Supporting information

Glyoxalase-Based Toolbox for the Enantioselective Synthesis of α -Hydroxy Carboxylic Acids

Mussa Yedigenov,^{a†§} Niyaz Amire,^{a†¶} Aizat Abdirassil,^a[∥] Tomiris Mulikova,^{a**}Azamat Begenov,^a Anniina Kiesilä,^b Anatoly A. Peshkov,^a Vsevolod A. Peshkov*^{ab} and Darkhan Utepbergenov*^a

^a Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana 010000, Republic of Kazakhstan

^b Department of Chemistry, University of Jyväskylä, Survontie 9 B, FI-40014, Finland

[†] contributed equally

§ Present address: Max Planck School Matter to Life, Max Planck Institute for Medical Research, Jahnstraße 29, Heidelberg, 69120, Germany

¶ Present address: Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

Present address: Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, USA

** Present address: Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, 120 Mason Farm Rd, Chapel Hill, NC 27599-7260, USA

* E-mail addresses: <u>vsevolod.peshkov@nu.edu.kz</u> (V.A.P.), <u>darkhan.utepbergenov@nu.edu.kz</u> (D.U.)

Table of content

General Remarks	S2
Protein expression and purification	S3
Screening of type III glyoxalases	S4
Optimization of Glyoxalase I/II ratio	S9
Synthesis and characterization	S18
Copies of NMR spectra	S49
Copies of HRMS spectra	S64

General Remarks

Materials and solvents. Unless otherwise specified, all reagents and solvents were purchased from commercial sources and used without further purification. Aryl glyoxal hydrates **1** were synthesized following literature procedure.¹

NMR spectroscopy. NMR spectroscopic data were recorded with a Bruker Avance III 300 MHz spectrometer (300.13 MHz for ¹H, 75.47 MHz for ¹³C{¹H} and 282.40 MHz for ¹⁹F{¹H}) and a Bruker Avance III 500 MHz spectrometer (500.13 MHz for ¹H and 125.76 MHz for ¹³C{¹H}), in DMSO-*d*6 and were referenced to solvent residual proton signal $\delta H = 2.50$ ppm, solvent carbon signal $\delta C = 39.52$ ppm and hexafluorobenzene fluorine signal $\delta F = -164.9$ ppm.

Mass spectrometry. Mass spectra were recorded on Agilent 6560 ESI-IM-QTOF mass spectrometer equipped with AJS ESI ion source. Samples were injected using direct infusion from syringe pump with flow rate of 5 μ l/min. Stock solutions (10 mM) of samples were prepared with MeOH and filtered if needed. Samples were diluted with MeOH to 5, 10 or 15 μ M prior to measurements.

Melting points. Melting points were determined in open capillary tubes on Stuart Scientific SMP3 melting point apparatus.

Optical rotations. Optical rotations were obtained with a Perkin-Elmer 343 polarimeter.

Enzymatic reaction progress monitoring. The maximum absorption wavelength (λ_{max}) and molar extinction coefficient at λ_{max} of each aryl glyoxal were acquired using a NanoDrop 2000c spectrophotometer. Enzymatic conversion was continuously monitored by either a decrease in the absorbance at the respective λ_{max} or a shift of maximum absorbance to a new λ_{max} due to the strong absorption by some α -hydroxy acids being produced.

Chiral UHPLC. The methods for the detection and separation of the α -hydroxy acid enantiomers were developed using Astec CLC-D and Astec Chirobiotic T chiral columns on HPLC Accela 600 and Dionex Ultimate 3000 UHPLC respectively. The method for the separation of lactate enantiomers on CLC-D column comprised aqueous solution of 5 mM CuSO₄ as a mobile phase, 1.0 mL/min flow rate, 25°C column oven temperature, 10 µL injection volume and UV-Vis detector wavelength of 254 nm. For Astec CLC-D column, L enantiomer generally elutes before D. Separation of aromatic α -hydroxy acid enantiomers on Chirobiotic T column was achieved using 60% H₂O acidified with either 0.1% or 0.05% AcOH and 40% MeOH as a mobile phase, 1 µL injection volume and varying UV-Vis detector wavelengths (220, 228, 234, 260, 280, 224 nm). The specific flow rate, column oven and sample holder temperature are given below for each provided chiral UHPLC chromatogram. Roughly equimolar mixtures of purified (*R*)-2 and (*S*)-2 or unpurified α HCAs 2 obtained with *E. coli* Hsp31 were used as racemic or nearly racemic references.

¹ A. A. Peshkov, D. Gapanenok, A. Puzyk, N. Amire, A. S. Novikov, S. D. Martynova, S. Kalinin, D. Dar'in, V. A. Peshkov and M. Krasavin, *The Journal of Organic Chemistry*, 2023, **88**, 10508–10524. S2

Protein expression and purification

Expression and purification of human DJ-1, *A. thaliana* DJ-1d, *C. albicans* Glx3, *E. coli* Hsp31 proteins was performed as described.^{2,3}

