. Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude material was purified using a puriflash device (eluent cHex/EtOAc) to afford tert-butyl 2-benzyl-2-methylhydrazine-1-carboxylate as a white solid ($1.04 \mathrm{~g}, 4.40 \mathrm{mmol}, 98 \%$ yield). $\mathbf{R f}=0.59$ (cHex/EtOAc: 7/3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27$ (m, 5H, H5, H6 and H7), 5.52 (s, 1H, NH), 3.90 (s, 2H, H 3), 2.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 11$), 1.41 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H} 10$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 154.7 (C8), 136.6 (C4), 129.5 (C5), 128.3 (C6), 127.5 (C7), 80.0 (C9), 63.0 (C3), 44.8 (C11), 28.4 (C10). HRMS (ESI) = Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 259.1422 \mathrm{Da}$, found 259.1421 Da . IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3276,3030,2984,2934$, 1704, 1528, 1367, 1141, 735. MP = $86^{\circ} \mathrm{C}$

To a solution of tert-butyl 2-benzyl-2-methylhydrazine-1-carboxylate (1 eq., $3 \mathrm{~g}, 12.69 \mathrm{mmol}$) in MeOH $(0.2 \mathrm{M})$, was added $\mathrm{Pd} / \mathrm{C}(0.1 \mathrm{eq} ., 135 \mathrm{mg}, 1.27 \mathrm{mmol})$. The reaction mixture was stirred for 2 h at RT under hydrogen atmosphere. The reaction mixture was concentrated under reduced pressure. The crude material was purified using a puriflash device (eluent $\mathrm{cHex} / \mathrm{EtOAc}$) to afford product $\mathbf{6 b}$ as a white solid ($1.73 \mathrm{~g}, 11.84 \mathrm{mmol}, 93$ \% yield). $\mathbf{R f}=0.21$ (cHex/EtOAc: 7/3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.11$ (s, 1H, NH), 3.52 (s, 1H, NH), 2.62 (s, 3H, H3), 1.46 (s, H, H6). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.6$ (C4), 80.5 (C5), 39.4 (C3), 28.4 (C6). HRMS = not found. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3318,3255,3094,2983,2967,1696$, $1553,14858,1247,1140 . M P=48^{\circ} \mathrm{C}$

General procedure for the reductive amination reaction (step two)

To a solution of $\mathbf{6 a - 6 b}$ (1 eq.) in $\mathrm{MeOH}(0.5 \mathrm{M}$) were added aldehyde $9 \mathrm{a}-\mathrm{i}$ (1.5 eq .) and AcOH (4 eq .) and the solution was stirred for 2 h at RT under argon atmosphere. $\mathrm{NaBH}_{3} \mathrm{CN}$ (2 eq.) was added by portion (1 or 3 times, depending on the scale, every 30 min) to the reaction mixture which was stirred for additional 3 h . EtOAc and an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{M})$ were added to the mixture and stirred for 30 min . Then the layers were separated and aqueous one was extracted with EtOAc (three times). Combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under
reduced pressure. The crude material was purified using a puriflash device (eluent cHex/EtOAc) to afford the expected product.

Synthesis of Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)ethyl)hydrazine-1carboxylate 7aa

General procedure for the reductive amination reaction (step two) was applied on 3.5 g scale (15.5 mmol) with N -Boc-2-aminoacetaldehyde as aldehyde to afford 7 aa as colourless oil ($5.4 \mathrm{~g}, 14.8 \mathrm{mmol}$, 95% yield). $\mathbf{R f}=0.50$ (cHex/EtOAc: $1 / 1$). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR $=$ unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 366.2393 \mathrm{Da}$, found 366.2390 Da. IR (ATR) $\mathrm{v}\left(\mathrm{cm}^{-1}\right)=2976$, 1691, 1502, 1158.

Synthesis of Tert-butyl (S)-2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7ba

General procedure for the reductive amination reaction (step two) was applied on 625 mg scale (2.8 mmol) with tert-butyl (S)-(1-cyclohexyl-2-oxoethyl)carbamate as aldehyde to afford 7 ba as a white
solid ($400 \mathrm{mg}, 0.90 \mathrm{mmol}, 32$ \% yield). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR = unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+448.3175 \mathrm{Da}$, found 448.3191 Da.

Synthesis of Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-2-phenylethyl)hydrazine-1-carboxylate 7ca

General procedure for the reductive amination reaction (step two) was applied on 470 mg scale (2.1 mmol) with tert-butyl (2-oxo-1-phenylethyl)carbamate as aldehyde to afford 7ca as a white solid $\left(\mathrm{mp}=121^{\circ} \mathrm{C}\right)\left(883 \mathrm{mg}, 2.0 \mathrm{mmol}, 98 \%\right.$ yield). $\mathbf{R f}=0.50(\mathrm{cHex} / E t O A c: 1 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R} \&{ }^{13} \mathrm{C} \mathbf{N M R}=$ Unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 442.2706$ Da, found 442.2708 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3275,2975,1691,1451,1391,1363,1247,1118,1023 . \operatorname{MP}=121^{\circ} \mathrm{C}$

Synthesis of Tert-butyl (S)-2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7da

General procedure for the reductive amination reaction (step two) was applied on 700 mg scale (3.1 mmol) with tert-butyl (S)-(3-methyl-1-oxobutan-2-yl)carbamate as aldehyde to afford 7da as a colourless oil ($950 \mathrm{mg}, 2.33 \mathrm{mmol}, 74$ \% yield). $\mathbf{R f}=0.65$ (cHex/EtOAc: $1 / 1$). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR $=$ unclear NMR because of rotamers. HRMS (ASAP) = Calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 408.2862 \mathrm{Da}$, found 408.2856 Da . IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3316,2971,1692,1498,1364,1243,1160,1019$.

Synthesis of Tert-butyl 2-benzyl-2-((1-((tert-butoxycarbonyl)amino)cyclopropyl)methyl)hydrazine-1-carboxylate 7ea

General procedure for the reductive amination reaction (step two) was applied on 680 mg scale (3 mmol) with tert-butyl (1-formylcyclopropyl)carbamate as aldehyde to afford 7ea as a white solid, used as crude in the next step. $\mathbf{R f}=0.61$ (cHex/EtOAc: $1 / 1$). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR $=$ Unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 392.2549 \mathrm{Da}$, found 392.2545 Da .

Synthesis of Tert-butyl (R)-2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)pyrrolidine-1-carboxylate 7fa

$\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$
MW: $405,5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

General procedure for the reductive amination reaction (step two) was applied on 1.1 g scale (5 mmol) with tert-butyl (R)-2-formylpyrrolidine-1-carboxylate as aldehyde to afford 7 fa as a colourless oil ($1.15 \mathrm{~g}, 2.84 \mathrm{mmol}, 56$ \% yield). $\mathbf{R f}=0.63$ (cHex/EtOAc: $1 / 1$). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR = unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+406.2706 \mathrm{Da}$, found 406.2695 Da. IR (ATR) $\vee\left(\mathrm{cm}^{-1}\right)=3282,2973,2247,1676,1452,1392,1364,1244,1166,1115,909$.

