Supporting Information

ortho-Cyanomethylation of Aryl Fluoroalkyl Sulfoxides via SulfoniumClaisen Rearrangement

Sheng Ye, Huanhuan Wang, Guoqing, Liang, Zhengkai Hu, Kun Wan, Lei Zhang* and Bo Peng*

Table of Contents
1 General information 2
2 General procedure for the synthesis of starting matericals 2
3 General procedure for the synthesis of ortho-cyanomethylated fluoroalkylthio arenes 2 8
4 Gram-Scale reaction and elaboration of product 2 c 18
5 NMR spectra 22

1 General information

Unless otherwise indicated, all glassware was oven dried before use and all reactions were performed under an atmosphere of Nitrogen. All solvents were distilled from appropriate drying agents prior to use. All reagents were used as received from commercial suppliers. Reaction progress was monitored by thin layer chromatography (TLC) performed on plastic plates coated with silica gel GF254 with 0.2 mm thickness. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm or by staining using potassium permanganate. Compound isolation was performed on chromatography column using silica gel 60 (160-200 mesh). Neat infrared spectra were recorded using a NEXUS670 FT-IR spectrometer. Wavelengths (v) are reported in cm^{-1}. MS (EI) analysis was performed on Agilent GC-MS instrument. High-resolution mass spectrometry (HRMS) analysis was carried out using a TOF MS instrument with ESI or APCI source. All ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker AV-400 or AV-600. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform $\delta 7.26$), carbon (chloroform $\delta 77.16$). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet). Coupling constants were reported in Hertz (Hz).

2 General procedure for the synthesis of starting matericals

Acetonitrile is commercially available. Aryl fluoroalkyl sulfoxides $\mathbf{1 a}^{1}, \mathbf{1 b}^{2}, \mathbf{1} \mathbf{c}^{3}, \mathbf{1 f}^{1}, \mathbf{1 g}^{4}, \mathbf{1 i}^{5}, \mathbf{1 k}$,
$\mathbf{1 1}^{7}, \mathbf{1} \mathbf{w}^{8}$ and $\mathbf{1} \mathbf{x}^{9}$ are known compounds.

References:

[1] A. Sperga, R. Melngaile, A. Kazia, S. Belyakov and J. Veliks, J. Org. Chem., 2021, 86, 3196.
[2] Y. Nakayama, G. Ando, M. Abe, T. Koike and M. Akita, ACS Catal, 2019, 9, 6555.
[3] R. P. Singh, G. Cao, R. L. Kirchmeier and J. M. J. Org. Chem., 1999, 64, 2873.
[4] W. Lu, W. Li, Y. Zhou, Y. Xie and W.-B. Chen, Chinese Chemical Letters, 2022, 33, 4865.
[5] C. Batisse, A. Panossian, G. Hanquet, F. R. Leroux, Chem. Commun., 2018, 54, 10423.
[6] C. Batisse, M. F. Cespedes Davila, M. Castello, A. Messara, B. Vivet, G. Marciniak, A. Panossian, G. Hanquet and F. R Leroux, Tetrahedron, 2019, 75, 3063.
[7] A. Messara, A. Panossian, K. Mikami, G. Hanquet and F. R. Leroux, Angew. Chem. Int. Ed., 2023, 62, e202215899.
[8] M. Hu, J.-N. He, Y. Liu, T. Dong, M. Chen, C. Yan, Y. Ye and B. Peng, Eur. J. Org. Chem., 2020, 193.
[9] G. K. S. Prakash, J. Hu, T. Mathew, G. A. Olah, Angew. Chem., Int. Ed., 2003, 42, 5216

(2-chlorophenyl)(fluoromethyl)sulfane (1d)

To a solution of aryl sulfide (5 mmol) in $\mathrm{DCM}(0.3 \mathrm{M})$ was added a solution of m-CPBA (1.0 equiv) in DCM (0.3 M) dropwise at $0^{\circ} \mathrm{C}$. Progress of the oxidation was checked by TLC. After completion of the reaction, saturated aqueous NaHCO_{3} was added to the reaction mixture and the resulting solution was extracted with DCM . The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was further purified by column chromatography on silica gel to afford compound $\mathbf{1 n}$ in $90 \%(0.87 \mathrm{~g})$ as colorless oil. $(\mathrm{Rf}=0.3$ eluent: Petroleum ether $/ \mathrm{EtOAc}=5 / 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.95(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}$, $1 \mathrm{H}), 7.44(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=47.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=48.4,8.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 136.2(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 133.1,130.6,130.1,128.4,127.4,97.5(\mathrm{~d}, J$ $=221.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-213.9$

IR (neat): 3066, 2922, 1572, 1449, 1105, 1012, 934, 875, 730, 522.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CIFOSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 214.9704, found: 214.9699.

1e

1-chloro-3-((fluoromethyl)sulfinyl)benzene (1e)

Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.7 \mathrm{~g}, 90 \%$ yield. $(\mathrm{Rf}=0.21$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=2 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.68(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.10(\mathrm{~d}, J=47.7 \mathrm{~Hz}$, 2H).
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): $\delta 140.9(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 136.2,132.4,130.9,124.8,122.9,97.9(\mathrm{~d}, J$ $=223.0 \mathrm{~Hz}$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-212.6$

IR (neat): 3058, 2928, 1575, 1461, 1022, 994, 781, 735, 675.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{CIFOSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 214.9704, found: 214.9699.

1 j

((perfluorohexyl)sulfinyl)benzene ($\mathbf{1} \mathbf{j}$)

Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $3.1 \mathrm{~g}, 70 \%$ yield. $(\mathrm{Rf}=0.49$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.151 ~ M H z, ~ C D C l ~ 3, ~ C-F ~ d e c o u p l i n g\right): ~ \delta 135.2, ~ 134.0, ~ 131.3, ~ 129.9, ~ 129.6, ~ 129.6, ~ 129.6, ~$ $126.9,117.3,111.9,110.9,110.3$.
${ }^{19} \mathbf{F} \mathbf{N M R}\left(377 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta-81.0,-111.4(\mathrm{~d}, J=245.3 \mathrm{~Hz}),-119.3-121.3(\mathrm{~m}),-122.4(\mathrm{~d}, J=323.4$ $\mathrm{Hz}),-122.7(\mathrm{~d}, J=245.3 \mathrm{~Hz}),-126.3$.

