Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Construction of 1,3,4-oxadiazolines bearing CF₃-quaternary

center via amino-assisting [3+2] cycloadditions

Yannan Zhu,^a Fang Bo,^b Xuying Wang,^a Qianxi Jiang,^a Qiuyun Li,^a Zhongfei Han,^a Yining Wang^{*a} and Gang Qi^{*a}

^a Faculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China

E-mail: yining.wang@ycit.cn, 445702119@qq.com

^b Yancheng Tongwei Solar Energy Co., Ltd, Yancheng 224000, China.

E-mail: <u>ycfangbo@163.com</u>

Table of Contents

1.	General information	
2.	References	S1
3.	General procedures	S1
4.	Characterization data	S2
5.	NMR spectra of products	
6.	X-ray crystal structure of 3ab	

1.General information

All the solvents and starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) were recorded on a Bruker AV 400 (400 MHz) spectrometer with CDCl₃ as solvent. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane as an internal reference. All shifts are reported in ppm as downfield from TMS as standard. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet). Coupling constants J are reported in Hz. HRMS were obtained on an VG ZAB-HS mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. Column chromatography was performed on silica gel 200-300 mesh. The *ortho*-amino trifluoroacetophenones 1^1 and hydrazonyl chlorides 2^2 were prepared according to the known methods.

2.References

1. (a) P. Czerwinski and M. Michalak, J. Org. Chem., 2017, **82**, 7980–7997; (b) Y. Sun, Y. Wei and M. Shi, Org. Chem. Front., 2017, **4**, 2392–2402.

2. L. K. B. Garve, M. Petzold, P. G. Jones, and D. B. Werz, Org. Lett., 2016, 18, 564-567.

3.General procedures

General procedure for the synthesis of 1,3,4-oxadiazolines 3

The *ortho*-amino trifluoroacetophenones **1** (0.30 mmol), K_2CO_3 (0.60 mmol, 2.0 equiv.) and CH_2Cl_2 (3.0 mL) were added to a 15 mL sealed tube at room temperature. Then hydrazonyl chlorides **2** (0.45 mmol, 1.5 equiv.) was added. This solution was stirred at 40 °C for 8 hours until the complete consumption of the starting materials **1** monitored by TLC. After the removal of the solvent, the residue was purified by flash column chromatography (petroleum ether: EtOAc = 5:1) on silica gel to afford 1,3,4-oxadiazolines **3**.

General procedure for the scale-up experiment

The ortho-amino trifluoroacetophenone derivatives **1a** (1.03 g, 3.0 mmol), K_2CO_3 (829 mg, 6.0 mmol, 2.0 equiv.) and CH_2Cl_2 (30 mL) were added to a 100 mL sealed tube at room temperature. Then hydrazonyl chloride **2a** (1.04 g, 4.5 mmol, 1.5 equiv.) was added. This solution was stirred at 40 °C for 8 hours until the complete consumption of the starting material **1a** monitored by TLC. After the removal of the solvent, the residue was purified by flash column chromatography (petroleum ether: EtOAc = 5:1) on silica gel to afford 1,3,4-oxadiazoline **3aa** (1.16 g, 72% yield).

General procedure for the MTT assay

CAL33 grown in logarithmic phase were taken, digested with trypsin to obtain cell suspensions, counted and adjusted to appropriate cell density. 200 μ L of cells per well were inoculated in 96-well plates and incubated at 37°C in a humidified 5% CO₂ atmosphere for 24 h. The different compounds were first dissolved in 100% DMSO at 100 mM and then diluted appropriately so that the final concentration of DMSO in cell culture did not exceed 0.1%. Then different compounds were added, all at a concentration of 50 μ M, and the corresponding volume of solvent (DMSO) was added to the control group. The incubation was then continued in an incubator at 37°C with 5% CO₂ for another 48h. Briefly, culture medium was added with 5mg/mL 3-(4,5-dimethylthyazol-2-yl)-2,5-diphenyltetrazolium bromide 20 μ L and incubated for 4 h at 37 °C. Absorbance was measured at 490 nm in a Varioskan Lux from Bio-Rad using the SkanIt TM software v.6.0 to determine the percentage of cell survival relative to the untreated controls. Cell viability was calculated using the specific application within GraphPath Prism v9.0.1. In addition, cell images for each condition were taken using a ZOE Fluorescent Cell Imager (Bio-Rad Laboratories, Inc., Spain) before the MTT assays.