Synthesis of Tert-butyl 2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)piperidine-1-carboxylate 7ga

General procedure for the reductive amination reaction (step two) was applied on 500 mg scale (2.2 mmol) with tert-butyl 2-formylpiperidine-1-carboxylate as aldehyde to afford 7ga as a colourless oil ($843 \mathrm{mg}, 2.0 \mathrm{mmol}, 91$ \% yield). $\mathbf{R f}=0.57$ (cHex/EtOAc: 1/1). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR = Unclear NMR because of rotamers. HRMS (ESI) $=$ Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 420.2862$ Da, found 420.2855 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3324,2932,1676,1453,1364,1246,1145,1076$.

Synthesis of Tert-butyl (S)-4-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate 7ha

$\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$
MW: 435,6 g.mol

General procedure for the reductive amination reaction (step two) was applied on 650 mg scale (2.9 mmol) with tert-butyl (R)-4-formyl-2,2-dimethyloxazolidine-3-carboxylate as aldehyde to afford $\mathbf{7 h a}$ as a white solid ($\mathrm{mp}=145^{\circ} \mathrm{C}$) ($955 \mathrm{mg}, 2.20 \mathrm{mmol}, 75 \%$ yield). $\mathbf{R f}=0.71$ (cHex/EtOAc: 1/1). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR = Unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+436.2811$ Da, found 436.2804 Da. IR (ATR) v $\left(\mathrm{cm}^{-1}\right)=3317,2978,1692,1511,1386,1363,1239,1155,1084$, 1013.

Synthesis of Tert-butyl 2-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methylhydrazine-1carboxylate 7ab

General procedure for the reductive amination reaction (step two) was applied on 1.3 g scale (8,90 mmol) with N -Boc-2-aminoacetaldehyde as aldehyde to afford 7ab as a white solid ($2.20 \mathrm{~g}, 7.61 \mathrm{mmol}$, 86 \% yield). Rf = 0.26 (cHex/EtOAc: 7/3). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53$ (s, 1H, NH), 5.34 (s, 1H, NH), 3.20 - 3.16 (m, 2H, H3), 2.67 - 2.64 (m, 2H, H2), 2.59 (s, 3H, H5), 1.44 (s, 9H, H8), 1.42 ($\mathrm{s}, 9 \mathrm{H}$, $\mathrm{H} 11) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2$ (C6), 155.5 (C9), 80.4 (C10), 79.0 (C7), 59.3 (C2), 46.9 (C5), 37.8 (C3), 28.5 (C8), 28.3 (C11). HRMS (ASAP) = Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 290.2080$ Da, found 290.2075 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3396,3306,2979,2935,1705,1692,1513,1151 . \operatorname{MP}=95^{\circ} \mathrm{C}$

Synthesis of Tert-butyl 2-benzyl-2-(3-((tert-butoxycarbonyl)amino)propyl)hydrazine-1carboxylate 7ia

General procedure for the reductive amination reaction (step two) was applied on 1.7 g scale (7.5 mmol) with tert-butyl (3-oxopropyl)carbamate as aldehyde to afford 7ia as a colourless oil (2.7 g , $7.2 \mathrm{mmol}, 97$ \% yield). ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR = Unclear NMR because of rotamers. HRMS (ESI) = Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 380.2549$ Da, found 380.2542 Da.

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure reaction

To a solution of 7aa-ia (1 eq.) in DCM (0.4 M) was added trifluoroacetic acid (10 eq.). The reaction mixture was stirred at reflux until full deprotection of the $\mathrm{SM}\left({ }^{1} \mathrm{H}\right.$ NMR monitoring in $\mathrm{CD}_{3} \mathrm{OD}$). The reaction mixture was then concentrated under reduced pressure to afford the bistrifluoroacetate salt product 11aa-ha, used in the next step without purification and stored carefully under argon atmosphere in the freezer.

To a solution of the diamine bistrifluoroacetate salt 11aa-ia (1 eq.) in anhydrous MeOH (0.5 M), was added the ring closure reagent (3 eq .) at RT. The reaction mixture was stirred 1 h at reflux or $65^{\circ} \mathrm{C}$ in case of sealed vial. The reaction mixture was cooled down at RT and concentrated under reduced pressure to give a residue. EtOAc and an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{M})$ were added to the residue. Phases were separated and the aqueous phase was extracted with EtOAc (x3). Combined organic phases were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure.

The crude material was purified using a puriflash device with the eluent DCM/DCM-MeOH (9/1) or cHex/EtOAc, according to the polarity of the product, to afford the corresponding cyclic benzylamidrazones 12aa-ia, 13aa and 14aa.

Synthesis of 1-benzyl-1,4,5,6-tetrahydro-1,2,4-triazine 12aa

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on 10.44 g scale (28.56 mmol) starting from Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)ethyl)hydrazine-1-carboxylate 7 aa with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12aa as a colourless oil ($2.25 \mathrm{~g}, 18.56 \mathrm{mmol}, 81 \%$ yield over 2 steps). $\mathbf{R f}=0.28$ (DCM/MeOH: 9/1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.36$ (m, 2H, H9), $7.36-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.28-7.23$ (m, 1H, H11), 6.80 (d, J = $2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 4.13 (s, 1H, H4), 4.04 (s, 2H, H7), $3.50-3.36$ (m, 2H, H5), $2.75-$ 2.65 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 6$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2$ (C8), 137.1 (C3), 129.3 (2*C9), 128.3 (2*C10), 12, 127.3 (C11), 63.8 (C7), 46.1 (C6), 41.5 (C5). HRMS (ESI) = Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 176.1188 \mathrm{Da}$, found 176.1186 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3262,1632,1350$.