IR (neat): 2367, 1447, 1233, 1198, 1128, 883, 747, 686, 531.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{5} \mathrm{OF}_{13} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 466.9746, found: 466.9747.

1n
ethyl 2-((4-bromophenyl)sulfinyl)-2,2-difluoroacetate (1n)
Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.8 \mathrm{~g}, 55 \%$ yield. $(\mathrm{Rf}=0.44$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.72(\mathrm{dd}, J=8.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}$, CDCl $_{3}$): $\delta 159.2(\mathrm{t}, J=27.5 \mathrm{~Hz}), 135.2,132.8,128.4,127.6,117.8(\mathrm{t}, J=$ $303.8 \mathrm{~Hz}), 64.5,13.9$.
${ }^{19}$ F NMR (565MHz, CDCl ${ }_{3}$): $\delta-108.4(\mathrm{~d}, J=233.0 \mathrm{~Hz}),-111.4(\mathrm{~d}, J=237.1 \mathrm{~Hz})$
IR (neat): $3085,2986,1758,1570,1473,1300,1130,1065,819,728$
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 348.9316, found: 348.9317.

10

Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.7 \mathrm{~g}, 62 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.94-7.80(\mathrm{~m}, 4 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl $\left.{ }_{3}\right): \delta 158.9(\mathrm{t}, J=27.2 \mathrm{~Hz}), 141.7,133.0,126.9,118.0(\mathrm{t}, J=304.1 \mathrm{~Hz})$, $117.4,117.0,64.8,14.0$.
${ }^{19}$ F NMR (377 MHz, CDCl $_{3}$): $\delta-106.7(\mathrm{~d}, J=248.3 .0 \mathrm{~Hz}),-110.6(\mathrm{~d}, J=237.6 \mathrm{~Hz})$
IR (neat): 2916, 2234, 1759, 1301, 1132, 1090, 904, 724, 648, 551.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 296.0163$, found: 296.0166

1p
ethyl 2-((3-bromophenyl)sulfinyl)-2,2-difluoroacetate (1p)
Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $2.3 \mathrm{~g}, 70 \%$ yield. $(\mathrm{Rf}=0.26$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 159.1(\mathrm{t}, J=28.1 \mathrm{~Hz}), 138.3,136.4,130.9,128.8,124.7,123.7$, $118.1(\mathrm{t}, J=303.2 \mathrm{~Hz}), 64.5$, 13.9.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-108.3(\mathrm{~d}, J=221.6 \mathrm{~Hz}),-110.6(\mathrm{~d}, J=231.2 \mathrm{~Hz})$
IR (neat): 2990, 2252, 1758, 1460, 1296, 1095, 904, 784, 725, 676, 545.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 348.9316$, found: 348.9317.

1q
ethyl 2-((3-chlorophenyl)sulfinyl)-2,2-difluoroacetate (1q)
Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.8 \mathrm{~g}, 65 \%$ yield. $(\mathrm{Rf}=0.21$ eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.25$ $(\mathrm{m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 159.1(\mathrm{t}, J=28.5 \mathrm{~Hz}), 138.2,135.9,133.5,130.7,126.0,124.3$, $118.0(\mathrm{t}, J=302.6 \mathrm{~Hz}), 64.5,13.9$.
${ }^{19}$ F NMR (565 MHz, CDCl $\left.{ }_{3}\right): \delta-108.3(\mathrm{~d}, J=228.2 \mathrm{~Hz}),-110.7(\mathrm{~d}, J=231.9 \mathrm{~Hz})$
IR (neat): 3063, 2986, 1760, 1463, 1300, 1131, 1011, 963, 786, 678.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 304.9821, found: 304.9824.

$1 r$
ethyl 2-((3,5-dichlorophenyl)sulfinyl)-2,2-difluoroacetate (1r)
Following a procedure similar to the synthesis of 1d, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.5 \mathrm{~g}, 48 \%$ yield. $(\mathrm{Rf}=0.33$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.62-7.56(\mathrm{~m}, 3 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}$, CDCl $\left._{3}\right): \delta 158.9(\mathrm{t}, J=27.8 \mathrm{~Hz}), 139.8,136.6,133.3,124.3,118.0(\mathrm{t}, J=$ $302.8 \mathrm{~Hz}), 64.7,14.0$.
${ }^{19}$ F NMR (565 MHz, CDCl 3): $\delta-107.4(\mathrm{~d}, J=230.0 \mathrm{~Hz}),-110.3(\mathrm{~d}, J=231.6 \mathrm{~Hz})$
IR (neat): 3069, 2988, 1761, 1567, 1304, 1139, 1107, 962, 801, 667, 554.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 338.9431$, found: 338.9438 .

1s
ethyl 2-((3,5-dimethylphenyl)sulfinyl)-2,2-difluoroacetate (1s)
Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.7 \mathrm{~g}, 62 \%$ yield. $(\mathrm{Rf}=0.24$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$): $\delta 7.31(\mathrm{~s}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}$, $6 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left.{ }_{3}\right): \delta 159.5(\mathrm{t}, J=28.4 \mathrm{~Hz}), 139.5,135.8,135.1,123.5,118.1(\mathrm{t}, J=$ $303.1 \mathrm{~Hz}), 64.1,21.3,13.9$.
${ }^{19}$ F NMR (377 MHz, CDC1 ${ }_{3}$): $\delta-109.4(\mathrm{~d}, J=222.7 \mathrm{~Hz}),-111.3(\mathrm{~d}, J=228.7 \mathrm{~Hz})$.
IR (neat): 2985, 1759, 1607, 1447, 1303, 1128, 1081, 963, 853, 683, 560.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]:$299.0524, found: 299.0524.

1t

Following a procedure similar to the synthesis of 1d, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $2.0 \mathrm{~g}, 70 \%$ yield. $(\mathrm{Rf}=0.44$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.94-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 4.37$ $-4.26(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 159.3(\mathrm{t}, J=28.3 \mathrm{~Hz}), 135.2,134.3,133.3,130.2,128.2,127.9$, $119.0(\mathrm{t}, J=302.4 \mathrm{~Hz}), 64.5,13.9$.
${ }^{19}$ F NMR (565 MHz, CDCl $\mathbf{C D}_{3}$): $\delta-106.5(\mathrm{~d}, J=219.3 \mathrm{~Hz}),-108.9(\mathrm{~d}, J=219.3 \mathrm{~Hz})$
IR (neat): 2987, 1759, 1452, 1303, 1132, 1084, 957, 760, 698, 459.

HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClF}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 304.9821$, found: 304.9824.