4. Characterization data

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-methylbenzene sulfonamide (3aa)

Ph

White solid (121.0 mg, 75% yield, m.p. 104-106 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.86 (d, *J* = 7.6 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.58 – 7.40 (m, 4H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.23 – 7.07 (m, 3H), 7.02 – 6.92 (m, 3H), 6.86 (d, *J* = 8.0 Hz, 2H), 2.23 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 143.8, 140.5, 138.0, 136.3, 132.2, 131.7, 129.5, 129.0, 128.8, 127.1, 127.0, 124.1, 123.6, 123.4, 121.4, 120.1, 117.7, 98.8 (q, *J* = 29.7 Hz), 21.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.90 (s, 3F).

HRMS (ESI) m/z calcd for $C_{28}H_{23}F_3N_3O_3S$ ([M+H]⁺): 538.1407; found: 538.1403.

4-Methyl-N-(2-(3-phenyl-5-p-tolyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)be nzenesulfonamide (3ab)

Ph Ň-N F₂C NHTs

Me

White solid (139.0 mg, 84% yield, m.p. 127-129 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.61 (t, *J* = 7.8 Hz, 3H), 7.50 (dt, *J* = 8.2, 2.1 Hz, 1H), 7.30 (td, *J* = 8.4, 7.9, 1.4 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.06 – 6.96 (m, 3H), 6.85 (d, *J* = 7.4 Hz, 1H), 6.83 – 6.78 (m, 2H), 6.76 (d, *J* = 8.1 Hz, 2H), 2.31 (s, 3H), 2.12 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.9, 143.8, 142.2, 140.7, 138.0, 136.3, 132.1, 129.5, 129.5, 129.0,

127.2, 127.0, 124.0, 123.2, 121.3, 120.7, 120.2, 117.6, 98.7 (q, *J* = 29.8 Hz), 21.7, 21.5.

¹⁹F NMR (**376** MHz, CDCl₃) δ -73.93(s, 3F).

HRMS (ESI) m/z calcd for $C_{29}H_{25}F_3N_3O_3S$ ([M+H]⁺): 552.1563; found: 552.1560.

N-(2-(5-(4-methoxyphenyl)-3-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl) -4-methylbenzenesulfonamide (3ac)

White solid (115.8 mg, 68% yield, m.p. 138-141 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.72 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 1H), 7.38 – 7.24 (m, 3H), 7.10 – 6.99 (m, 3H), 6.92 – 6.83 (m, 5H), 6.80 (d, *J* = 8.0 Hz, 2H), 3.75 (s, 3H), 2.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.3, 152.6, 142.7, 139.7, 136.9, 135.3, 131.0, 128.4, 127.8, 127.7, 126.1, 122.8, 122.0, 120.1, 119.1, 116.5, 114.8, 113.2, 97.5 (q, *J* = 29.7 Hz), 54.4, 20.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.93 (s, 3F).

HRMS (ESI) m/z calcd for $C_{29}H_{25}F_3N_3O_4S$ ([M+H]⁺): 568.1512; found: 568.1506.

N-(2-(5-(4-chlorophenyl)-3-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4 -methylbenzenesulfonamide (3ad)

White solid (125.3 mg, 73% yield, m.p. 158-160 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.2 Hz, 2H), 7.57 (t, *J* = 9.8 Hz, 2H), 7.41 – 7.22 (m, 6H), 7.19 – 6.99 (m, 3H), 6.96 – 6.69 (m, 5H), 2.16 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.8, 142.8, 139.3, 136.8, 136.6, 135.5, 131.2, 128.5, 128.1, 127.9, 127.8 (q, *J* = 4.2 Hz), 127.1, 126.0, 123.2, 122.4, 121.0, 120.8, 119.4, 116.5, 97.9 (q, *J* = 29.8 Hz), 20.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -74.11 (s, 3F).

HRMS (ESI) m/z calcd for C₂₈H₂₂ClF₃N₃O₃S ([M+H]⁺): 572.1017; found: 572.1011.