Synthesis of (S)-1-benzyl-5-cyclohexyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ba

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $423 \mathrm{mg}(0.89 \mathrm{mmol})$ scale starting from Tert-butyl (S)-2-benzyl-2-(2-()tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7 ba with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12ba as a yellow oil ($120 \mathrm{mg}, 0.47 \mathrm{mmol}, 50 \%$ yield over 2 steps). $\mathbf{R f}=0.33$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.42$ - 7.37 (m, 2H, H9), $7.35-7.29$ (m, 2H, H10), 7.28
$-7.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 11), 6.81(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 4.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 4.04(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7), 3.25-$ 3.15 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 5$), 2.68 (dd, $J=3.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$), 2.49 (dd, $J=5.8,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$), $1.85-1.50$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 14$ and H13), $1.47-1.31$ (m, 1H, H12), $1.31-1.03$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H} 14$ ' and H13'), 0.89 (dqd, J=3.5, 12.3, $24.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 15$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.4$ (C8), 137.0 (C3), 129.2 (2*C9), 128.3 (2*C10), 127.2 (C11), 63.7 (C7), 56.4 (C5), 49.4 (C6), 42.0 (C12), 29.1 (C15), 28.9 (C13 or C14), 26.5 (C13 or C14), 26.1 (C13' or C14'), 26.0 (C13' or C14'). HRMS (ESI) $=$ Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 258.1970 Da, found 258.1964 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=2923,1633,1448,729 .{ }_{D}^{\left[{ }^{25}\right.}\left({ }^{\circ} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~cm}^{3}\right)=$ +27.0 (c = 0.5357, CHCl_{3}).

Synthesis of 1-benzyl-5-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ca

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on 1 g (2.1 mmol) scale starting from Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-2-phenylethyl)hydrazine-1-carboxylate $\mathbf{7 c a}$ with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford $\mathbf{1 2 c a}$ as a light brown solid ($\mathrm{mp}=83^{\circ} \mathrm{C}$) ($279 \mathrm{mg}, 1.1 \mathrm{mmol}, 52 \%$ yield over 2 steps). $\mathbf{R f}=0.56$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42$ - 7.18 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{H} 9, \mathrm{H} 10, \mathrm{H} 11, \mathrm{H} 13, \mathrm{H} 14$ and H15), 6.99 (d, J=3.1 Hz, 1H, H3), 4.66 (dd, J = 4.0, 6.9 Hz, 1H, H5), 4.57 (s, 1H, H4), 4.17 (d, J = $13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$), 3.96 (d, $\left.J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right), 3.04(\mathrm{dd}, J=4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 2.51\left(\mathrm{dd}, J=6.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6\right.$ '). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.3$ (C12), 137.9 (C8), 137.0 (C3), 129.1 (2*C9), 128.7 (2*C14), 128.3 (2*C10), 128.1 (C11), 127.2 (C15), 126.7 (2*C13), 63.3 (C7), 55.4 (C5), 54.3 (C6). HRMS (ASAP) = Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 252.1501 \mathrm{Da}$, found 252.1505. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3219,3023,2817,2360,1629,1490$.

Synthesis of (S)-1-benzyl-5-isopropyl-1,4,5,6-tetrahydro-1,2,4-triazine 12da

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $920 \mathrm{mg}(2.1 \mathrm{mmol})$ scale starting from Tert-butyl (S)-2-benzyl-2-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)hydrazine-1-carboxylate 7 da with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12da as a light-yellow solid ($\mathrm{mp}=47^{\circ} \mathrm{C}$) ($322 \mathrm{mg}, 1.48 \mathrm{mmol}, 70 \%$ yield over 2 steps). $\mathbf{R f}=0.46$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}$, H10), 7.31 - 7.22 (m, 1H, H11), 6.82 (s, 1H, H3), 4.39 (s, 1H, H4), 4.05 (dd, J = $3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$), 3.21 3.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 5$), 2.69 (dd, $J=4.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$), 2.47 (dd, $J=5.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6$ '), 1.68 (qq, $J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 12$), 0.93 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 13$), 0.81 (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 13^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta 138.3$ (C8), 137.0 (C3), 129.1 (2*C9), 128.3 (2*C10), 127.1 (C11), 63.7 (C7), 57.2 (C5), 49.6 (C6), 32.2 (C12), 18.5 (C13), 18.4 (C13'). HRMS (ESI) $=$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 218.1657 \mathrm{Da}$, found 218.1666. IR (ATR) $\left.v\left(\mathrm{~cm}^{-1}\right)=3207,3024,2962,2835,1634,1450,1227.\right]_{D}^{25}\left({ }^{\circ} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~cm}^{3}\right)=+12.2$ (c $\left.=0.5424, \mathrm{CHCl}_{3}\right)$.

Synthesis of 7-benzyl-4,6,7-triazaspiro[2.5]oct-5-ene 12ea

$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3}$
MW: 201,3 g. mol^{-1}

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $450 \mathrm{mg}(1.1 \mathrm{mmol})$ scale starting from Tert-butyl 2-benzyl-2-((1-()tert-butoxycarbonyl)amino)cyclopropyl)methyl)hydrazine-1-carboxylate 7ea with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure
reagent to afford 12ea as a brown oil ($84 \mathrm{mg}, 0.42 \mathrm{mmol}, 39 \%$ yield over 3 steps). $\mathbf{R f}=0.42$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.29$ $-7.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 11), 6.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 4.11$ (s, 2H, H7), 2.48 (s, 2H, H6), $0.80-0.67$ (m, 2H, H12 and H 13), $0.69-0.54\left(\mathrm{~m}, 2 \mathrm{H}, 12 \mathrm{and} 13^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9$ (C8), 137.3 (C3), 129.1 (2*C10), 128.4 (2*C9), 127.3 (C11), 63.3 (C7), 53.7 (C6), 36.2 (C5), 13.6 (C12), 13.6 (C13). HRMS (ASAP) = Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 202.1344 \mathrm{Da}$, found 202.1349. IR (ATR) $\vee\left(\mathrm{cm}^{-1}\right)=3241$, 2922, 2826, 2361, 1627, 1353.

Synthesis of 2-benzyl-1,2,6,7,8,8a-hexahydropyrrolo[1,2-d][1,2,4]triazine 12fa

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3}$
MW: $215,3 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $1 \mathrm{~g} \quad(2.3 \mathrm{mmol})$ scale starting from Tert-butyl (R)-2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)pyrrolidine-1-carboxylate 7 fa with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12fa as a yellow oil ($223 \mathrm{mg}, 1.0 \mathrm{mmol}, 45 \%$ yield over 2 steps). $\mathbf{R f}=0.69$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.33-7.23(\mathrm{~m}, 1 \mathrm{H}$, H11), 6.88 (d, J=1.1 Hz, 1H, H3), 4.34 (d, J=13.3 Hz, 1H, H7), 3.85 (d, J=13.3 Hz, 1H, 7'), 3.62 (tdd, $J=4.5,6.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 3.44 (ddd, $J=4.5,7.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 14$), $3.27-3.23$ (m, 1H, H6), $3.24-$ 3.16 (m, 1H, H14'), 1.96 (dtd, J = 3.9, 6.3, $12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 12$), $1.90-1.81$ (m, 1H, H13), $1.85-1.73$ (m, $\left.1 \mathrm{H}, \mathrm{H} 13^{\prime}\right), 1.66$ ($\mathrm{dd}, \mathrm{J}=9.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime}$), $1.51-1.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 12^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 139.9 (C3), 138.3 (C8), 129.3 (2*C9), 128.3 (2*C10), 127.2 (C11), 63.3 (C7), 57.4 (C5), 51.9 (C6), 49.6 (C14), 30.1 (C12), 24.2 (C13). HRMS (ASAP) $=$ Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 216.1501 \mathrm{Da}$, found 216.1509. IR (ATR) $\left.v\left(\mathrm{~cm}^{-1}\right)=3371,3028,2966,1687,1614,1392.\right]_{D}^{25} \quad\left({ }^{\circ} \cdot \mathrm{dm}^{-1} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~cm}^{3}\right)=$ -11.4 (c = 0.6780, CHCl_{3})