$1 u$
ethyl 2-((2-bromophenyl)sulfinyl)-2,2-difluoroacetate (1u)
Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $2.2 \mathrm{~g}, 68 \%$ yield. $(\mathrm{Rf}=0.27$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$): $\delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.58(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl 3): $\delta 159.4(\mathrm{t}, J=29.2 \mathrm{~Hz}), 137.2,134.5,133.5,128.8,128.5,121.8$, $119.2(\mathrm{t}, J=303.8 \mathrm{~Hz}), 64.5,14.0$.
${ }^{19}$ F NMR (565 MHz, CDCl $\left.{ }_{3}\right): \delta-105.5(\mathrm{~d}, J=218.1 \mathrm{~Hz}),-108.3(\mathrm{~d}, J=218.3 \mathrm{~Hz})$.
IR (neat): 2988, 1762, 1568, 1449, 1304, 1134, 1017, 955, 760, 537, 452.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrF}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 348.9316$, found: 348.9317 .

1v

ethyl 2,2-difluoro-2-(o-tolylsulfinyl)acetate (1v)

Following a procedure similar to the synthesis of $\mathbf{1 d}$, the title compound was prepared from 10 mmol of corresponding aryl sulfide and obtained as colorless oil, $1.8 \mathrm{~g}, 70 \%$ yield. $(\mathrm{Rf}=0.35$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.91(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H})$, $7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.21(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 159.6(\mathrm{t}, J=27.6 \mathrm{~Hz}), 138.4,134.9,133.0,131.3,127.1,126.2$, $119.0(\mathrm{t}, J=303.6 \mathrm{~Hz}), 64.3,18.6,13.9$.
${ }^{19}$ F NMR (565 MHz, CDCl ${ }_{3}$): $\delta-106.2(\mathrm{~d}, J=226.1 \mathrm{~Hz}),-110.7(\mathrm{~d}, J=230.9 \mathrm{~Hz})$
IR (neat): 2987, 1759, 1473, 1300, 1130, 1011, 962, 759, 562, 457.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]:$285.0367, found: 285.0371 .

3 General procedure for the synthesis of ortho-cyanomethylated fluoroalkylthio arenes 2

To a mixture of aryl fluoroalkyl sulfoxides ($\mathbf{1}, 0.5 \mathrm{mmol}$) in solvent (3 mL) was added $\mathrm{Tf}_{2} \mathrm{O}$ $(126 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ at $\mathrm{T}^{1}\left(-30\right.$ to $\left.50^{\circ} \mathrm{C}\right)$. After stirring for $\mathrm{t}^{1}(10 \mathrm{~min}$ to 5 h$), \mathrm{DABCO}(112$ $\mathrm{mg}, 1.0 \mathrm{mmol}$) was added to the mixture under the same temperature. The mixture was then stirred for another 10 min . After that, the mixture was passed through a short silica gel colum and concentrated under vacuum. The resulting residue was further purified by silica gel column chromatography to give compounds 2 .

2a

2-(2-((fluoromethyl)thio)phenyl)acetonitrile (2a)
Following the general procedure, using acetonitrile as solvent, $\mathrm{T}^{1}\left(-30^{\circ} \mathrm{C}\right), \mathrm{t}^{1}(10$ $\min)$, the title compound was obtained as colorless oil, $63 \mathrm{mg}, 70 \%$ yield. $(\mathrm{Rf}=$ 0.31, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$): $\delta 7.66(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.35(\mathrm{~m}$, $2 \mathrm{H}), 5.66(\mathrm{~d}, J=52.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 134.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 132.7(\mathrm{~d}, J=2.2 \mathrm{~Hz})$, 129.7, 129.6, 129.4, 117.7, $89.0(\mathrm{~d}, J=220.2 \mathrm{~Hz}), 22.9$.
${ }^{19}$ F NMR (377 MHz, CDCl $_{3}$): $\delta-182.5(\mathrm{t}, J=52.3 \mathrm{~Hz})$.
IR (neat): 2923, 2252, 1721, 1473, 1321, 962, 905, 728, 752, 649.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FNSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]:$204.0254, found: 204.0255. $\mathrm{mg}, 76 \%$ yield. $(\mathrm{Rf}=0.3$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.70(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=56.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 138.7,135.9,131.6,129.8,129.4,124.6,120.2(\mathrm{t}, J=276.8 \mathrm{~Hz})$, 117.6, 23.2.
${ }^{19}$ F NMR (565 MHz, CDCl 3): $\delta-91.4(\mathrm{~d}, J=57.2 \mathrm{~Hz})$.
IR (neat): 2920, 2249, 1474, 1316, 1068, 1032, 904, 794, 748, 439.
HRMS (ESI-TOF): calculated for $\left[{ }_{9}{ }_{9}{ }_{7} \mathrm{~F}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]:$222.0159, found: 222.0157.

2c

2-(2-((trifluoromethyl)thio)phenyl)acetonitrile (2c)

Following the general procedure, using acetonitrile as solvent, $\mathrm{T}^{1}\left(50^{\circ} \mathrm{C}\right), \mathrm{t}^{1}(5 \mathrm{~h})$, the title compound was obtained as colorless oil, $87 \mathrm{mg}, 80 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.57(\mathrm{~m}$, 1H), $7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$): $\delta 139.4,136.2,132.7,130.0,129.7,129.3(\mathrm{q}, J=310.0 \mathrm{~Hz}), 123.4$, 117.3, 23.1.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-42.3$.
IR (neat): 2917, 2360, 2253, 1475, 1130, 1103, 905, 760, 729, 649, 462.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 240.0065$, found: 240.0066.

2d

2-(3-chloro-2-((fluoromethyl)thio)phenyl)acetonitrile (2d)
Following the procedure of 2a, the title compound was obtained as colorless oil, 70 $\mathrm{mg}, 65 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$): $\delta 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{dd}, J=10.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=$ $52.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl $\left._{3}\right): \delta 140.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 138.3,131.5,130.6,130.1,127.8,117.6$, $88.7(\mathrm{~d}, J=222.2 \mathrm{~Hz}), 24.5$.
${ }^{19}$ F NMR ($565 \mathbf{M H z}$, CDCl $_{3}$): $\delta-185.1(\mathrm{t}, J=52.3 \mathrm{~Hz})$.
IR (neat): 2947,2254, 1562, 1445, 1319, 1152, 966, 905, 779, 720, 648.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CIFNSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 237.9864, found: 237.9868.