N-(2-(5-(4-bromophenyl)-3-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4 -methylbenzenesulfonamide (3ae)

Ph N-N F₃C ò NHTs

White solid (120.2 mg, 65% yield, m.p. 129-131 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.78 – 7.62 (m, 4H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.49 – 7.41 (m, 1H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.22 – 7.17 (m, 1H), 7.15 (t, *J* = 7.9 Hz, 2H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 4H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.9, 143.9, 140.4, 138.0, 136.6, 132.3, 132.1, 129.6, 129.0, 128.8 (t, J = 4.3 Hz), 128.3, 127.0, 126.1, 124.3, 123.5, 122.5, 121.9, 120.5, 117.6, 99.0 (q, J = 29.8 Hz), 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.11 (s, 3F). HRMS (ESI) m/z calcd for C₂₈H₂₂BrF₃N₃O₃S ([M+H]⁺): 616.0512; found: 616.0506.

4-methyl-N-(2-(3-phenyl-5-m-tolyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)b enzenesulfonamide (3af)

White solid (137.3 mg, 83% yield, m.p. 112-114 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.70 (d, *J* = 8.3 Hz, 1H), 7.65 – 7.48 (m, 3H), 7.34 (t, *J* = 8.0 Hz, 1H), 7.31 – 7.15 (m, 4H), 7.12 – 7.00 (m, 3H), 6.91 – 6.82 (m, 3H), 6.78 (d, *J* = 7.9 Hz, 2H), 2.33 (s, 3H), 2.14 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.8, 143.8, 140.6, 138.7, 138.0, 136.3, 132.5, 132.1, 129.5, 129.0, 129.0, 128.8, 128.7, 127.5, 127.2, 124.2, 124.0, 123.4, 123.3, 121.2, 120.0, 117.7, 98.7 (q, *J* = 29.5 Hz), 21.5, 21.4.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.88 (s, 3F).

HRMS (ESI) m/z calcd for C₂₈H₂₂BrF₃N₃O₃S ([M+H]⁺): 552.1563; found: 552.1557.

N-(2-(5-(3-chlorophenyl)-3-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-me thylbenzenesulfonamide (**3ag**)

White solid (121.8 mg, 71% yield, m.p. 118-121 °C)

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 7.73 (m, 3H), 7.64 (d, J = 8.1 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.43 – 7.33 (m, 3H), 7.25 – 7.11 (m, 4H), 7.00 (t, J = 7.5 Hz, 1H), 6.94 (t, J = 7.7 Hz, 4H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 144.0, 140.3, 137.9, 136.4, 134.9, 132.3, 131.6, 130.2, 129.6, 129.1, 128.9 (q, J = 4.2 Hz), 127.1, 126.8, 125.3, 125.1, 124.3, 123.6, 121.8, 120.2, 117.7, 99.1 (q, J = 29.8 Hz), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.99 (s, 3F).

HRMS (ESI) m/z calcd for C₂₈H₂₂ClF₃N₃O₃S ([M+H]⁺): 572.1017; found: 572.1012.

N-(2-(5-(2-chlorophenyl)-3-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4 -methylbenzenesulfonamide (3ah)

White solid (106.4 mg, 62% yield, m.p. 105-107 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (dd, *J* = 24.6, 8.0 Hz, 2H), 7.51 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.35 – 7.12 (m, 6H), 7.14 – 6.93 (m, 3H), 6.90 – 6.60 (m, 5H), 2.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 151.5, 143.8, 140.4, 138.0, 136.4, 133.5, 132.2, 132.1, 131.3, 130.8, 129.4, 129.0, 128.9 (d, *J* = 4.4 Hz), 127.0, 126.9, 124.2, 123.5, 122.6, 121.9, 120.3, 117.7, 98.3 (q, *J* =

29.8 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.83 (s, 3F). HRMS (ESI) m/z calcd for C₂₈H₂₂ClF₃N₃O₃S ([M+H]⁺): 572.1017; found: 572.1012.