Synthesis of 2-benzyl-1,6,7,8,9,9a-hexahydro-2H-pyrido[1,2-d][1,2,4]triazine 12ga

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $800 \mathrm{mg}(1.7 \mathrm{mmol})$ scale starting from Tert-butyl 2-((1-benzyl-2-(tert-butoxycarbonyl)hydrazineyl)methyl)piperidine-1-carboxylate 7 ga with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12ga as a colourless oil ($267 \mathrm{mg}, 1.2 \mathrm{mmol}, 68 \%$ yield over 2 steps). $\mathbf{R f}=0.66$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.30$ (dd, J = 6.8, $8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 10$), $7.27-$ 7.19 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 11$), 6.49 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$), 4.11 ($\mathrm{d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7$), 3.83 ($\left.\mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{Z}^{\prime}\right), 3.29$ (tt, $J=3.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$), 3.23 (ddd, $J=2.0,4.3,13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 15$), $2.96-2.93$ (m, 1H, H6), $2.93-$ 2.88 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 15^{\prime}$), 2.38 (dd, $\left.J=7.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6^{\prime}\right), 1.83-1.74$ (m, 1H, H13), $1.64-1.55$ (m, 1H, H14), 1.51 (dt, J = 2.0, 3.6, 15.2 Hz, 1H, H12), $1.45-1.35$ (m, 1H, H14'), $1.35-1.27$ (m, 1H, H13'), 1.20 (dt, J = 3.6, 12.6 Hz, 1H, H12'). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.8$ (C3), 138.1 (C8), 129.1 (2*C9), 128.3 (2*C10), 127.1 (C11), 63.5 (C7), 53.5 (C6), 53.1 (C5), 48.6 (C15), 29.5 (C12), 25.7 (C14), 23.4 (C13). HRMS (ASAP) $=$ Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 230.1657 \mathrm{Da}$, found 230.1660. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=$ 3379, 3028, 2932, 2821, 1623.

Synthesis of 1-benzyl-3-methyl-1,4,5,6-tetrahydro-1,2,4-triazine 13aa

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $600 \mathrm{mg}(1.64 \mathrm{mmol})$ scale starting from Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)ethyl)hydrazine-1-carboxylate 7 aa with $\mathrm{MeC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 13aa as a brown solid ($290 \mathrm{mg}, 1.53 \mathrm{mmol}, 93$ \% yield over two steps). $\mathbf{R f}=0.19$ (DCM/MeOH:

9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.33-7.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 10$ and H 11), 4.46 (s, $1 \mathrm{H}, \mathrm{NH}$), $4.03(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 7), 3.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6), 1.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 12) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 144.7$ (C3), 138.1 (C8), 129.2 (2*C9), 128.2 (2*C10), 127.2 (C11), 63.9 (C7), 45.2 (C6), 41.4 (C5), 20.2 (C12). HRMS (ESI) = Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 190.1344 \mathrm{Da}$, found 190.1341Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3183,3028,2925,2825,1633,1553,1389,698 . \mathbf{M P}=82^{\circ} \mathrm{C}$

Synthesis of 1-benzyl-3-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 14aa

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on $150 \mathrm{mg}(0.41 \mathrm{mmol})$ scale starting from Tert-butyl 2-benzyl-2-(2-((tert-butoxycarbonyl)amino)ethyl)hydrazine-1-carboxylate 7aa with $\mathrm{PhC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 14aa as a brown oil ($75 \mathrm{mg}, 0.30 \mathrm{mmol}, 73$ \% yield over two steps). $\mathbf{R f}=0.58$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 13), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H} 10$, H11, H14 and H15), $4.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.22(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 7), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.0$ (C3), 138.0 (C8), 135.3 (C12), 129.5 (C9), 129.0 (Car), 128.4 (Car), 128.2 (Car), 127.2 (Car), 125.5 (C13), 63.9 (C7), 45.1 (C6), 41.7 (C5). HRMS (ESI) = Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 252.1501 \mathrm{Da}$, found 252.1506 Da . IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3276,3059,3026,2924,2878,1609$, 1516, 1482, 1349, 692.

General procedure for the bis-Boc deprotection and the methylamidrazone ring closure reaction

Conditions A

To a solution of $7 \mathbf{a b}$ (1 eq.) in DCM (0.4 M) was added trifluoroacetic acid (10 eq.). The reaction mixture was stirred at reflux until full deprotection of the $\mathrm{SM}\left({ }^{1} \mathrm{H}\right.$ NMR monitoring in $\mathrm{CD}_{3} \mathrm{OD}$). The reaction mixture was then concentrated under reduced pressure to afford the bistrifluoroacetate salt product 11ab used in the next step without purification and stored carefully under argon atmosphere in the freezer.

To a solution of the diamine bistrifluoroacetate salt 11ab (1 eq.) in anhydrous $\mathrm{MeOH}(0.5 \mathrm{M}$), was added the ring closure reagent (3 eq.) at RT. The reaction mixture was stirred 1 h at reflux or $65^{\circ} \mathrm{C}$ in case of sealed vial. The reaction mixture was cooled down at RT and concentrated under reduced pressure to give a residue. MeOH (0.5 M) and $\mathrm{HCl}(2 \mathrm{M}$ in dioxane) (5 eq.) were added to the residue and stirred for 30 min . The mixture was then concentrated under reduced pressure. The residue was again diluted in $\mathrm{MeOH}(0.5 \mathrm{M})$ and solid NaHCO_{3} (5 eq .) was added. The suspension was stirred for 30 min , then filtered and concentrated under reduced pressure. The crude material was purified using a puriflash device with the eluent DCM/DCM-MeOH (9/1), to afford the corresponding cyclic methylamidrazones 12ab-14ab.

Synthesis of 1-methyl-1,4,5,6-tetrahydro-1,2,4-triazine 12ab

MW: 99,1 g.mol ${ }^{-1}$

General procedure for the bis-Boc deprotection and the methylamidrazone ring closure was applied on 200 mg (0.69 mmol) scale starting from Tert-butyl 2-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methylhydrazine-1-carboxylate 7ab with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12ab as a brown oil ($53 \mathrm{mg}, 0.53 \mathrm{mmol}, 78$ \% yield over two steps). $\mathbf{R f}=0.14$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H} \mathbf{N M R}(400 \mathrm{MHz}$, CDCl_{3}) $\delta 6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 4.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.50-3.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.78-2.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6), 2.71(\mathrm{~s}$,

3H, H7). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.8$ (C3), 49.0 (C6), 46.9 (C7), 41.0 (C5). HRMS (ASAP) = Calcd for $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 100.0875 \mathrm{Da}$, found 100.0879 Da . IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3231,2952,2930,1630$, 1352, 725.