2e
$C 2 / C 6=25 / 75$

2-(4-chloro-2-((fluoromethyl)thio)phenyl)acetonitrile (2e)
Following the procedure of $\mathbf{2 a}$, the title compound was obtained as colorless oil, $86 \mathrm{mg}, 80 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (Reio-isomers of $\mathbf{2 e}(\mathrm{C} 2 / \mathrm{C} 6=25 / 75)$ were obtained): $\delta 7.64(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 0.75 \mathrm{H}, \mathrm{C} 6), 7.61(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{C} 2), 7.47-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 0.75 \mathrm{H}, \mathrm{C} 6), 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{C} 2), 5.69(\mathrm{~d}, J=51.7 \mathrm{~Hz}$, $0.5 \mathrm{H}), 5.68(\mathrm{~d}, J=52.5 \mathrm{~Hz}, 1.5 \mathrm{H}), 4.13(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{C} 2), 3.90(\mathrm{~s}, 1.5 \mathrm{H}, \mathrm{C} 6)$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 136.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 135.6,135.1,134.7(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 133.0$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 130.6,130.4,130.3(\mathrm{~d}, J=2.9 \mathrm{~Hz})$, 129.6, 117.1, 116.3, $88.6(\mathrm{~d}, J=219.1 \mathrm{~Hz}), 88.3(\mathrm{~d}, J=219.1 \mathrm{~Hz}), 22.4$, 20.7.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-183.1(\mathrm{t}, J=52.6 \mathrm{~Hz}),-183.4(\mathrm{t}, J=51.2 \mathrm{~Hz})$.
IR (neat): 2948, 2252, 1584, 1471, 1321, 1103, 964, 906, 814,.725.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClFNSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 237.9864, found: 237.9868.

$2 f$

2-(5-chloro-2-((fluoromethyl)thio)phenyl)acetonitrile (2f)
Following the procedure of $\mathbf{2 a}$, the title compound was obtained as colorless oil, $78 \mathrm{mg}, 73 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=8.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=52.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$): $\delta 135.9,135.4(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=$ $2.8 \mathrm{~Hz}), 129.7,129.4,117.0,88.9(\mathrm{~d}, J=219.5 \mathrm{~Hz}), 22.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta-182.9(\mathrm{t}, J=52.6 \mathrm{~Hz})$.
IR (neat): 2945, 2253, 1582, 1466, 1106, 904, 820, 724, 648.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{CIFNSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 237.9864, found: 237.9868 .

2g

2-(3-chloro-2-((difluoromethyl)thio)phenyl)acetonitrile (2g)
Following the procedure of $\mathbf{2 a}$, the title compound was obtained as colorless oil, 40 $\mathrm{mg}, 34 \%$ yield. $(\mathrm{Rf}=0.27$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=57.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 142.6,139.1,132.5,130.6,128.2,124.3(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 120.0(\mathrm{t}$, $J=277.9 \mathrm{~Hz}), 117.2,24.4$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-91.7$
IR (neat): 2924, 2252, 1562, 1447, 1297, 1153, 1036, 905, 782, 759.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClF}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 255.9770$, found: 255.9767.

2h
$\mathrm{C} 2 / \mathrm{C} 6=25 / 75$

2-(4-chloro-2-((difluoromethyl)thio)phenyl)acetonitrile (2h)
Following the procedure of 2a, the title compound was obtained as colorless oil, $90 \mathrm{mg}, 77 \%$ yield. $(\mathrm{Rf}=0.28$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) (Reio-isomers of $\mathbf{2 h}(\mathrm{C} 2 / \mathrm{C} 6=25 / 75)$ were obtained): $\delta 7.70$ (d, $J=2.2 \mathrm{~Hz}, 0.75 \mathrm{H}, \mathrm{C} 6$), 7.66 (dd, $J=7.8,1.1 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{C} 2$), $7.59-7.54$ (m, 1 H), $7.51-7.48$ (m, 0.75H, C6), 7.36 (t, $J=8.0 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{C} 2$), $6.85(\mathrm{t}, J=54.9 \mathrm{~Hz}, 0.25 \mathrm{H}, \mathrm{C} 2)$, $6.85(\mathrm{t}, J=55.4 \mathrm{~Hz}, 0.75 \mathrm{H}, \mathrm{C} 6), 4.19(\mathrm{~s}, 0.5 \mathrm{H}, \mathrm{C} 2), 3.99$ ($\mathrm{s}, 1.5 \mathrm{H}, \mathrm{C} 6$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 138.0,137.3,136.1,134.9,134.3,132.6,131.7,130.8,130.2,127.5$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 122.5,119.7(\mathrm{t}, J=277.4 \mathrm{~Hz}), 117.2,116.1,22.8$, 21.2. ${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$): δ-91.2, -91.5.

IR (neat): 2968, 2257, 1585, 1473, 1412, 1315, 1035, 911, 819, 753. HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClF}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 255.9770, found: 255.9767.

$2 i$

2-(5-chloro-2-((difluoromethyl)thio)phenyl)acetonitrile (2i)

Following the procedure of $\mathbf{2 a}$, the title compound was obtained as colorless oil, $82 \mathrm{mg}, 70 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=56.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 139.9,138.2,137.7,130.0,129.7,122.7(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 119.7(\mathrm{t}$, $J=279.7 \mathrm{~Hz}), 116.7,23.2$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-91.5.
IR (neat): 2926, 2256, 1581, 1466, 1314, 1187, 1065, 1027, 824, 754.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClF}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 255.9770$, found: 255.9767 .

2j

2-(2-((perfluorohexyl)thio)phenyl)acetonitrile (2j)
Following the procedure of $\mathbf{2 c}$, the title compound was obtained as colorless oil, $210 \mathrm{mg}, 90 \%$ yield. $(\mathrm{Rf}=0.5$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $_{3}$, C-F decoupling): $\delta 140.2,137.0,132.9,130.1,129.6,123.4,121.8$, 117.3, 117.2, 111.1, 111.0, 110.4, 108.6, 23.1.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~ C D C l} 3, ~ F-F ~ d e c o u p l i n g$): $\delta-80.8,-86.1,-119.3,-121.4,-122.8,-126.1$.
IR (neat): 2917, 2257, 1475, 1234, 1195, 1144, 909, 735, 707, 636, 447.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{~F}_{13} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 489.9906, found: 489.9912.