4-methyl-N-(2-(3-phenyl-5-(thiophen-2-yl)-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)p henyl)benzenesulfonamide (3ai)

Yellow oil (112.5 mg, 69% yield)

¹**H NMR (400 MHz, CDCl₃)** δ 7.74 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.63 (dt, *J* = 8.2, 2.1 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.54 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 7.18 – 7.12 (m, 4H), 7.02 – 6.89 (m, 5H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 150.1, 143.8, 140.4, 138.0, 136.4, 132.2, 130.2, 130.1, 129.5, 129.0, 128.9, 127.9, 127.1, 124.9, 124.1, 123.5, 121.5, 120.0, 117.8, 98.9 (q, *J* = 30.1 Hz), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.88 (s, 3F).

HRMS (ESI) m/z calcd for $C_{26}H_{21}F_3N_3O_3S_2$ ([M+H]⁺): 544.0971; found: 544.0966.

N-(2-(3-(4-bromophenyl)-5-phenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4 -methylbenzenesulfonamide (3aj)

White solid (140.6 mg, 76% yield, m.p. 146-148 °C)

¹**H NMR (400 MHz, CDCl**₃) δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.42 (d, *J* = 7.2 Hz, 1H), 7.37 (t, *J* = 6.8 Hz, 3H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.20 – 7.06 (m, 4H), 6.80 (d, *J* = 8.0 Hz, 2H), 6.69 (d, *J* = 8.4 Hz, 2H), 2.15 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.8, 144.0, 139.6, 137.9, 136.1, 132.4, 131.9, 129.5, 128.9, 128.8 (d, *J* = 4.1 Hz), 127.1, 127.0, 124.2, 123.2, 121.4, 119.6, 118.8, 115.7, 98.5 (q, *J* = 30.1 Hz), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -74.13 (s, 3F).

HRMS (ESI) m/z calcd for $C_{28}H_{22}BrF_3N_3O_3S$ ([M+H]⁺): 616.0512; found: 616.0506.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-4-methoxyphenyl)-4-methylbenzenesulfonamide (3ba)

White solid (120.9 mg, 71% yield, m.p. 120-123 °C) ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.53 (d, J = 9.0 Hz, 1H), 7.49 – 7.30 (m, 3H), 7.26 (d, *J* = 7.9 Hz, 2H), 7.16 – 7.09 (m, 1H), 7.05 (t, *J* = 7.8 Hz, 2H), 6.94 – 6.82 (m, 4H), 6.77 (d, *J* = 8.0 Hz, 2H), 3.68 (s, 3H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.3, 153.5, 143.5, 140.7, 136.8, 131.5, 130.4, 129.5, 129.0, 128.7, 127.1, 127.0, 124.7, 123.8, 123.3, 117.6, 116.1, 115.7 (q, J = 4.2 Hz), 98.6 (q, J = 29.5 Hz), 55.6, 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -74.10 (s, 3F).

HRMS (ESI) m/z calcd for $C_{29}H_{25}F_3N_3O_4S$ ([M+H]⁺): 568.1512; found: 568.1508.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-4-ethylphenyl)-4-methyl benzenesulfonamide (3ca)

White solid (129.0 mg, 76% yield, m.p. 138-141 °C)

¹**H NMR (400 MHz, CDCl**₃) δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.48 (m, 4H), 7.44 (d, *J* = 7.8 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 2H), 7.04 (d, *J* = 8.1 Hz, 3H), 6.93 (d, *J* = 7.9 Hz, 2H), 2.71 (q, *J* = 7.9 Hz, 2H), 2.29 (s, 3H), 1.29 (t, *J* = 7.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 143.7, 140.7, 140.2, 136.6, 135.5, 131.6, 131.5, 129.5, 129.0, 128.8, 128.2 (q, *J* = 4.1 Hz), 127.1, 127.0, 123.7, 123.3, 121.9, 120.5, 117.7, 98.9 (q, *J* = 29.7 Hz), 28.3, 21.5, 15.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.80 (s, 3F).

HRMS (ESI) m/z calcd for C₃₀H₂₇F₃N₃O₃S ([M+H]⁺): 566.1720; found: 566.1715.