Synthesis of 1,3-dimethyl-1,4,5,6-tetrahydro-1,2,4-triazine 13ab

General procedure for the bis-Boc deprotection and the methylamidrazone ring closure was applied on 200 mg (0.69 mmol) scale starting from Tert-butyl 2-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methylhydrazine-1-carboxylate 7ab with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 13ab as a brown solid ($65 \mathrm{mg}, 0.57 \mathrm{mmol}, 83$ \% yield over two steps). $\mathbf{R f}=0.08$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) $\delta 9,81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.49-3.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 3.97-2.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6), 2.75(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 7), 2.35(\mathrm{~s}$, 3H, H8). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2$ (C3), 47.7 (C6), 45.0 (C7), 36.2 (C5), 16.8 (C8). HRMS (ASAP) = Calcd for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 114.1031 \mathrm{Da}$, found 114.1027 Da. IR (ATR) $\vee\left(\mathrm{cm}^{-1}\right)=3251,3048$, 2962, 2830, 1666, 1622, 1448, 784. MP = $117^{\circ} \mathrm{C}$

Synthesis of 1-methyl-3-phenyl-1,4,5,6-tetrahydro-1,2,4-triazine 14ab

General procedure for the bis-Boc deprotection and the methylamidrazone ring closure was applied on 200 mg (0.69 mmol) scale starting from Tert-butyl 2-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methylhydrazine-1-carboxylate $\mathbf{7 a b}$ with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford $\mathbf{1 4 a b}$ as a brown solid ($93 \mathrm{mg}, 0.53 \mathrm{mmol}, 77$ \% yield over two steps). $\mathbf{R f}=0.47$ (DCM/MeOH: 9/1). ${ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.84-7.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 11), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10)$, $3.54-3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.96-2.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6), 2.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 7) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0$
(C3), 132.3 (C11), 128.8 (2*C10), 127.9 (C8), 127.5 (2*C9), 47.9 (C6), 45.5 (C7), 36.6 (C5). HRMS (ASAP) = Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 176.1188 \mathrm{Da}$, found 176.1183 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=3074,2847$, $2776,1625,1573,1442,775,687 . \operatorname{MP}=130^{\circ} \mathrm{C}$

Synthesis of 1-benzyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 12ia

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on 2 g scale (5.1 mmol) starting from Tert-butyl 2-benzyl-2-(3-((tert-butoxycarbonyl)amino)propyl)hydrazine-1-carboxylate 7ia with $\mathrm{HC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 12ia as a white solid ($200 \mathrm{mg}, 1.0 \mathrm{mmol}, 20 \%$ yield over 2 steps). $\mathbf{R f}=0.25$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 11), 7.27-7.17(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H} 12), 6.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 4.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 4.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 8), 3.13-3.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.77-2.73(\mathrm{~m}, 2 \mathrm{H}$, H 7), 1.78 - 1.71 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 6$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3$ (C9), 138.1 (C3), 129.0 (2*C10), 128.3 (2*C11), 127.0 (C12), 65.6 (C8), 55.4 (C7), 44.3 (C5), 29.8 (C6). HRMS (ESI) = Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 190.1344 \mathrm{Da}$, found 190.1343 Da . IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=2930,1660$.

Synthesis of 1-benzyl-3-methyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 13ia

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on 300 mg scale (0.74 mmol) starting from Tert-butyl 2-benzyl-2-(3-((tert-butoxycarbonyl)amino)propyl)hydrazine-1-carboxylate 7 ia with $\mathrm{MeC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 13ia as a colourless oil ($75 \mathrm{mg}, 0.37 \mathrm{mmol}, 50 \%$ yield over 2 steps). $\mathbf{R f}=0.51$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 10, \mathrm{H} 11$ and H 12$), 5.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 4), 3.66(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 8)$,
3.21 (td, $J=5.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 2.66(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$), 1.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 13$), 1.53 (tt, J = 6.7, 6.7 Hz , 2H, H6). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0$ (C3), 138.4 (C9), 129.9 (2*C10), 128.3 (2*C11), 127.2 (C12), 55.8 (C7), 53.5 (C8), 38.2 (C5), 27.3 (C6), 15.7 (C13). HRMS (ASAP) = Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 204.1501 Da, found 204.1494 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)=1646,1553,1277$.

Synthesis of 1-benzyl-3-phenyl-4,5,6,7-tetrahydro-1H-1,2,4-triazepine 14ia

General procedure for the bis-Boc deprotection and the benzylamidrazone ring closure was applied on 350 mg scale (0.86 mmol) starting from Tert-butyl 2-benzyl-2-(3-((tert-butoxycarbonyl)amino)propyl)hydrazine-1-carboxylate $7 \mathbf{i a}$ with $\mathrm{PhC}(\mathrm{OMe})_{3}$ as ring closure reagent to afford 14ia as an orange oil ($20 \mathrm{mg}, 0.07 \mathrm{mmol}, 9 \%$ yield over 2 steps). $\mathbf{R f}=0.31$ (DCM/MeOH: 9/1). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 14), 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.38-7.24(\mathrm{~m}, 6 \mathrm{H}$, H11, H12, H15 and H16), 4.23 (s, 2H, H8), $3.54-3.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 2.96(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$), $2.01-$ 1.87 (m, 2H, H6). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 152.6 (C3), 139.1 (C9), 135.7 (C13), 130.2 (C16), 129.2 (2*C10), 128.6 (2*C11), 128.3 (2*C15), 127.5 (2*C14), 127.1 (C12), 64.9 (C8), 54.6 (C7), 44.4 (C5), 29.1 (C6). HRMS (ASAP) $=$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 266.1657 \mathrm{Da}$, found 266.1660 Da. IR (ATR) $v\left(\mathrm{~cm}^{-1}\right)$ = 2933, 1603.