2k
ethyl 2-((2-(cyanomethyl)phenyl)thio)-2,2-difluoroacetate (2k):
Following the general procedure, using $\mathrm{DCM} / \mathrm{MeCN}$ (volume ratio: 2:1) as solvent, $\mathrm{T}^{1}\left(-30^{\circ} \mathrm{C}\right), \mathrm{t}^{1}(1 \mathrm{~h})$. the title compound was obtained as colorless oil, $117 \mathrm{mg}, 86 \%$ yield. $(\mathrm{Rf}=0.25$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.70(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{dd}, J=7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C l}_{3}$: $\delta 161.3(\mathrm{t}, J=31.3 \mathrm{~Hz}), 161.0,139.5,136.6,132.3,129.8,129.3$, 120.3 (t, $J=288.6 \mathrm{~Hz}), 117.5,64.1,23.1,13.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-80.8$.
IR (neat): 2985, 2253, 1760, 1473, 1443, 1292, 1098,1056, 972, 757.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 294.0371$, found: 294.0373.

Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $107 \mathrm{mg}, 75 \%$ yield. $(\mathrm{Rf}=0.25$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=20 / 1)$
21
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.22$ $-7.17(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C D C l} 3$): $\delta 161.4(\mathrm{t}, J=31.8 \mathrm{~Hz}), 143.2,139.4,136.3,130.5,130.1,123.1$, $120.3(\mathrm{t}, J=287.3 \mathrm{~Hz}), 117.7,64.1,23.0,21.5,13.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ-81.2.
IR (neat): 2985, 2250,1760, 1479,1446,1291,1100, 972, 820, 723.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 308.0527, found: 308.0528.

2m
Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $110 \mathrm{mg}, 72 \%$ yield. $(\mathrm{Rf}=0.27$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=20 / 1)$
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 161.1(\mathrm{t}, J=31.8 \mathrm{~Hz}), 140.5,138.9,138.2,130.0,129.6,122.2$, $120.0(\mathrm{t}, J=289.4 \mathrm{~Hz}), 116.9,64.3,23.1,13.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta-80.6$.
IR (neat): 2983, 2265, 1759, 1582, 1466, 1298, 1103, 970, 823, 717.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 327.9981$, found: 327.9984 .

2n
Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $122 \mathrm{mg}, 70 \%$ yield. $(\mathrm{Rf}=0.26$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=20 / 1)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H})$, $1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 161.1(\mathrm{t}, J=31.2 \mathrm{~Hz}), 140.6,138.3,132.9,132.6,127.1,122.8$, 119.9 ($\mathrm{t}, J=287.5 \mathrm{~Hz}$), 116.9, 64.4, 23.0, 14.0.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-80.6$.
IR (neat): 2988, 2261, 1759, 1465, 1295, 1091, 1007, 971, 821, 715.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 371.9476$, found: 371.9474.

20
ethyl 2-((4-cyano-2-(cyanomethyl)phenyl)thio)-2,2-difluoroacetate (20) Following the procedure of $\mathbf{2 k}$, the title compound was obtained as light yellow oil, $44 \mathrm{mg}, 30 \%$ yield. $(\mathrm{Rf}=0.24$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$): $\delta 7.94(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=8.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 160.7(\mathrm{t}, J=31.2 \mathrm{~Hz}), 139.8,137.9,132.8,132.4,130.0,119.9(\mathrm{t}$, $J=291.4 \mathrm{~Hz}), 117.1,116.3,116.2,64.6,23.2,14.0$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-79.4.
IR (neat): 2923, 2235, 2210, 1762, 1474, 1301, 1131, 1095, 973, 837, 723.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 319.0323$, found: 319.0330.

${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$ (Reio-isomers of $\mathbf{2 p}(\mathbf{C} 2 / \mathrm{C} 6=7 / 93)$ were obtained): $\delta 7.86(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 0.93 \mathrm{H}, \mathrm{C} 6), 7.79-7.77(\mathrm{~m}, 0.07 \mathrm{H}, \mathrm{C} 2), 7.73-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.93 \mathrm{H}$, C6), $7.29(\mathrm{t}, J=7.9 \mathrm{~Hz}, 0.07 \mathrm{H}, \mathrm{C} 2), 4.36-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 0.14 \mathrm{H}, \mathrm{C} 2), 4.01$ (s, 1.86H, C6), $1.34-1.31(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 161.0(\mathrm{t}, J=31.0 \mathrm{~Hz}), 141.7,136.7,135.5,135.3,131.0,130.4$, $125.8,122.6,120.1(\mathrm{t}, J=288.9 \mathrm{~Hz}), 117.0,115.6,64.4,53.6,22.8,14.0$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-80.4,-80.5$.
IR (neat): 2985, 2385, 2257, 1760, 1470, 1293, 1099, 972, 815, 784, 717.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 371.9476$, found: 371.9474.

2q
C2/C6 $=12: 88$
ethyl 2-((5-chloro-2-(cyanomethyl)phenyl)thio)-

2,2-difluoroacetate (2q)

Following the procedure of $\mathbf{2 k}$, the title compound was obtained as light yellow oil, $124 \mathrm{mg}, 81 \%$ yield. $(\mathrm{Rf}=0.22$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$.
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)($ Reio-isomers of $\mathbf{2 q}(\mathrm{C} 2 / \mathrm{C} 6=12 / 88)$ were obtained): $\delta 7.73(\mathrm{~s}, 0.12 \mathrm{H}$, C2), $7.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 0.88 \mathrm{H}, \mathrm{C} 6), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.12 \mathrm{H}, \mathrm{C} 2), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.88 \mathrm{H}$, C6), 7.53 (dd, $J=8.3,2.1 \mathrm{~Hz}, 0.88 \mathrm{H}, \mathrm{C} 6), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.12 \mathrm{H}, \mathrm{C} 2), 4.34-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.20$ ($\mathrm{s}, 0.24 \mathrm{H}, \mathrm{C} 2$), $4.02(\mathrm{~s}, 0.76 \mathrm{H}, \mathrm{C} 6), 1.34-1.31(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$): $\delta, 161.00(\mathrm{t}, J=31.4 \mathrm{~Hz}), 138.9,138.1,135.0,134.8,133.5,133.2$, $132.4,130.8,130.7,130.1,126.0,125.5,124.3,120.1(\mathrm{t}, J=288.5 \mathrm{~Hz}), 117.1,115.9,64.4,53.6$, 22.7, 21.3, 14.0.
${ }^{19}$ F NMR ($565 \mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta-80.4,-80.5$.
IR (neat): 2985, 2365, 2255, 1760, 1473, 1293, 1102, 1010, 972, 822, 718.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 327.9981, found: 327.9984.

ethyl 2-((3,5-dichloro-2-(cyanomethyl)phenyl)thio)-2,2-difluoroacetate (2r)
Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil $42 \mathrm{mg}, 25 \%$ yield. $(\mathrm{Rf}=0.33$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\mathbf{C D}_{3}$: $\delta 160.8(\mathrm{t}, J=31.1 \mathrm{~Hz}), 137.6,136.7,135.4,133.5,133.0,128.1$, 119.8 (t, $J=294.0 \mathrm{~Hz}), 115.5,64.6,21.0,14.0$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-80.0$.
IR (neat): 3067, 2984, 2339, 1759, 1566, 1137, 1009, 854, 799, 666.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 361.9591$, found: 361.9594.