Full length *E. coli* Glyoxalase I and Glyoxalase II were amplified from genomic DNA by Phusion polymerase and cloned into pHis-Parallel2 vector using BamHI and SalI restriction sites. BL21(DE3)-RIPL cells were transformed with Glyoxalase I expression construct and plated on agar plates containing 100 μ g/ml ampicillin and 25 μ g/ml chloramphenicol. The colonies were picked and grown overnight in 15 mL terrific broth with the same antibiotics at 37°C with shaking at 230 rpm. The cells were then transferred to a 400 mL terrific broth medium with antibiotics and 5 μ M NiCl₂ × 6H₂O and grown at 37°C with shaking at 150 rpm. Expression was induced by the addition of isopropyl β -d-1-thiogalactopyranoside to 0.25 mM and the cells were grown for further 3 hours at 120 rpm. Thereafter, the cells were collected by centrifugation at 6,700 × g, resuspended in 20 mM Tris, 0.5 M NaCl, pH 8.0 (Buffer A) and homogenized. For purification, the homogenate was incubated with lysozyme in the presence of PMSF for 10 minutes, sonicated and centrifuged for 30 min at 55,900 × g and 4°C. The supernatant was applied to a freshly prepared 2 mL Ni-NTA gravity column and unbound proteins were washed off with 30 mL Buffer A containing 10 mM imidazole. Glyoxalase I was eluted with Buffer A containing 150 mM imidazole and desalted into PBS using PD-10 columns. Expression and purification of *E. coli* Glyoxalase II was performed following the same procedure except for the addition of ZnCl₂ × 2H₂O instead of NiCl₂ × 6H₂O to 5 μ M in a 400 mL terrific broth medium.

² T. Mulikova, Z. Bekkhozhin, A. Abdirassil and D. Utepbergenov, *Analytical Biochemistry*, 2021, 630, 114317.

³ A. Andreeva, Z. Bekkhozhin, N. Omertassova, T. Baizhumanov, G. Yeltay, M. Akhmetali, D. Toibazar and D. Utepbergenov, *Journal of Biological Chemistry*, 2019, **294**, 18863–18872.

Screening of type III glyoxalases

For the screening of enzymes and substrate scope, 1 mL reactions were set up with 5 mM aryl glyoxal and respective enzyme in Buffer B. When Glyoxalase I and Glyoxalase II were used, the initial concentration of GSH was kept at 250 μ M in the reaction mixture. Upon completion of the reaction as was informed by absorbance measurements, the samples were centrifuged in Amicon Ultra-0.5 mL centrifugal filters (NMWL = 10K) twice at 21,130 × g for 6 minutes to remove protein and any aggregates. The flow-through was transferred to clean HPLC vials. For the analysis of the purified α -hydroxy acids, filtered 1 mL 5 mM aqueous solutions of each product were prepared.

Chiral UHPLC chromatogram of lactic acid (2a) racemate:

Peak No.	Retention Time (RT), min	Area (AA), µAU*min	Relative Area, %
1	7.93	1569792	53.65
2	10.45	1356352	46.35
Total:		2926144	100.00

Chiral UHPLC chromatogram of lactic acid (2a) formed by the enzymatic conversion of methyl glyoxal hydrate $(1a \cdot H_2O)$ by:

a) E. coli Hsp31

Peak No.	Retention Time (RT), min	Area (AA), µAU*min	Relative Area, %
1	8.36	986604	52.43
2	11.15	895032	47.57
Total:		1881636	100.00

b) A. thaliana DJ-1d

Peak No.	Retention Time (RT), min	Area (AA), µAU*min	Relative Area, %
1	8.59	239729	14.86
2	11.24	1373891	85.14
Total:		1613620	100.00

c) C. albicans Glx3

Peak No.	Retention Time (RT), min	Area (AA), µAU*min	Relative Area, %
1	8.27	1638250	96.93
2	11.20	51812	3.07
Total:		1690062	100.00

d) Human DJ-1

Peak No.	Retention Time (RT), min	Area (AA), µAU*min	Relative Area, %
1	8.32	788737	100.00
Total:		788737	100.00

Chiral UHPLC chromatograms obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature of 2-hydroxy-2-phenylacetic acid (**2b**) formed by the enzymatic conversion of phenyl glyoxal hydrate (**1b**·H₂**O**) by:

e) *E. coli* Hsp31

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.488	6.846	49.79
2	2.663	6.904	50.21
Total:		13.751	100.00

f) A. thaliana DJ-1d

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.490	10.264	88.26
2	2.660	1.365	11.74
Total:		11.629	100.00

h) Human DJ-1

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.527	8.402	100.00
Total:		8.402	100.00

Optimization of Glyoxalase I/II ratio

		ee of D-αHCA at the g	iven [GlxI]/[GlxII] rati	ios, %
Giyoxai I, K	1:3	3:1	30:1	Delay ⁴
1b, Ph	91	89	79	68
1g , 4-BrC ₆ H ₄	91	90	87	81
1h , 4-MeOC ₆ H ₄	97	97	89	92
1n, 5-bromothiophen-2-yl	91	88	72	24

Table 1. Optimization of Glyoxalase I and Glyoxalase II concentration ratio

The ee values above were obtained from samples of corresponding 1 mL reaction mixtures, not from extracted and purified α HCA products. Similar or identical preliminary ee values for 1:3 and 3:1 ratios of enzymes, combined with the greater catalytic activity of *E. coli* GlxII compared to GlxI (data not shown), as well as greater ease of extraction and lower enzyme expenditure, prompted us to proceed with around 3:1 ratio of Glyoxalase I and Glyoxalase II for the preparative chemoenzymatic synthesis. Noteworthy, scaling up the protocol resulted only in minor drop of ee for the substrate **1h**, while for the substrates **1b** and **1n**, an increase in the obtained ee values was observed.