Spectroscopy data and NMR spectra

Single Mass Analysis $\quad \min =-1.0, \max =1000.0$
Tolerance $=5.0$ PPM
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
$\begin{array}{lllll}\text { Elements Used: } & & & \\ \mathrm{C}: 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-7 & \mathrm{O}: 0-5 & \mathrm{Na}: 1-1\end{array}$

[^0]

$9 \boldsymbol{q}^{\bullet}$ โ——
を9ำ—
26° 2-
$70 \cdot 9=$

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-10.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
150 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{lllll}\text { C: } 0-100 & \text { H: } 0-200 & \text { N: 0-5 } & \text { O: 0-5 } & \mathrm{Na}: ~ 1-1\end{array}$
MB-234F1 (DCM) - MeOH/H2O (95/5\%)
20230412_XX_MB234F1_01 57 (0.597) Cm ($57: 60$)

Minimum:			-10.0
Maximum:	30.0	5.0	1000.0

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf (8) Formula

$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$
MW: 146,2 g. mol^{-1}
6b

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
463 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llll}\text { C: } 0-90 & \text { H: 0-110 } & \text { N: 0-10 } & \text { O: } 0-10\end{array}$
JOL-216-3 (Solide)
${ }^{180}$ 有 $3349.3636 \quad 351.3647 \quad 353.3788355 .0690 \quad 356.2266$

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 4
Monoisotopic Mass, Even Electron lons
Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \text { H: } 0-100 & \text { N: } 0-10 & \text { O: } 0-15\end{array}$
JOL-246-3 (DCM) - MeOH (100\%)
JOL-246-3 (DCM) - MeOH (100\%)
20191127 _JOL-246-3_01 86 (0.46
XEVO G2-XS QTOF

 $\begin{array}{lllllllllllllllll}445.50 & 446.00 & 446.50 & 447.00 & 447.50 & 448.00 & 448.50 & 449.00 & 449.50 & 450.00 & 450.50\end{array}$ -1.0
1000.0
aga
n ?
-FIT Norm Conf(8) Formula

C 25
C 26 H 38
N 7

Wad
3.6
0.4
30.0

Calc. Mass mDa
Minimum:
Maximum:
Mass
448.3191

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Element prediction: Off
Number of isotope peaks used for i -FIT $=4$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron
510 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
Elements Used:
C. 2-132 H:
CVG-80-3 (DCM) - MeOH (100\%) \quad O: 0-10
20210707_XX_CVG803_01A 44 (0.463) Cm (44:48)
XEVO G2-XS QTOF

000.0

Single Mass Analysis
Tolerance =5.0 PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
Monoisotopic Mass, Even Electron lons
188 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llll}\text { Elements Used: } \\ \text { C: 2-126 } & \text { H: 0-200 } & \text { N: 0-3 } & \text { O: 0-5 }\end{array}$
CVG-59-3 (Solide)
20210611_XX_CVG593_01 57 (0.597) Cm (57:66)
1: TOF MS ASAP+ $\begin{array}{r}\text { 11-Jun-2021 } \\ \hline\end{array}$

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-10.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
400 formula(e) evaluated with 1 results within limits (up to 5 best isotopic matches for each mass)
$\begin{array}{llll}\text { C: } 0-46 & \text { H: } 0-100 & \mathrm{~N}: 0-5 & \text { O: } 0-11\end{array}$
CVG-88-2 (DCM) - MeOH (100\%)
20210824 XX CVG882_0165 (0
20210824_XX_CVG882_01 65 (0.677) Cm (59:65)

[^1]Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-20.0, \max =1000.0$
Element prediction: Off
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
188 formula(e) evaluated with 1 results
Elements Used:
CVG-60-3 (Solide)
CVG-60-3 (Solide)
20210611_XX_CVG603_01 41 (0.437) Cm (40:4
$412.0 \quad 413.0 \quad 414.0$

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for $\mathrm{i}-\mathrm{FIT}=4$
Monoisotopic Mass, Even Electron lons
806 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass)
806 formula(e) evaluated with 2 results within
Elements Used:

$\begin{array}{llll}\text { C: 2-132 } & \text { H: 0-210 } & \text { N: 0-5 } & \text { O: 0-20 }\end{array}$
07-Jul-2021
1: TOF MS ES +
 $\begin{array}{lllllll}412.0 & 414.0 & 416.0 & 418.0 & 420.0 & 422.0 & 424.0\end{array}$
-20.0
1000.0
Conf($\%$) Formula
$\begin{array}{lllllllllll}420.2862 & -0.7 & -1.7 & 6.5 & 176.9 & 0.373 & 68.86 & \text { C23 H38 N3 O4 } \\ 420.2867 & -1.2 & -2.9 & -11.5 & 177.7 & 1.167 & 31.14 & \text { C10 H46 N O15 }\end{array}$
Minimum:
Maximum:
$30.0 \quad 5.0$
mDa PPM
806 formula(e) evaluated with 2 results within
Elements Used:
$\begin{array}{llll}\text { C: } 2-132 & \text { H: } 0-210 & \mathrm{~N}: 0-5 & \mathrm{O}: 0-20 \\ \text { CVG-81-3 (DCM) - MeOH }(100 \%)\end{array}$
CVG-81-3 (DCM) - MeOH (100\%)
20210707_XX_CVG813_01 57 (0.597) Cm (54:78-2:20x5.000)
XEVO G2-XS QTOF
DBE
$\stackrel{-1}{1}$
Element prediction: Off
isotope peaks
20210707_XX_CVGB_O1
412.0
Calc. Mass
Maximum:
420.2855

[^2]7ha
Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
338 formula(e) evaluated with 1 results w
Elements Used:
$\begin{array}{llll}\text { C: } 2-126 & \text { H: } 0-200 & \text { N: 0-6 } & \text { O: } 0-5\end{array}$

CVG-65-3 (DCM) - MeOH (100\%)
CVG-65-3 (DCM) - MeOH (100\%)
20210615_XX_CVG653_01 57 (0.597) Cm (50:62)
XEVO G2-XS QTOF
$\angle 00+\partial \angle Z L$
$+S \exists \mathrm{SW}=101: 1$
เZOZ-un - -Sl

 $\begin{array}{lllllllllll}428.0 & 429.0 & 430.0 & 431.0 & 432.0 & 433.0 & 434.0 & 435.0 & 436.0 & 437.0\end{array}$ $\begin{array}{llll}\text { Minimum: } & & & -20.0 \\ \text { Maximum: } & 30.0 & 5.0 & 1000.0\end{array}$

Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$436.2804 \quad 436.2811 \quad-0.7 \quad-1.6 \quad 6.5 \quad 2176.8 \quad \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C23 H38 N3 05

Elemental Composition Report
Single Mass Analysis
Element prediction: Off
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
295 formula(e) evaluated with 1 results w
Lebed

[^3]

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
364 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used:

$\begin{array}{llll}\mathrm{C}: 0-106 & \mathrm{H}: 0-110 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-12\end{array}$
JOL-237-3 (DCM) - MeOH (100\%)
20191113_JOL-237-3_01 49 (0.517) Cm (47:49)
XEVO G2-XS QTOF
-FIT Norm Conf(\%) Formula
C20 H34 N3 O4
1263.4 n/a n/a
-1.0
Calc. Mass mDa PPM DBE
Cale. 0.7 -1.
Minimum:
Mass
380.2542

Single Mass Analysis Tolerance $=5.0 \mathrm{PPM}$
Element prediction: Off
Number of isotope peaks used for i -FIT $=4$
Monoisotopic Mass, Even Electron Ions
151 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llll}\text { Elements Used: } & & \\ \begin{array}{llll}\text { C: 0-92 H: 0-100 } & \text { N: 0-10 } & \text { O: 0-10 } \\ \text { JOL-75-3 (Solide) } & & \\ \text { 20190416_JOL-75-3_01 } & 16(0.177) & \text { Cm (12:21) }\end{array}\end{array}$
20190416_JOL-75-3_01 16 (0.177) Cm (12:21)

$\angle 00+ə Z \mathcal{S}^{2} \varepsilon$
$+d \forall S \forall S W=101: 1$
$610 Z-d d \forall-91$

$\begin{array}{lllll} & 5.5 & 3077.3 \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad \text { C10 H14 N3 }\end{array}$
Minimum:
Maximum:
Mass

Single Mass Analysis
Tolerance $=5.0$ PPM $/ \mathrm{DBE}: \min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
250 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
Elements Used:
C: $0-123$ H: $0-1$
JOL-249-3 (DCM) - MeOH (100\%)
XEVO G2-XS QTOF

900+əSG<L
+Sヨ SW JO1:
OZOZ-uer-90

$\begin{array}{lllllllll}660.0 & 261.0 & 262.0 & 263.0 & 264.0 & 265.0 & 266.0 & 267.0\end{array}$

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM} / \mathrm{DBE}: \min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
404 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
:pas \cap sұuamalヨ
$\begin{array}{llll}\text { C: 0-132 } & \mathrm{H}: 0-210 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-10\end{array}$

100-32 $222.0443 \quad 226.8362 \quad 233.7214 \quad 243.7155$

$252.1505 \quad 252.1501 \quad 0.4 \quad 1.6 \quad 9.5 \quad 424.0 \quad n / a \quad n / a \quad$ C16 H18 N3

	$\%_{8}^{\circ}$	

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peak
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
95 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\left.\begin{array}{l}\text { C. } 2-126 \quad \text { H: }\end{array}\right]$
$\begin{array}{llll}\text { C: 2-126 } & \text { H: 0-200 } & \text { N: 0-3 } & \text { O: 0-3 } \\ \text { CVG-63-3 (Solide) }\end{array}$
20210611_XX_CVG633_01 33 (0.357) Cm (28:34)

z/u
Conf(8) Formula
$\begin{array}{llllllllllll}218.1666 & 218.1657 & 0.9 & 4.1 & 5.5 & 1589.5 & n / a & n / a & \text { C13 } & \text { H2O N3 }\end{array}$
$215.00 \quad 216.00 \quad 1 \quad 217.00 \quad 1 \begin{array}{lll} & 218.00\end{array}$
-20.0
जga

$\stackrel{180}{8}$
Minimum:
Mass

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
311 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
311 formula(e) evalualed
Elements Used:
CV: 0-100 H: 0-200 N: 0-11 O: 0-5
20210719_XX_CVG903_01A 64 (0.657) Cm (64:72)
XEVO G2-XS QTOF

 0.
ㅇ․․
No
Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(\%) Formula
$202.1349 \quad 202.1344 \quad 0.5 \quad 2.5 \quad 6.5 \quad 1073.6 \quad \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad \mathrm{C} 12 \mathrm{H} 16$ N3

$=86^{\circ} \mathrm{I}$
2.5
3.0
3.5
4.0
$\underset{\sim}{n}$
5.0
$\mathrm{s} \cdot \mathrm{s}$
6.0
6.5

萑
7.5

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-20.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
93 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
C: $2-126$ H: 0-
$\begin{array}{llll}C: ~ 2-126 & H: ~ 0-200 & \text { N: 0-3 } & \mathrm{O}: 0-3\end{array}$
20210611_XX_CVG643_01 9 (0.117) Cm (9:16)
-

でCZZI
$\varepsilon \varepsilon \% 8 Z I-$
घ ${ }^{\prime} 82 \mathrm{I}$
$9 Z^{\prime} 6 Z \mathrm{I}$

てを8\＆I－

Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: min $=-20.0, \max =1000.0$
Element prediction: Off
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
373 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llll}\text { Elements Used: } & & \\ \begin{array}{llll}\text { C: } 0-132 & \text { H: } 0-210 & \text { N: 0-6 } & \text { O: } 0-10 \\ \text { CVG-85-3 (Solide) } & & \\ \text { 20210713 XX CVG853 } & 01 & 30(0.320) & \text { Cm (29:4 }\end{array}\end{array}$
20210713_XX_CVG853_01 30 (0.320) Cm (29:44)

1: TOF MS ASAP $+\begin{array}{r}\text { 13-Jul-2021 }\end{array}$
$\angle 00+ə Z Z ゙ \varepsilon$
$+d \forall S \forall S W ~$
0

\qquad
373 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
XEVO G2-XS QTOF
$\begin{array}{lllllllll}\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\ 230.1660 & 230.1657 & 0.3 & 1.3 & 6.5 & 2824.7 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C14 H2O N3 }\end{array}$
$\begin{array}{lllllllll}\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\ 230.1660 & 230.1657 & 0.3 & 1.3 & 6.5 & 2824.7 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C14 H20 N3 }\end{array}$
$\begin{array}{lllllllll}\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\ 230.1660 & 230.1657 & 0.3 & 1.3 & 6.5 & 2824.7 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C14 H20 N3 }\end{array}$
232.0
$234.0 \quad 236.0$
1003
Minimum:
Maximum:
230.1660

13aa

Elemental Composition Report
Single Mass Analysis
Tolerance $=5.0$ PPM // DBE: $\min =-10.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for $\mathrm{i}-\mathrm{FIT}=4$
Single Mass Analysis
Tolerance $=5.0$ PPM / DBE: $\min =-10.0, \max =1000.0$
Element prediction: Off
Number of isotope peaks used for $i-F I T=4$
Monoisotopic Mass, Even Electron lons
698 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llllll}\text { C: } 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-4 & \mathrm{O}: 0-10 & \mathrm{~S}: 0-2 & \mathrm{Na}: 0-1\end{array}$

$$
2-1
$$

MB-203F1 (DCM) - MeOH/H2O (95/5\%)
20230411_XX_MB203F1_01 $41(0.437) \mathrm{Cm}$
20230411_XX_MB203F1_01 41 (0.437) Cm (37:42)
100 0 年 $180.1266 \quad 182.1910 \quad 185.1147$
$\begin{array}{lllll}180.0 & 182.0 & 184.0 & 186.0\end{array}$ Minimum:
Maximum:
$190.1341 \quad 190.1344 \quad-0.3 \quad-1.6 \quad 5.5 \quad 2087.4 \quad n / a \quad n / a \quad$ C11 H16 N3
-
(