2s
ethyl 2-((2-(cyanomethyl)-3,5-dimethylphenyl)thio)-2,2difluoroacetate (2s) Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $135 \mathrm{mg}, 90 \%$ yield. $(\mathrm{Rf}=0.25$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 161.4(\mathrm{t}, J=31.7 \mathrm{~Hz}), 139.1,138.7,137.8,135.0,132.0,124.4$, $120.1(\mathrm{t}, J=288.8 \mathrm{~Hz}), 117.0,64.0,20.8,20.6,19.8$, 13.9.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ-81.3.
IR (neat): 2983, 2252, 1761, 1604, 1470, 1288, 1098, 975, 861, 723, 708.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{SNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 322.0684$, found: 322.0684.

2t
ethyl 2-((2-chloro-6-(cyanomethyl)phenyl)thio)-2,2-difluoroacetate (2t) Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $43 \mathrm{mg}, 28 \%$ yield. $(\mathrm{Rf}=0.33$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $)_{3}$): $\delta 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 161.0(\mathrm{t}, J=31.6 \mathrm{~Hz}), 143.7,139.8,133.0,130.6,128.1,123.7$, $119.8(\mathrm{t}, J=290.9 \mathrm{~Hz}), 117.3,64.3,24.4,13.9$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta-80.6$.
IR (neat): 2924, 2360, 1761, 1574, 1452, 1165, 1134, 968, 783, 759.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 327.9981, found: 327.9984 .

$2 u$
ethyl 2-((2-bromo-6-(cyanomethyl)phenyl)thio)-2,2-difluoroacetate (2u)
Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $52 \mathrm{mg}, 30 \%$ yield. $(\mathrm{Rf}=0.28$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (600 MHz, $\mathbf{C D C l}_{3}$): $\delta 7.76-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}$, $1 \mathrm{H}), 4.33(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 160.9(\mathrm{t}, J=31.6 \mathrm{~Hz}), 139.8,135.1,134.1,133.2,128.8,125.7$, $119.8(\mathrm{t}, J=291.6 \mathrm{~Hz}), 117.3,64.4,24.9,13.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta-80.4$
IR (neat): 2923, 2358, 2262, 1761, 1444, 1299, 1129, 970, 780, 725.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrF}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 371.9476$, found: 371.9474 .

2v
ethyl 2-((2-(cyanomethyl)-6-methylphenyl)thio)-2,2-difluoroacetate (2v) Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $47 \mathrm{mg}, 33 \%$ yield. $(\mathrm{Rf}=0.37$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$): $\delta 7.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, $\mathbf{C D C l}_{3}$): $\delta 161.3$ ($\mathrm{t}, J=31.2 \mathrm{~Hz}$), 147.1, 137.7, 131.8, 131.1, 127.3, 123.4, $120.8(\mathrm{t}, J=289.0 \mathrm{~Hz}), 117.9,64.1,23.9,22.4,13.9$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ-79.7.
IR (neat): 2929, 2247, 1760, 1462, 1297, 1091, 968, 854, 769, 711.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 308.0527$, found: 308.0528

2w

2-(2-((1,1-difluoro-2-oxo-2-phenylethyl)thio)phenyl)acetonitrile (2w)

Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $88 \mathrm{mg}, 58 \%$ yield. $(\mathrm{Rf}=0.31$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=10 / 1)$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 8.14-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.58$ $-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl ${ }_{3}$): $\delta 185.0(\mathrm{t}, J=28.2 \mathrm{~Hz}), 139.6,136.5,135.2,132.1,130.8,130.5$, $129.8,129.3129 .0,124.5(\mathrm{t}, J=292.3 \mathrm{~Hz}), 124.1,117.6,23.1$
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathbf{C D C l}_{3}$): δ-75.4.
IR (neat): 2982, 2250, 1700, 1596, 1449, 1241, 1073, 987, 823, 757.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NOSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 326.0422$, found: 326.0422.

$2 x$

2-(2-((difluoro(phenylsulfonyl)methyl)thio)phenyl)acetonitrile (2x)

Following the general procedure, using $\mathrm{DCM} / \mathrm{MeCN}$ (volume ratio: $2: 1$) as solvent, T^{1} (room temperature), $\mathrm{t}^{1}(5 \mathrm{~h})$. the title compound was obtained as colorless oil, $139 \mathrm{mg}, 82 \%$ yield. $(\mathrm{Rf}=0.2$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.99-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.42$
$-7.38(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right): \delta 139.9,137.0,136.0,132.6,132.0,131.0,129.9,129.7,129.4,128.1$
$(\mathrm{t}, J=325.9 \mathrm{~Hz}), 122.8(\mathrm{t}, J=3.2 \mathrm{~Hz}), 117.5,23.2$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): δ-78.0.
IR (neat): 3066, 2359, 2252, 1582, 1448, 1348, 1169, 903, 725, 682, 577.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 362.0091$, found: 362.0094.

$2 y$

2-(2-((1,1-difluoro-2-oxo-2-(pyrrolidin-1-yl)ethyl)thio)phenyl)acetonitrile (2y)

Following the procedure of $\mathbf{2 k}$, the title compound was obtained as colorless oil, $120 \mathrm{mg}, 81 \%$ yield. $(\mathrm{Rf}=0.2$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=5 / 1)$
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$): $\delta 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=7.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.90-1.85(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}, \mathbf{C D C l}_{3}$): $\delta 159.4(\mathrm{t}, J=28.1 \mathrm{~Hz}), 139.7,136.7,131.9,129.6,129.0,124.8$, $124.6(\mathrm{t}, J=290.5 \mathrm{~Hz}), 117.8,47.9,46.8,26.5,23.5,23.1$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-76.5$.
IR (neat): 2979, 2252, 1661, 1461, 1342, 1131, 904, 722, 647, 545.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{OSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 319.0687$, found: 319.0688.