N-(4-tert-butyl-2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-me thylbenzenesulfonamide (3da)

White solid (135.4 mg, 76% yield, m.p. 140-142 °C)

¹**H NMR (400 MHz, CDCl**₃) δ 7.94 (d, *J* = 7.3 Hz, 2H), 7.79 – 7.64 (m, 2H), 7.63 – 7.37 (m, 6H), 7.20 (t, *J* = 7.4 Hz, 2H), 7.11 – 6.84 (m, 5H), 2.29 (s, 3H), 1.37 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 147.1, 143.6, 140.8, 136.8, 135.1, 131.6, 129.5, 128.9, 128.8,

127.1, 127.0, 125.9 (d, *J* = 4.3 Hz), 123.7, 123.3, 121.4, 120.0, 117.8, 99.1 (q, *J* = 29.8 Hz), 34.6, 31.2, 21.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -74.06 (s, 3F).

HRMS (ESI) m/z calcd for $C_{32}H_{31}F_3N_3O_3S$ ([M+H]⁺): 594.2033; found: 594.2028.

N-(4-benzyl-2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-meth ylbenzenesulfonamide (3ea)

Ph

White solid (167.6 mg, 89% yield, m.p. 118-120 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.97 (dt, *J* = 7.0, 1.7 Hz, 2H), 7.75 (dt, *J* = 8.5, 2.1 Hz, 1H), 7.65 – 7.51 (m, 4H), 7.47 (dt, *J* = 8.4, 1.8 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.38 – 7.30 (m, 2H), 7.29 – 7.18 (m, 4H), 7.13 – 7.03 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 4.07 (s, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 143.8, 140.7, 140.1, 137.3, 136.6, 136.0, 132.5, 131.7, 129.6, 129.4 (q, *J* = 4.0 Hz), 129.0, 128.9, 128.8, 128.8, 127.2, 127.0, 126.6, 123.7, 123.4, 121.9, 120.5, 117.8, 98.9 (q, *J* = 29.8 Hz), 41.3, 21.6.

¹⁹F NMR (**376** MHz, CDCl₃) δ -74.01(s, 3F).

HRMS (ESI) m/z calcd for $C_{35}H_{29}F_3N_3O_3S$ ([M+H]⁺): 628.1876; found: 628.1872.

N-(4-chloro-2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-methy lbenzenesulfonamide (3fa)

White solid (125.3 mg, 73% yield, m.p. 104-106 °C)

¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.82 (m, 2H), 7.77 (d, J = 8.9 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.56 – 7.51 (m, 1H), 7.52 – 7.45 (m, 2H), 7.43 (dd, J = 8.9, 2.3 Hz, 1H), 7.39 – 7.31 (m, 2H), 7.23 – 7.15 (m, 2H), 7.06 – 7.00 (m, 1H), 6.95 (dd, J = 7.6, 1.6 Hz, 2H), 6.87 (d, J = 8.1 Hz, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 145.8, 144.0, 140.3, 136.7, 136.0, 132.1, 131.8, 129.6, 129.5, 129.4, 129.1, 128.8, 127.1, 127.0, 123.8, 123.3, 122.6, 121.8, 118.0, 98.3 (q, J = 29.9 Hz), 21.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.96 (s, 3F).

HRMS (ESI) m/z calcd for C₂₈H₂₂ClF₃N₃O₃S ([M+H]⁺): 572.1017; found: 572.1016.

N-(3-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)biphenyl-4-yl)-4-methylb enzenesulfonamide (3ga)

Ph F₃C N-N O Ph NHTs

White solid (132.5 mg, 72% yield, m.p. 168-170 °C)

¹**H** NMR (400 MHz, CDCl₃) δ 7.82 – 7.71 (m, 4H), 7.57 (d, J = 8.6 Hz, 1H), 7.48 – 7.27 (m, 9H), 7.23 (t, J = 7.3 Hz, 1H), 7.04 (t, J = 7.7 Hz, 2H), 6.95 – 6.82 (m, 3H), 6.75 (d, J = 7.9 Hz, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 143.9, 140.6, 139.3, 137.2, 137.0, 136.4, 131.7, 130.6, 129.6, 129.2, 129.1, 128.9, 128.0, 127.5 (t, J = 4.3 Hz), 127.2, 127.1, 126.9, 123.6 (d, J = 4.3 Hz), 121.8, 120.7, 117.9, 99.0 (q, J = 29.6 Hz), 21.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.52 (s, 3F).

HRMS (ESI) m/z calcd for $C_{34}H_{27}F_3N_3O_3S$ ([M+H]⁺): 614.1720; found: 614.1715.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-4-(methylthio)phenyl)-4methylbenzenesulfonamide (3ha)

Yellow solid (129.6 mg, 74% yield, m.p. 107-109 °C)

¹**H NMR (400 MHz, CDCl**₃) δ 7.97 – 7.85 (m, 2H), 7.79 (d, *J* = 8.6 Hz, 1H), 7.64 – 7.47 (m, 4H), 7.44 – 7.34 (m, 3H), 7.23 (t, *J* = 7.9 Hz, 2H), 7.04 (t, *J* = 7.2 Hz, 3H), 6.92 (d, *J* = 8.0 Hz, 2H), 2.50 (s, 3H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 143.8, 140.5, 136.3, 135.1, 134.7, 131.7, 130.2, 129.6, 129.1, 128.8, 127.1, 127.0, 123.6, 123.5, 122.4, 121.3, 117.9, 98.6 (q, *J* = 29.8 Hz), 21.5, 16.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.65 (s, 3F).

HRMS (ESI) m/z calcd for $C_{29}H_{25}F_3N_3O_3S_2$ ([M+H]⁺): 584.1284; found: 584.1280.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)-4-((1R,2S,5R)-2-isoprop yl-5-methylcyclohexyloxy)phenyl)-4-methylbenzenesulfonamide (3ia)

Pale yellow solid (197.2 mg, 95% yield, m.p. 154-156 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.92 (s, 2H), 7.71 – 7.36 (m, 5H), 7.24 (d, *J* = 32.6 Hz, 4H), 7.13 – 6.79 (m, 7H), 4.03 (s, 1H), 2.29 (s, 3H), 2.20 – 2.04 (m, 2H), 1.78 (d, *J* = 12.2 Hz, 2H), 1.54 (d, *J* = 31.7 Hz, 2H), 1.24 – 0.91 (m, 9H), 0.84 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.2, 153.4, 143.5, 140.8, 137.0 (d, *J* = 4.3 Hz), 131.5, 130.1 (d, *J* = 6.8 Hz), 129.5, 128.9 (d, *J* = 2.3 Hz), 128.7, 127.1, 127.0, 124.8 (d, *J* = 3.8 Hz), 123.8 (d, *J* = 2.3 Hz), 123.4 (d, *J* = 11.3 Hz), 123.2, 118.4 (d, *J* = 22.5 Hz), 117.9 (d, *J* = 4.3 Hz), 117.7 (d, *J* = 4.0 Hz), 98.6 (q, *J* = 29.4 Hz), 79.0, 78.9, 48.1, 40.2, 34.4, 31.4, 26.1, 23.6 (d, *J* = 2.4 Hz), 22.2, 21.5, 20.8 (d, *J* = 2.8 Hz), 16.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -74.27 (s, 3F).

HRMS (ESI) m/z calcd for C₃₈H₄₁F₃N₃O₄S ([M+H]⁺): 692.2764; found: 692.2759.

N-(4-(dimethylamino)-2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)pheny l)-4-methylbenzenesulfonamide (3ja)

Yellow solid (146.3 mg, 84% yield, m.p. 150-152 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.94 – 7.76 (m, 2H), 7.56 – 7.40 (m, 4H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.10 (m, 2H), 6.99 – 6.92 (m, 4H), 6.88 (d, *J* = 8.1 Hz, 2H), 6.81 (s, 1H), 6.73 (dd, *J* = 9.1, 2.8 Hz, 1H), 2.95 (s, 6H), 2.24 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.3, 147.8, 143.1, 140.9, 137.4, 131.3, 129.4, 128.9, 128.6, 127.1, 127.0, 125.7, 124.1, 123.9, 122.8, 117.4, 114.9, 112.3 (d, *J* = 5.0 Hz), 98.9 (q, *J* = 29.8 Hz), 40.4, 21.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -74.08(s, 3F).
HRMS (ESI) m/z calcd for C₃₀H₂₈F₃N₄O₃S ([M+H]⁺): 581.1829; found: 581.1824.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)benzenesulfonami de (3ka)

White solid (111.5 mg, 71% yield, m.p. 106-108 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 – 7.90 (m, 2H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.76 – 7.66 (m, 1H), 7.62 – 7.45 (m, 5H), 7.39 (s, 1H), 7.30 – 6.94 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 153.8, 140.5, 139.3, 137.9, 133.0, 132.2, 131.7, 129.1, 128.9, 128.9,

127.1, 127.1, 124.2, 123.6, 123.5, 121.4, 120.3, 117.7, 98.8 (q, *J* = 29.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -73.91(s, 3F).

HRMS (ESI) m/z calcd for $C_{27}H_{21}F_3N_3O_3S$ ([M+H]⁺): 524.1250; found: 524.1245.

N-(2-(3,5-diphenyl-2-(trifluoromethyl)-2,3-dihydro-1,3,4-oxadiazol-2-yl)phenyl)-4-methoxybenze nesulfonamide (3la)

Ph N-F₂C $NHSO_2(p-OMeC_6H_4)$

White solid (134.5 mg, 81% yield, m.p. 124-126 °C)

¹**H NMR (400 MHz, CDCl₃)** δ 7.87 (d, *J* = 7.5 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 0H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.57 – 7.33 (m, 3H), 7.23 – 7.07 (m, 2H), 7.05 – 6.84 (m, 1H), 6.53 (d, *J* = 8.5 Hz, 1H), 3.68 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.0, 153.6, 140.5, 138.1, 132.2, 131.7, 130.7, 129.4, 129.0, 128.9, 127.0, 124.0, 123.5, 123.3, 121.3, 120.0, 117.6, 114.0, 98.8 (q, *J* = 29.7 Hz), 55.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -73.89 (s, 3F).

HRMS (ESI) m/z calcd for $C_{28}H_{23}F_3N_3O_4S$ ([M+H]⁺): 554.1356; found: 554.1353.

¹³C NMR spectra (101 MHz, CDCl₃) of 3aa

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3ab**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ac**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ad

¹³C NMR spectra (101 MHz, CDCl₃) of **3ae**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3af**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ag**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3ah**

¹³C NMR spectra (101 MHz, CDCl₃) of 3ai

¹H NMR spectra (400 MHz, CDCl₃) of 3aj

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3aj

¹³C NMR spectra (101 MHz, CDCl₃) of **3ba**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ca

¹³C NMR spectra (101 MHz, CDCl₃) of **3da**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ea

¹³C NMR spectra (101 MHz, CDCl₃) of **3fa**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ga

¹³C NMR spectra (101 MHz, CDCl₃) of **3ha**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ia

¹³C NMR spectra (101 MHz, CDCl₃) of **3ja**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3ka

¹³C NMR spectra (101 MHz, CDCl₃) of **3la**

¹⁹F NMR spectra (376 MHz, CDCl₃) of 3la

6.X-ray crystal structure of 3ab

Figure S1. ORTEP diagram of **3ab** (CCDC: 2084149). Thermal ellipsoids are shown at the 50% probability level.

Method of crystallization: A solution of **3ab** in n-hexane/ CH_2Cl_2 (2:1) was added to a 10 mL vial. The vial was closed with parafilm and poked a few of holes with a needle on the parafilm to slowly evaporation of solvent.

The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer.

Table S1. Crystal data and structure refinement for 3ab.

Identification code	3ab	
Empirical formula	$C_{29}H_{24}F_3N_3O_3S$	
Formula weight	551.57	

Temperature/K	113.15
Crystal system	triclinic
Space group	P-1
a/Å	9.2123(3)
b/Å	13.9474(6)
c/Å	20.6800(7)
$\alpha/^{\circ}$	100.472(3)
β/°	92.038(3)
$\gamma^{/\circ}$	92.699(3)
Volume/Å ³	2607.33(17)
Z	4
$\rho_{calc}g/cm^3$	1.405
μ/mm^{-1}	0.183
F(000)	1144.0
Crystal size/mm ³	$0.23 \times 0.2 \times 0.17$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.88 to 62.33
Index ranges	$-13 \le h \le 13, -19 \le k \le 19, -29 \le l \le 28$
Reflections collected	29273
Independent reflections	15051 [$R_{int} = 0.0541$, $R_{sigma} = 0.0756$]
Data/restraints/parameters	15051/0/708
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0624, wR_2 = 0.1567$
Final R indexes [all data]	$R_1 = 0.0862, wR_2 = 0.1799$
Largest diff. peak/hole / e Å ⁻³	0.63/-0.88