Chiral UHPLC chromatograms obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature of 2-hydroxy-2-phenylacetic acid (**2b**) formed by the glutathione-mediated conversion of phenyl glyoxal hydrate (**1b**·H₂**O**) by *E. coli* Glyoxalase I and Glyoxalase II in the respective concentration ratios:

-)	1	. ^
21	- I	• •
u,	-	•••

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.500	0.573	4.45
2	2.677	12.295	95.55
Total:		12.868	100.00

 ⁴ The substrate was incubated with Glyoxalase I and glutathione for 13 hours, followed by the addition of Glyoxalase II to the resulting mixture and further incubation. The final ratio of enzymes was 3:1 respectively.
S9

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.498	0.687	5.38
2	2.677	12.093	94.62
Total:		12.780	100.00

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.493	1.334	10.43
2	2.678	11.461	89.57
Total:		12.795	100.00

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.492	1.982	16.16
2	2.678	10.281	83.84
Total:		12.263	100.00

Chiral UHPLC chromatograms obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature of 2-(4-bromophenyl)-2-hydroxyacetic acid (2g) formed by the glutathione-mediated conversion of 4-Bromophenyl glyoxal hydrate (1g·H₂O) by *E. coli* Glyoxalase I and Glyoxalase II in the respective concentration ratios:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.623	1.480	4.82
2	3.142	29.213	95.18
Total:		30.693	100.00

c) 30:1

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.625	2.097	6.26
2	3.142	31.376	93.74
Total:		33.472	100.00

Chiral UHPLC chromatogram obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature of 2-hydroxy-2-(4-methoxyphenyl)acetic acid (2h) formed by the glutathione-mediated conversion of 4-Methoxyphenyl glyoxal hydrate (1h·H₂O) by *E. coli* Glyoxalase I and Glyoxalase II in the respective concentration ratios:

16.579

100.00

a) 1:3

Total:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.625	0.351	1.64
2	2.888	21.057	98.36
Total:		21.408	100.00

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.623	1.055	5.30
2	2.888	18.872	94.70
Total:		19.927	100.00

Chiral UHPLC chromatogram obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature of 2-(5-bromothiophen-2-yl)-2-hydroxyacetic acid (2n) formed by the glutathione-mediated conversion of 5-Bromothiophen-2-yl glyoxal hydrate (1n·H₂O) by *E. coli* Glyoxalase I and Glyoxalase II in the respective concentration ratios:

a) 1:3

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.490	1.128	6.13
2	2.878	17.266	93.87
Total:		18.395	100.00

c) 30:1

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.492	2.201	13.90
2	2.872	13.631	86.10
Total:		15.832	100.00

Total:		12.408	100.00
2	2.867	7.712	62.16
1	2.495	4.696	37.84
Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %

Synthesis and characterization

Ph OH

(*R*)-(-)-2-Hydroxy-2-phenylacetic acid ((*R*)-2b). Phenyl glyoxal hydrate (1b·H₂O, 100 mg, 0.66 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was

allowed to cool and was mixed with 760 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (33 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction (determined by monitoring optical absorbance at 250 nm) the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2b (94 mg, 0.62 mmol, 94%) as white powder. The large-scale reaction was set up by dissolving 1b (1.0 g, 6.6 mmol) and glutathione (0.33 mmol) in 100 mL sodium phosphate buffer (50 mM, pH = 7), and the resulting solution was added dropwise to a 50 mL solution of glyoxalase I and glyoxalase II (157 nmol and 49 nmol respectively) in the same buffer. The large-scale reaction using 1b (1.0 g, 6.6 mmol) delivered (*R*)-2b (0.94 g, 6.2 mmol, 94%) as white powder. *ee* = 97 % [UHPLC]. *[a]*²⁷_D = -150 (c = 0.5, MeOH, EtOH or EtOAc). *mp:* 133-135 °C. 0.07-0.8 mL/min flow rate, 5-30°C column oven and 5°C sample holder temperature

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-phenylacetic acid ((R)-2b) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.803	0.8819	1.36
2	15.777	64.187	98.64

 $P_{H} \rightarrow P_{H} \rightarrow P_{H$

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-phenylacetic acid ((S)-2b) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Chiral UHPLC chromatogram of racemic 2-hydroxy-2-phenylacetic acid (**2b**) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.803	30.3829	48.24
2	15.72	32.5939	51.76

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.45 – 7.38 (m, 2H), 7.38 – 7.23 (m, 3H), 5.83 (bs, 1H), 5.02 (s, 1H). ¹³C{¹H} *NMR* (125 *MHz DMSO-D6*): δ 174.1, 140.3, 128.1, 127.7, 126.7, 72.4; *HRMS* (*ESI*, [*M-H*]⁻) for C₈H₇O₃⁻ calcd 151.0401, found 151.0399.

ŌН

(*R*)-2c

(*R*)-(-)-2-Hydroxy-2-(*p*-tolyl)acetic acid ((*R*)-2c).⁵ *p*-Tolyl glyoxal hydrate (1c·H₂O, 100 mg, 0.60 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting

solution was allowed to cool and was mixed with 700 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (30 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 263$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2c (99 mg, 0.60 mmol, 99%) as beige solid. *ee* = 98 % [UHPLC]. *[a]*²⁷_D = -146 (c = 0.5, EtOAc). *mp:* 118-121 °C.

⁵ J. R. E. Hoover, G. L. Dunn, D. R. Jakas, L. L. Lam, J. J. Taggart, J. R. Guarini, and L. Phillips, *Journal of Medicinal Chemistry*, 1974, **17**, 34–41. S20

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-(p-tolyl)acetic acid ((R)-2c) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	18.593	1.2079	1.20
2	21.463	99.1562	98.80

(*S*)-(+)-2-Hydroxy-2-(*p*-tolyl)acetic acid ((*S*)-2c). *p*-Tolyl glyoxal hydrate ($1c \cdot H_2O$, 100 mg, 0.60 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting

solution was allowed to cool and was mixed with 1.4 ml phosphate buffer solution containing 784 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 263$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*S*)-2c (97 mg, 0.58 mmol, 97%) as beige solid. *ee* = 98 % [UHPLC]. *[a]*²⁷*b* = +149 (c = 0.6, EtOAc). *mp:* 123-126 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(p-tolyl)acetic acid ((S)-2c) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	18.507	100.9578	99.00
2	22.347	1.0187	1.00

Chiral UHPLC chromatogram of nearly racemic 2-hydroxy-2-(p-tolyl)acetic acid (**2c**) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	18.54	71.309	53.93
2	21.61	60.9103	46.07

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.29 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 5.72 (bs, 1H), 4.97 (s, 1H), 2.28 (s, 3H). ¹³*C*{^{*I*}*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 174.2, 137.3, 136.7, 128.6, 126.5, 72.2, 20.7; *HRMS* (*ESI*, *[M-H]*^{*}) for C₉H₉O₃⁻ calcd 165.0557, found 165.0554.

(R)-(-)-2-Hydroxy-2-(*m*-tolyl)acetic acid ((R)-2d).⁵ *m*-Tolyl glyoxal hydrate (1d·H₂O, 100 mg, 0.60 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 700 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (30 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 255$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate followed by addition of silica gel and concentration in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0→9:1:0.02) as eluent followed by trituration with pentane afforded pure (*R*)-2d (67 mg, 0.40 mmol, 67%) as white solid. *ee* =>99 % [UHPLC]. *[a]*²⁷_D = -143 (c = 0.36, EtOAc). *mp:* 105-108 °C.

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-(m-tolyl)acetic acid ((R)-2d) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU min	Relative Area, 76
1	32.033	0.5797	0.29
2	35.183	200.6875	99.71

⁶ All columns were initially packed with silicagel and DCM. Crude product was applied via solid load, then the elution with the eluent mixture was started.

(S)-(+)-2-Hydroxy-2-(*m*-tolyl)acetic acid ((S)-2d). *m*-Tolyl glyoxal hydrate (1d·H₂O, 100 mg, 0.60 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 2.6 ml phosphate buffer

solution containing 1.57 µmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 255$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate followed by addition of silica gel and concentration in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0 \rightarrow 9:1:0.02) as eluent followed by trituration with pentane afforded pure (S)-2d (59 mg, 0.36 mmol, 59%) as white solid. *ee* = 98 % [UHPLC]. *[a]*²⁷_p = +138 (c = 0.36, EtOAc). *mp:* 109-111 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(*m*-tolyl)acetic acid ((S)-2d) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	32.167	215.9292	99.05
2	36.123	2.0627	0.95

Chiral UHPLC chromatogram of racemic 2-hydroxy-2-(*m*-tolyl)acetic acid (**2d**) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	31.927	108.3441	51.06
2	35.197	103.8379	48.94

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.28 – 7.14 (m, 3H), 7.14 – 7.04 (m, 1H), 4.95 (s, 1H), 2.30 (s, 3H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 174.1, 140.1, 137.1, 128.2, 128.0, 127.2, 123.8, 72.4, 21.0; *HRMS* (*ESI*, [*M-H*]⁻) for C₉H₉O₃⁻ calcd 165.0557, found 165.0552.

(*R*)-(-)-2-(4-Fluorophenyl)-2-hydroxyacetic acid ((*R*)-2e).⁵ 4-Fluorophenyl glyoxal hydrate (1e·H₂O, 100 mg, 0.59 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM

solution. The resulting solution was allowed to cool and was mixed with 690 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (29.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 253$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2e (100 mg, 0.59 mmol, 100%) as beige solid. *ee* = >99 % [UHPLC]. *[a]*²⁷_D = -139 (c = 0.46, EtOAc). *mp:* 149-152 °C.

(R)-2e

όн

Chiral UHPLC chromatogram of (R)-(-)-2-(4-fluorophenyl)-2-hydroxyacetic acid ((R)-2e) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.383	0.1725	0.30
2	15.903	57.1343	99.70

(S)-(+)-2-(4-Fluorophenyl)-2-hydroxyacetic acid ((S)-2e). 4-Fluorophenyl glyoxal hydrate (1e·H₂O, 100 mg, 0.59 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM

solution. The resulting solution was allowed to cool and was mixed with 0.3 ml phosphate buffer solution containing 90 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 253$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*S*)-2e (83 mg, 0.49 mmol, 83%) as white solid. *ee* = 99 % [UHPLC]. $f\alpha J^{27}{}_{D} = +146$ (c = 0.47, EtOAc). *mp:* 151-154 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-(4-fluorophenyl)-2-hydroxyacetic acid ((S)-2e) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Chiral UHPLC chromatogram of racemic 2-(4-fluorophenyl)-2-hydroxyacetic acid (2e) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

0.1626

0.31

15.743

2

¹*H NMR* (500 *MHz*, *DMSO-D6*): δ 7.50 – 7.39 (m, 2H), 7.22 – 7.11 (m, 2H), 5.03 (s, 1H). ¹³*C*{¹*H*} *NMR* (125 *MHz*, *DMSO-D6*): δ 173.9, 161.6 (d, *J* = 243.2 Hz), 136.5 (d, *J* = 2.9 Hz), 128.6 (d, *J* = 8.2 Hz), 114.9 (d, *J* = 21.3 Hz), 71.8; ¹⁹*F*{¹*H*} *NMR* (282 *MHz*, *DMSO-D6*): δ -117.1 – (-117.5) (m). *HRMS* (*ESI*, [*M-Hf*) for C₈H₆FO₃⁻ calcd 169.0306, found 169.0303.

(*R*)-(-)-2-(4-Chlorophenyl)-2-hydroxyacetic acid ((*R*)-2f).⁵ 4-Chlorophenyl glyoxal hydrate (1f·H₂O, 100 mg, 0.54 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM

solution. The resulting solution was allowed to cool and was mixed with 640 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (27 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 261$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0→9:1:0.02) as eluent followed by trituration with pentane afforded pure (*R*)-2f (88 mg, 0.47 mmol, 88%) as white sold. *ee* = 93 % [UHPLC]. *[a]*²⁷_D = -130 (c = 0.35, EtOAc). *mp:* 117-120 °C.

Chiral UHPLC chromatogram of (R)-(-)-2-(4-chlorophenyl)-2-hydroxyacetic acid ((R)-2f) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.993	6.5459	3.24
2	17.283	195.335	96.76

(*S*)-(+)-2-(4-Chlorophenyl)-2-hydroxyacetic acid ((*S*)-2f). 4-Chlorophenyl glyoxal hydrate (1f·H₂O, 100 mg, 0.54 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 0.184 ml

phosphate buffer solution containing 200 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 261$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0 \rightarrow 9:1:0.02) as eluent followed by trituration with pentane afforded pure (S)-2f (92 mg, 0.49 mmol, 92%) as white sold. *ee* = 97 % [UHPLC]. *[a]*²⁷_p = +134 (c = 0.38, EtOAc). *mp:* 112-115 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-(4-chlorophenyl)-2-hydroxyacetic acid ((S)-2f) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	15.117	185.5444	98.43
2	17.51	2.9609	1.57

Chiral UHPLC chromatogram of racemic 2-(4-chlorophenyl)-2-hydroxyacetic acid (**2f**) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	15.057	94.8104	48.50
2	17.287	100.6816	51.50

¹*H* NMR (300 MHz, DMSO-D6): δ 7.47 – 7.37 (m, 4H), 5.04 (s, 1H). ¹³C{¹H} NMR (75 MHz, DMSO-D6): δ 173.6, 139.2, 132.1, 128.4, 128.1, 71.6; *HRMS (ESI, [M-H]⁻)* for C₈H₆ClO₃⁻ calcd 185.0011, found 185.0012.

(*R*)-(-)-2-(4-Bromophenyl)-2-hydroxyacetic acid ((*R*)-2g).⁵ 4-Bromophenyl glyoxal hydrate (1g·H₂O, 100 mg, 0.43 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain

a 5 mM solution. The resulting solution was allowed to cool and was mixed with 530 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (21.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 265$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2g (95 mg, 0.41 mmol, 95%) as beige solid. *ee* = 90 % [UHPLC]. [*a*]²⁷_{*D*} = -101 (c = 0.45, EtOAc). *mp:* 124-127 °C.

OH

óн

(*R*)-2g

Chiral UHPLC chromatogram of (R)-(-)-2-(4-bromophenyl)-2-hydroxyacetic acid ((R)-2g) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.615	2.177	5.04
2	3.132	41.050	94.96

(S)-(+)-2-(4-Bromophenyl)-2-hydroxyacetic acid ((S)-2g). 4-Bromophenyl glyoxal hydrate ($1g \cdot H_2O$, 100 mg, 0.43 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7)with stirring and heating to obtain a 5 mM plution was allowed to cool and was mixed with 0 105 ml phosphate buffer solution

solution. The resulting solution was allowed to cool and was mixed with 0.105 ml phosphate buffer solution containing 84 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 265$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*S*)-2g (94 mg, 0.41 mmol, 94%) as beige solid. *ee* = 92 % [UHPLC]. $[\alpha]^{27}_{D} = +110$ (c = 0.4, EtOAc). *mp*: 126-129 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-(4-bromophenyl)-2-hydroxyacetic acid ((S)-2g) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.642	35.500	96.17
2	3.165	1.414	3.83

Chiral UHPLC chromatogram of scalemic 2-(4-bromophenyl)-2-hydroxyacetic acid (2g) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.54 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 2H), 5.93 (bs, 1H), 5.03 (s, 1H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 173.6, 139.6, 131.0, 128.8, 120.7, 71.7; *HRMS* (*ESI*, [*M-H*]⁻) for C₈H₆BrO₃⁻ calcd 228.9506, found 228.9504.

(R)-(-)-2-Hydroxy-2-(4-methoxyphenyl)acetic acid ((R)-2h).⁵ 4-Methoxyphenyl glyoxal hydrate (1h·H₂O, 100 mg, 0.55 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 650 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (27.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 286$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (*R*)-2h (80 mg, 0.44 mmol, 80%) as white solid. *ee* = 95 % [HPLC]. *[a]*²⁷_D = -147 (c = 0.5, EtOAc). *mp:* 101-103 °C.

Chiral UHPLC chromatogram of (*R*)-(-)-2-hydroxy-2-(4-methoxyphenyl)acetic acid ((*R*)-2h) obtained with 0.8 ml/min flow rate, 30° C column oven and 5° C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.617	0.767	2.53
2	2.878	29.533	97.47

MeO OH

(S)-(+)-2-Hydroxy-2-(4-methoxyphenyl)acetic acid ((S)-2h). 4-Methoxyphenyl glyoxal hydrate (1h·H₂O, 100 mg, 0.55 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to

obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 1.84 ml phosphate buffer solution containing 552 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 286$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*S*)-2h (95 mg, 0.52 mmol, 95%) as white solid. *ee* = >99 % [UHPLC]. *[a]*²⁷_D = +147 (c = 0.43, EtOAc). *mp:* 102-104 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(4-methoxyphenyl)acetic acid ((S)-2h) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

Chiral UHPLC chromatogram of nearly racemic 2-hydroxy-2-(4-methoxyphenyl)acetic acid (**2h**) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.615	8.658	47.96
2	2.873	9.394	52.04

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.32 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 4.94 (s, 1H), 3.74 (s, 3H). ¹³*C*{^{*I*}*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 174.3, 158.8, 132.3, 127.8, 113.5, 71.9, 55.1; *HRMS* (*ESI*, [*M-H*]⁻) for C₉H₉O₄⁻ calcd 181.0506, found 181.0504.

MeOHMeOH(R)-2i

obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 650 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (27.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 257$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2i (96 mg, 0.53 mmol, 96%) as beige solid. *ee* = 99 % [UHPLC]. *[a]*²⁷_{*p*} = -117 (c = 0.5, EtOAc). *mp:* 77-80 °C.

Chiral UHPLC chromatogram of (*R*)-(-)-2-hydroxy-2-(3-methoxyphenyl)acetic acid ((*R*)-2i) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.853	0.6533	0.50
2	20.077	130.7776	99.50

(*S*)-(+)-2-Hydroxy-2-(3-methoxyphenyl)acetic acid ((*S*)-2i). 3-Methoxyphenyl glyoxal hydrate (1i·H₂O, 100 mg, 0.55 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to

obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 3 ml phosphate buffer solution containing 2.55 µmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 257$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (*S*)-2i (71 mg, 0.39 mmol, 71%) as beige solid. *ee* = 96 % [HPLC]. *[a]*²⁷_D = +114 (c = 0.34, EtOAc). *mp:* 76-79 °C.

MeC

(S)-2i

òн

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(3-methoxyphenyl)acetic acid ((S)-2i) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.913	153.6581	97.87
2	20.623	3.3425	2.13

Chiral UHPLC chromatogram of nearly racemic 2-hydroxy-2-(3-methoxyphenyl)acetic acid (2i) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.733	80.6437	52.63
2	20.037	72.5983	47.37

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.30 – 7.18 (m, 1H), 7.05 – 6.90 (m, 2H), 6.89 – 6.78 (m, 1H), 5.82 (bs, 1H), 4.99 (s, 1H), 3.74 (s, 3H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 173.9, 159.1, 141.7, 129.1, 118.9, 113.0, 112.2, 72.3, 55.0; *HRMS* (*ESI*, [*M-H*]) for C₉H₉O₄⁻ calcd 181.0506, found 181.0505.

(*R*)-(-)-2-Hydroxy-2-(4-hydroxyphenyl)acetic acid ((*R*)-2j). 4-Hydroxyphenyl glyoxal hydrate (1j·H₂O, 100 mg, 0.59 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM

solution. The resulting solution was allowed to cool and was mixed with 690 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (29.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 286$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (*R*)-2j (55 mg, 0.33 mmol, 55%) as white solid. *ee* = 98 % [HPLC]. *[a]*²⁷_D = -139 (c = 0.33, MeOH). *mp:* 103-106 °C.

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-(4-hydroxyphenyl)acetic acid ((R)-2j) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	28.407	2.2138	0.90
2	31.03	242.7675	99.10

óн

HO

(*S*)-(+)-2-Hydroxy-2-(4-hydroxyphenyl)acetic acid ((*S*)-2j). 4-Hydroxyphenyl glyoxal hydrate (1j·H₂O, 100 mg, 0.59 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM

solution. The resulting solution was allowed to cool and was mixed with 5 ml phosphate buffer solution containing 2.8 µmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 286$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (*S*)-2j (56 mg, 0.33 mmol, 56%) as beige solid. *ee* = >99 % [HPLC]. *[a]*²⁷_D = +143 (c = 0.34, MeOH). *mp:* 103-106 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(4-hydroxyphenyl)acetic acid ((S)-2j) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Chiral UHPLC chromatogram of scalemic 2-hydroxy-2-(4-hydroxyphenyl)acetic acid (**2j**) obtained with 0.07 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	28.433	163.3574	59.69
2	31.07	110.3318	40.31

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 9.32 (bs, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H), 4.83 (s, 1H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 174.4, 156.9, 130.6, 127.9, 114.8, 72.0; *HRMS* (*ESI*, [*M-H*]⁺) for C₈H₇O₄⁻ calcd 167.0350, found 167.0348.

(R)-2-Hydroxy-2-(4-(trifluoromethyl)phenyl)aceticacid((R)-2k).5(R)-2k4-(Trifluoromethyl)phenyl glyoxal hydrate (1k·H2O, 100 mg, 0.45 mmol) was placedinto a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7)

with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 550 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (22.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 243$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with cold pentane to afford pure (*R*)-2k (91 mg, 0.41 mmol, 91%) as beige solid. *ee* = 98 % [UHPLC]. *[al*²⁷*b* = -99 (c = 0.36, EtOAc). *mp*: 135-138 °C.

ΟН

όн

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-(4-(trifluoromethyl)phenyl)acetic acid ((R)-2k) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	13.71	1.424	1.19
2	16.547	118.3575	98.81

QH ↓ ↓ ↓ 0

όн

(S)-(+)-2-Hydroxy-2-(4-(trifluoromethyl)phenyl)acetic acid ((S)-2k).
(S)-2k 4-(Trifluoromethyl)phenyl glyoxal hydrate (1k·H₂O, 100 mg, 0.45 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH =

7)with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 0.553 ml phosphate buffer solution containing 602 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 243$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0 \rightarrow 9:1:0.02) as eluent followed by trituration with cold pentane afforded pure (S)-2k (83 mg, 0.38 mmol, 83%) as white solid. *ee* = 96 % [UHPLC]. [a]²⁷_D = +105 (c = 0.38, EtOAc). *mp:* 140-143 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(4-(trifluoromethyl)phenyl)acetic acid ((S)-2k) obtained with 0.125 ml/min flow rate, 20° C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %	
1	13.95	154.1043	97.76	
2	16.147	3.5251	2.24	

Chiral UHPLC chromatogram of nearly racemic 2-hydroxy-2-(4-(trifluoromethyl)phenyl)acetic acid (2k) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

60.2265

42.84

2	16.52

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.71 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 5.14 (s, 1H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 173.4, 144.9, 128.2 (q, *J* = 31.7 Hz), 127.3, 125.0 (q, *J* = 3.8 Hz), 124.2 (q, *J* = 271.9 Hz), 71.8; ¹⁹*F*{¹*H*} *NMR* (282 *MHz*, *DMSO-D6*): δ -63.2 (s). *HRMS* (*ESI*, [*M-Hf*) for C₉H₆F₃O₃⁻ calcd 219.0275, found 219.0273.

(*R*)-(-)-2-Hydroxy-2-(4-nitrophenyl)acetic acid ((*R*)-21).⁵ 4-Nitrophenyl glyoxal hydrate (11·H₂O, 100 mg, 0.51 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to

obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 610 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (25.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the shift in the UV/vis absorbance maximum to $\lambda_{max, product} = 280$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (*R*)-21 (82 mg, 0.42 mmol, 82%) as orange solid. *ee* = 96 % [UHPLC]. *[a]*²⁷_D = -117 (c = 0.26, MeOH). *mp:* 74-78 °C.

Chiral UHPLC chromatogram of (R)-(-)-2-hydroxy-2-(4-nitrophenyl)acetic acid ((R)-2l) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.403	1.5313	2.19
2	18.797	68.4355	97.81

(*S*)-(+)-2-Hydroxy-2-(4-nitrophenyl)acetic acid ((*S*)-2l). 4-Nitrophenyl glyoxal hydrate (11·H₂O, 100 mg, 0.51 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to

obtain a 5 mM solution. The resulting solution was allowed to cool, mixed with 51 µmol β -mercaptoethanol solution in sodium phosphate buffer (50 mM, pH = 7) and after 5 minutes was mixed with 1.5 ml phosphate buffer solution containing 654 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the shift in the UV/vis absorbance maximum to $\lambda_{max, product} = 280$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure **(S)-21** (74 mg, 0.38 mmol, 74%) as yellow solid. *ee* = 99 % [UHPLC]. $f\alpha J^{27}\rho = +140$ (c = 0.35, MeOH). *mp:* 92-95 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(4-nitrophenyl)acetic acid ((S)-2l) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.73	116.6019	99.57
2	19.11	0.5045	0.43

Chiral UHPLC chromatogram of scalemic 2-hydroxy-2-(4-nitrophenyl)acetic acid (21) obtained with 0.125 ml/min flow rate, 20°C column oven and sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	14.467	60.3685	64.02
2	18.623	33.932	35.98

¹*H* NMR (300 MHz, DMSO-D6): δ 8.19 (d, *J* = 8.5 Hz, 2H), 7.70 (d, *J* = 8.6 Hz, 2H), 5.08 (s, 1H). ¹³C{¹H} NMR (75 MHz, DMSO-D6): δ 173.0, 147.8, 146.9, 127.7, 123.3, 71.7; HRMS (ESI, [M-H]⁻) for C₈H₆NO₅⁻ calcd 196.0251, found 196.0245.

(*R*)-(-)-2-Hydroxy-2-(thiophen-3-yl)acetic acid ((*R*)-2m). Thiophen-3-yl glyoxal hydrate (*R*)-2m (\mathbf{R}) -2m (\mathbf{R}) -2m

resulting solution was allowed to cool and was mixed with 730 µl phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (31.5 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 260$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. Column chromatography⁶ with DCM/MeOH/HCOOH (9:1:0.02) as eluent followed by trituration with pentane afforded pure (**R**)-2**m** (90 mg, 0.57 mmol, 90%) as brownish solid. *ee* = 99 % [UHPLC]. *[a]*²⁷*p* = -102 (c = 0.36, EtOAc). *mp:* 119-122 °C.

ΟН

Chiral UHPLC chromatogram of (*R*)-(-)-2-hydroxy-2-(thiophen-3-yl)acetic acid ((*R*)-2m) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.547	0.6268	0.62
2	20.827	101.0607	99.38

QH → OH (S)-2m

(*S*)-(+)-2-Hydroxy-2-(thiophen-3-yl)acetic acid ((*S*)-2m). Thiophen-3-yl glyoxal hydrate (1m·H₂O, 100 mg, 0.63 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The

resulting solution was allowed to cool and was mixed with 0.855 ml phosphate buffer solution containing 479 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 260$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (S)-2m (97 mg, 0.61 mmol, 97%) as brownish solid. *ee* = 98 % [UHPLC]. [a]²⁷_D = +104 (c = 0.34, EtOAc). *mp:* 116-119 °C.

Chiral UHPLC chromatogram of (S)-(+)-2-hydroxy-2-(thiophen-3-yl)acetic acid ((S)-2m) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.557	106.5547	98.91
2	20.747	1.178	1.09

Chiral UHPLC chromatogram of nearly racemic 2-hydroxy-2-(thiophen-3-yl)acetic acid (**2m**) obtained with 0.125 ml/min flow rate, 5°C column oven and 20°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	17.56	52.207	52.81
2	21.057	46.6434	47.19

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.48 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.10 (dd, *J* = 5.0, 1.1 Hz, 1H), 5.81 (bs, 1H), 5.09 (s, 1H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 173.7, 141.2, 126.5, 126.0, 122.2, 69.0; *HRMS* (*ESI*, *[M-H]*⁻) for C₆H₅O₃S⁻ calcd 156.9965, found 156.9963.

(S)-(-)-2-(5-Bromothiophen-2-yl)-2-hydroxyacetic acid ((S)-2n). 5-Bromothiophen-2-yl glyoxal hydrate (1n·H₂O, 100 mg, 0.42 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was mixed with 520 μ l

phosphate buffer solution containing glutathione, *E. coli* glyoxalase I and glyoxalase II (21 µmol, 7.85 nmol and 2.45 nmol respectively). Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 305$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*S*)-2n (86 mg, 0.36 mmol, 86%) as brownish solid. *ee* = 94 % [UHPLC]. $[\alpha]^{27}_{\ D} = -31$ (c = 0.36, EtOAc). *mp:* 104-107 °C.

Chiral UHPLC chromatogram of (S)-(-)-2-(5-bromothiophen-2-yl)-2-hydroxyacetic acid ((S)-2n) obtained with 0.8 ml/min flow rate, 30° C column oven and 5° C sample holder temperature:

5-Bromothiophen-2-yl glyoxal hydrate ($1n \cdot H_2O$, 100 mg, 0.42 mmol) was placed into a 250 mL glass flask and dissolved in sodium phosphate buffer (50 mM, pH = 7) with stirring and heating to obtain a 5 mM solution. The resulting solution was allowed to cool and was

mixed with 0.105 ml phosphate buffer solution containing 59 nmol DJ-1. Upon completion of the reaction as was determined by monitoring the drop in the UV/vis absorbance at $\lambda_{max} = 305$ nm the reaction mixture was acidified with a few drops of 12M HCl to pH = 2. The resulting mixture was extracted with ethyl acetate and the organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The crude product was triturated with pentane to afford pure (*R*)-2n (94 mg, 0.40 mmol, 94%) as brownish solid. *ee* = 97 % [UHPLC]. [*a*]²⁷_D = +39 (c = 0.54, EtOAc). *mp:* 106-109 °C.

Chiral UHPLC chromatogram of (R)-(+)-2-(5-bromothiophen-2-yl)-2-hydroxyacetic acid ((R)-2n) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

Peak No.	Retention Time (RT), min	Area (AA), mAU*min	Relative Area, %
1	2.492	25.502	98.67
2	2.840	0.343	1.33

Chiral UHPLC chromatogram of scalemic 2-(5-bromothiophen-2-yl)-2-hydroxyacetic acid (2n) obtained with 0.8 ml/min flow rate, 30°C column oven and 5°C sample holder temperature:

¹*H NMR* (300 *MHz*, *DMSO-D6*): δ 7.08 (d, *J* = 3.8 Hz, 1H), 6.90 (dd, *J* = 3.8, 1.0 Hz, 1H), 6.29 (bs, 1H), 5.24 (d, *J* = 0.8 Hz, 1H). ¹³*C*{¹*H*} *NMR* (75 *MHz*, *DMSO-D6*): δ 172.5, 145.4, 129.8, 125.6, 110.6, 68.7; *HRMS* (*ESI*, [*M-H*]⁻) for C₆H₄BrO₃S⁻ calcd 234.9070, found 234.9062.

Copies of ¹H and ¹³C{¹H} spectra of compounds 2

Copies of 1H and $^{13}C\{^1H\}$ spectra of compound ${\bf 2b}$

Copies of ¹H and ¹³C{¹H} spectra of compound 2c

Copies of ¹H and ¹³C{¹H} spectra of compound 2d

Copies of $^1H,\,^{13}C\{^1H\}$ and $^{19}F\{^1H\}$ spectra of compound 2e

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 ppm

Copies of ¹H and ¹³C{¹H} spectra of compound 2f

Copies of $^1H,\,^{13}C\{^1H\}$ and $^{19}F\{^1H\}$ spectra of compound 2k

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 -270 -280 -290 ppm

0.0

0.5

Copies of ¹H and ¹³C $\{^{1}H\}$ spectra of compound **2m**

Copies of ¹H and ¹³C{¹H} spectra of compound 2n

Copies of HRMS spectra of compounds 2

Copy of HRMS spectrum of compound 2b

Copy of HRMS spectrum of compound 2d

Copy of HRMS spectrum of compound 2e

Copy of HRMS spectrum of compound 2g

Copy of HRMS spectrum of compound 2i

Copy of HRMS spectrum of compound 2k

Copy of HRMS spectrum of compound 2m