4 Gram-Scale reaction and elaboration of product 2 c

Gram-Scale reaction

To a mixture of aryl trifluoromethyl sulfoxide ($\mathbf{1 c}, 10.0 \mathrm{mmol}$) in acetonitrile (60 mL) was added $\mathrm{Tf}_{2} \mathrm{O}(2.5 \mathrm{~mL}, 15 \mathrm{mmol})$ at $50^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~h}, \mathrm{DABCO}(2.2 \mathrm{~g}, 20 \mathrm{mmol})$ was added to the mixture under the same temperature. The mixture was then stirred for another

10 min . After that, the mixture was passed through a short silica gel colum and concentrated under vacuum. The resulting residue was further purified by silica gel column chromatography to give compounds $\mathbf{2 c}$ in 75% yield (1.63 g) as colorless oil.

Elaboration of product 2c:

2-(2-((trifluoromethyl)thio)phenyl)acetamide (3)

To a solution of $\mathbf{2 c}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$ in DMSO $(1 \mathrm{~mL})$ were sequentially added $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ aq., $140 \mu \mathrm{~L})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(14 \mathrm{mg}, 0.1 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirring for 12 h , the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with DCM and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the mixture was filtered and concentrated under vacuum. The resulting residue was further purified by column chromatography on silica gel to afford compound $\mathbf{3}$ in 76% yield $(89 \mathrm{mg})$ as white solid, m.p. $83-84{ }^{\circ} \mathrm{C}(\mathrm{Rf}=0.19$, eluent: $\mathrm{PE} / \mathrm{EtOAc}=1 / 1)$
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 1 \mathrm{H}), 5.97$ (brs, 1H), $5.50(\mathrm{brs}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 172.5,140.5,138.7,132.0,131.7,129.5(\mathrm{q}, J=308.8 \mathrm{~Hz}), 128.8$, 124.7, 41.5
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): δ-42.4.
IR (neat): 3392, 3200, 2933, 1660, 1288, 1143, 1058, 935, 762, 594.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NOSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 258.0171, found: 258.0173.

1-(2-((trifluoromethyl)thio)phenyl)pent-4-en-2-one (4)

To a mixture of $\mathbf{2 c}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$, allyl bromide $(91 \mathrm{mg}, 0.75 \mathrm{mmol})$ and Zn (powder, $131 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF (2.0 mL) was added anhydrous $\mathrm{AlCl}_{3}(27 \mathrm{mg}, 0.2 \mathrm{mmol})$ at -
$15^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for 3 h at the same temperature. Then to the mixture was added $\mathrm{HCl}(1.0 \mathrm{M}, 5 \mathrm{~mL})$ dropwise. After stirring for another 30 min , the mixture was neutralized with NaHCO_{3} (sat.), extracted with DCM. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting residue was further purified by column chromatography on silica gel to afford compound 4 in $65 \%(85 \mathrm{mg})$ as colorless oil. $(\mathrm{Rf}=0.58$, eluent: Petroleum ether $/ \mathrm{EtOAc}=5 / 1)$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}): $\delta 7.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H})$, $7.28(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 3.31-3.29$ (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$): $\delta 204.8,140.1,138.5,131.8,131.7,130.2,128.5,129.6(q, J=309.8$ $\mathrm{Hz})$, 124.7, 119.5, 47.74, 47.73.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-42.6$.
IR (neat): $3420,2929,2362,1720,1475,1109,1056,923,759,476$.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{OSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]$: 283.0375, found: 283.0381.

2-(2-((trifluoromethyl)thio)phenyl)pent-4-enenitrile (5)

To the solution of $(i-\mathrm{pr})_{2} \mathrm{NH}(84 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.6 \mathrm{M}$, $0.37 \mathrm{~mL})$ slowly at $-78{ }^{\circ} \mathrm{C}$. After stirring for $10 \mathrm{~min}, \mathbf{2 c}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added dropwise to the mixture at $-78^{\circ} \mathrm{C}$. After 5 min , allyl bromide ($50 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) was added. After stirring for 1 h , the mixture was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ (sat.), extracted with DCM. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The resulting residue was further purified by column chromatography on silica gel to afford compound $\mathbf{5}$ in 70% (90 $\mathrm{mg})$ as colorless oil. $(\mathrm{Rf}=0.41$, eluent: Petroleum ether $/ \mathrm{EtOAc}=10 / 1)$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.16(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}$, 1H), $2.66-2.54(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, $\mathbf{C D C l}_{3}$): $\delta 141.1,139.1,132.6,132.1,129.5,129.3,129.1(\mathrm{q}, J=309.9 \mathrm{~Hz})$, $122.9,120.11,120.08,39.6,35.3$.
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-42.3$.
IR (neat): 2923, 2852, 2243, 1644, 1472, 1106, 1055, 761, 649, 499.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 280.0378$, found: 280.0378 .

2-(2-((trifluoromethyl)sulfinyl)phenyl)acetonitrile (6)

To a solution of $\mathbf{2 c}(109 \mathrm{mg}, 0.5 \mathrm{mmol})$ in DCM $(0.3 \mathrm{M})$ was added m-CPBA $(112 \mathrm{mg}, 0.55$ $\mathrm{mmol})$. The resulting solution was stirred at room temperature for 24 h . After completion of the reaction, saturated aqueous NaHCO_{3} was added to the reaction mixture and the resulting solution was extracted with DCM. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was further purified by column chromatography on silica gel to afford compound 6 in $65 \%(76 \mathrm{mg})$ as colorless oil. $(\mathrm{Rf}=$ 0.15 , eluent: Petroleum ether $/ \mathrm{EtOAc}=5 / 1$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$): $\delta 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H})$, $4.05(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 134.4,133.6,130.8,130.7,129.7,127.7,125.1(\mathrm{q}, J=336.5 \mathrm{~Hz})$, 116.2, 20.2.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta-72.8$.
IR (neat): 2254, 1476, 1187, 1077, 905, 726, 648, 575, 458, 436.
HRMS (ESI-TOF): calculated for $\left[\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NOSNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)\right]: 256.0014$, found: 256.0013.