Elemental Composition Report

l obed

[^4]
14aa

14aa

ह. $\varepsilon 9$

Elemental Composition Report
Single Mass Analysis \quad. $\min =-10.0, \max =1000.0$
Element prediction: Off i-FIT $=4$
Monoisotopic Mass, Even Electron lons
20 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{llll}\text { Elements Used: } & \mathrm{N}: 0-5\end{array}$
MB-232F1 (Solide)
20230215 XX_MB232F1_02 175 (1.769) Cm (165:182)
XEVO G2-xs QTOF

$\begin{array}{llll}120.0 & 125.0\end{array}$

$7 \mathrm{Me}-\underbrace{\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}_{3}}_{6}$

∞
$\mathrm{MW}: 113,2 \mathrm{Me}_{5} \mathrm{CmOl}^{-1}$
Page 1

Elemental Composition Report

Single Mass Analysis \quad. $\sin =-10.0, \max =1000.0$
Tolerance $=5.0$ PPM
Element prediction: Off
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
148 formula(e) evaluated
Elements Used:
$\begin{array}{llll}\text { C: } 0-100 \quad H: ~ 0-200 & \text { N: 0-6 } & \text { O: 0-5 }\end{array}$
MB-244F1 (Solide)
20230227_XX_MB244F1_01 54 (0.560) Cm (48:54)

$\begin{array}{llllllllll}176.1183 & 176.1188 & -0.5 & -2.8 & 5.5 & 1921.2 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C10 H14 N3 }\end{array}$

Single Mass Analysis
Tolerance $=5.0 \mathrm{PPM}$ DBE: $\min =-1.0, \max =1000.0$
Element prediction: Of
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron Ions
136 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
$\begin{array}{ll}\text { C. } 0-106 & \text { H: } 0\end{array}$
$\begin{array}{llll}\text { C: 0-106 } & \mathrm{H}: 0-110 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-12\end{array}$
JOL-243-4 (DCM) - MeOH (100%)
20191113_JOL-243-4_01 35 (0.205) Cm (21:51)
XEVO G2-XS QTOF

[^5]
-
Single Mass Analysis
Tolerance =5.0 PPM / DBE: $\min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope peak
Number of isotope peaks used for i-FIT $=4$
Monoisotopic Mass, Even Electron lons
155 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:

$\begin{array}{llll}\text { C: 0-100 } & \text { H: 0-200 } & \text { N: 0-6 } & \text { O: 0-12 }\end{array}$
$\begin{array}{llll}\text { C: 0-100 } & \mathrm{H}: 0-200 & \mathrm{~N}: 0-6 & \mathrm{O}: ~ 0-12\end{array}$

O
$\begin{array}{llllllllllllllllllll} & 203.0 & 204.0 & 205.0 & 206.0 & 207.0 & 208.0 & 209.0 & 210.0 & 211.0 & 212.0 & 213.0 & 214.0 \\ -1.0 & & & & & & & & & & & & & & & & & & & \end{array}$
-1.0
1000.0
$\begin{array}{lllllllll}\text { Mass } & \text { Calc. Mass } & \text { mDa } & \text { PPM } & \text { DBE } & \text { i-FIT } & \text { Norm } & \text { Conf(\%) Formula } \\ 204.1494 & 204.1501 & -0.7 & -3.4 & 5.5 & 3407.6 & \mathrm{n} / \mathrm{a} & \mathrm{n} / \mathrm{a} & \text { C12 H18 N3 }\end{array}$ Minimum:
Maximum:
204.1494

Single Mass Analysis
Tolerance =5.0 PPM / DBE: $\min =-1.0, \max =1000.0$
Element prediction: Off
Number of isotope pea
Number of isotope peaks used for i-FIT = 4
Monoisotopic Mass, Even Electron lons
236 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)
Elements Used:
Elements Used:
C: $0-100 \quad$ H: $0-2$

[^0]: JOL-191-3 (DCM) - MeOH (100\%)
 20191002_JOL-191-3_01 11 (0.134) Cm (8:15)
 XEVO G2-XS QTOF $\quad \begin{aligned} & \text { 02-Oct-2019 } \\ & \text { 1:TOF MS ES }+\end{aligned}$
 -1.0
 1000.0

 Conf(\%) Formula
 $245.1257 \quad 245.1266 \quad-0.9 \quad-3.7 \quad 4.5 \quad 1620.4 \quad \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C12 H18 N2 O2 Na

[^1]: | $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4}$ |
 | :---: |
 | $405,5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ |

[^2]: $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5}$
 MW: 435,6 g.mol

[^3]: $\begin{array}{llll}\text { Elements } 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 0-8 & \mathrm{O}: 0-6\end{array}$
 MB-222F1 (Solide)
 20230130_XX_MB222F1_01 60 (0.623) Cm (53:61)
 290.2075
 $+d \forall S \forall S W-101: 1$
 عZOZ-uer-0
 zじ

 $295.0 \quad 296.0 \quad 297.0$

[^4]: $$
 \text { z/w } \frac{\downarrow \varepsilon S t \varepsilon 9 z}{\nu}
 $$

 Single Mass Analysis
 Tolerance $=5.0$ PPM / DBE: $\min =-10.0, \max =1000.0$ Tolerance = 5.0 PPM
 Element prediction: Off

 Element prediction: Off
 Number of isotope peaks used for i-FIT $=4$
 Monoisotopic Mass, Even Electron lons
 1108 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used:
 C: $0-100$
 H: 0-200

 MB-204F1 (DCM) - MeOH/H2O (95/5\%)
 20230411_XX_MB204F1_01 65 (0.677) Cm (62:65)
 ${ }^{100} 20247.4798 \quad 248.1166 \quad 249.1568 \quad 250.1348 \quad 251.1415 \quad 252.1506$

 웅 $260.0 \quad 261.0$
 $\begin{array}{ll}258.0 & 259.0\end{array}$
 257.0
 $\begin{array}{r}0.252 \\ \hline 28 . \angle S\end{array}$
 0.95
 $\begin{array}{lllll}1630.8 & 21.365 & 0.00 & \text { C11 H23 N3 S Na } \\ 1633.9 & 24.444 & 0.00 & \text { C4 H30 N O6 S2 }\end{array}$
 Element prediction: Off

[^5]: -1.0
 -FIT Norm Conf(\%) Formula
 $190.1344-0.1 \quad-0.5 \quad 5.5 \quad 2086.6 \mathrm{n} / \mathrm{a} \quad \mathrm{n} / \mathrm{a} \quad$ C11 H16 N3

 Minimum:
 Maximum:
 Mass
 190.1343