5 NMR spectra

YL-1-WHH-1

1d

[^0]YL-1-WHH-1

1d

YL-2-WHH

YL-2-WHH

1e

1j

whh-yl-12


~~~~


1j



WHH-YL-3

\section*{ \\ }
\(\stackrel{\sim}{\sim}\)



WHH-YL-3

N~~


\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{0} \\
\hline \\
\hline
\end{tabular}

\section*{WHH-YL-3 in}



1n

\begin{tabular}{llllllllllllllllllllllllllll}
0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2 \\
\hline\((\mathrm{ppm})\)
\end{tabular}

YL-4WHH



YL-4.WHH

~~~~



```
YL-4.WH%
```



```
10


WHH-YL-5 1p

\section*{}



1p


\footnotetext{
10 \(\begin{array}{lllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}\)
}

\section*{WHH-YL-5 1p}


1p


\footnotetext{
\(\begin{array}{lllllllllllllllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2\end{array}\)
}


WHH-YL-6 19


\(\stackrel{n}{\stackrel{m}{1}}\)


1q


\footnotetext{

}


19
\(\begin{array}{llllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\)
WHH－YL－7 1 r
\(\underbrace{\substack{\text { ñ }}}\)

等等



WHH-YL-7 1 r

N
\(\stackrel{\circ}{\substack{\text { I } \\ \text { I }}}\)




WHH-YL-7 1 r



票告天等




whn－y－y

－号
\(\stackrel{\sim}{n} \stackrel{\infty}{\sim}\)

1s






1t


WHH-YL-9 1t


WHH-YL-9 1 t
~충․․
ò oo o


1t
\(\qquad\)


WHH-YL-10 1 u

Nin on in
\(\stackrel{\circ}{\stackrel{\circ}{1}}\)

\(1 u\)



1u


WHH-YL-11 1

\section*{}
\(\stackrel{\sim}{\sim}\)


1v


WHH-YL-11 1v



1v


WHH-YL-11 iv


1v



2a

ys-04-02-3
~~

2a

\footnotetext{
\(\begin{array}{llllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}\)
}



2b



\section*{Ys-03-100-2}
\[
\begin{aligned}
& \dot{\sim} \\
& \underset{\sim}{j} \\
& \underset{\sim}{G}
\end{aligned}
\]

\footnotetext{


2b
\(\qquad\)

}

2c

2c

\(y s-03-98-3\)


Ys-04-08-1


Ys-04-08-1



2d

\footnotetext{

}

ys-04-22-3


シュ


2e
\(C 2 / C 6=25 / 75\)



2 e
\(C 2 / C 6=25 / 75\)

ys-04-08-3

\(\stackrel{\text { T }}{\substack{1}}\)


2f



\(2 f\)

Ys-04-14-1

\(y s-04-14-1\)


\(\stackrel{\Im}{\square}\)


\begin{abstract}


2 g

\end{abstract}



2h
\(C 2: C 6=25: 75\)


ys-04-23-2



2h
\(\mathrm{C} 2: \mathrm{C} 6=25: 75\)

WHH-23-11-24-B


WHH-23-11-24-B

~~~~

\(2 \mathbf{i}\)


Wнн-23-11-24-B

\(2 i\)

ys-04-15-1

\section*{ \\ -}






2j



WHH-23-12-4-1

2k


\footnotetext{
10
200 \(180 \quad 1\)
\(170 \quad 16\)
}


ベ



WHH-23-12-4



WHH-23-10-12-C1

\section*{}

~~


WHH-23-10-12-C1


21


WHH-23-10-12-C
\(\underset{\substack{4 \\ \hline \\ 1}}{\sim}\)


21
\(\underbrace{\substack{\underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \\ \sim}}\)
\(\stackrel{\sim}{\sim}\)


WHH-23-10-12-A1

\section*{}

䒫



2m


\(2 n\) WHH-23-10-24-D1


2n




2n WHH-23-10-24-D1


2n

ys-04-20-3

```

ys-04-20-3

```

```

20

```


```

2p
（C2／C6＝7／93）

```

2. WHH-23-12-7-3


2p
\((C 2 / C 6=7 / 93)\)


2q WHH-23-12-7-3
\(\begin{array}{ll}6 & 9 \\ 0 & 8 \\ 0 & 0 \\ 1\end{array}\)

CN
2p
(C2/C6 = 7/93)



2r WHH-23-12-7-2
\[
\begin{aligned}
& \text { 축 }
\end{aligned}
\]


2q
\[
\mathrm{C} 2 / \mathrm{C} 6=12: 88
\]


2q
\(\mathrm{C} 2 / \mathrm{C} 6=12: 88\)
\(\begin{array}{lllllllllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2\end{array}\)

WHH－23－12－4－3
\(\underbrace{\infty}\)

骪品热


WHH-23-12-4


2s WHH-23-12-1-1
\(\infty\)
\(\infty\)
\(i\)
\(i\)

\(2 r\)

\(\begin{array}{llllllllllllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2\end{array}\)


WHH-23-11-16-B1

\section*{}

~in on m


2s


\(\begin{array}{llllllllllllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2\end{array}\)
ys-04-20-1 \(\qquad\)

Nin



2t

2u
un
0
\(i\)
\(i\)

2t

ys-44-19-2

ye-v4-19-2

-
\(\stackrel{\infty}{\infty} \stackrel{8}{\sim}\)

\(2 u\)

2u

\(\begin{array}{lllllllllllllllllllllllllllll}0 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -2 \\ f 1(\mathrm{ppm})\end{array}\)

\(y s-04-14-5\)
~~~

2v

\(\begin{array}{lllllllllllllllllllllllllllll}10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}\)
ys-04-14-5
\(\bullet\)
\(\stackrel{\circ}{0}\)
\(\stackrel{i}{i}\)





2w

\footnotetext{
\(\begin{array}{llllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 \\ \mathrm{f1}(\mathrm{ppm}) & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}\)
}



2x

ys-04-26-1




\section*{ye-04-19-1}


2x





3


ys-04-09-1
\(\stackrel{N}{\underset{+}{i}}\)


3


ys-0426-3



4

\({ }^{\text {ys-04-26-3 }}{ }^{9} \mathrm{FNMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-42.57\).



5




7 whh-23-12-18-1
\(\stackrel{\sim}{\sim}\)


ys-04-26-5

\section*{}
-~~~
\(\stackrel{\sim}{\sim}\)


6


\footnotetext{

}
```


[^0]:

