Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Stereoselective Synthesis of Thailandamide A Methyl Ester

Himangshu Sharma, Swapnamoy Ganguly, Moinul Haque Sahana and Rajib Kumar Goswami*

School of Chemical Sciences Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India. Email: <u>ocrkg@iacs.res.in</u>

Supporting Information

Contents

1.1. Figure S1: Key 2D-NMR correlations and structural confirmation of thailandamide A methyl ester (4)	3
2.1. Table S-1. Comparison of the ¹ H NMR spectra (MeOD- d_4) of synthetic methyl ester 4 and isolated acid 1^1	54
2.2. Table S-2. Comparison of the ${}^{13}C$ NMR spectra (MeOD-d ₄) of synthetic methyl ester 4 and isolated acid 1^1	55
Figure S2 : UV-VIS spectrum of synthetic thailandamide A methyl ester 4 and natural thailandamide A 1^{1} in methanol:	57
3.1. Table S-3. Initial efforts towards the hydrolysis of methyl ester of thailandamide A :	57
4.1. Copies of ¹ H NMR, ¹³ C NMR, 2D NMR, UV-VIS and HRMS spectraS	8

1.1. Figure S1: Key 2D-NMR correlations and structural confirmation of thailandamide A methyl ester (4)

2.1. Table S-1. Comparison of the ¹H NMR spectra (MeOD-d₄) of synthetic methyl ester 4 and isolated acid 1^1

	24a 25 I H 21	19a 0 0	H 11 ₂ 7	OMe O
31a 30 32a 31				
34	29 27 25 23 22 DH O 220	20 18 16 14	12 10 8 6	
HO \sim_{33} \sim_{23}	228			4a
Position	δ^{1} H [nnm]	δ ¹ H [nnm]	٨δ]
1 USITION	(Natural)	(Synthetic)		
	(\mathbf{MeOD}_{d})	(500 MHz		
		MeOD-da)		
1				
2	2.57 (m)	2.65-2.62 (m)	0.06	-
3	3.66 (m)	3.67 (d, 4.4)	0.01	-
4				
5	6.18 (m)	6.19 (d, 1.8)	0.01	•
6	6.49 (dd 14.5, 11.1)	6.50 (dd, 14.5,	0.01	
		11.1)		
7	6.63 (dd 14.5, 11.1)	6.66-6.60 (m)	0.0	
8	6.10 (d 11.1)	6.11 (d, 11.2)	0.01	
9				
10	6.19 (m)	6.23-6.19 (m)	0.02	
11	5.80 (dt 15.4, 7.2)	5.79 (dt, 15.3,	0.01	
		7.4)		
12	2.35 (m)	2.38-2.34 (m)	0.01	-
13	4.15 (m)	4.16 (tdd, 11.7,	0.01	
		8.8, 5.8)		-
14	2.75 (m)	2.75 (dq, 9.0, 4.8,	0.0	
		4.2)		-
15				-
16	6.24 (d 15.1)	6.25 (d, 9.5)	0.01	-
17	7.62 (dd 15.1, 11.8)	7.63 (dd, 15.1,	0.01	
		11.8)		
18	6.19 (m)	6.23-6.19 (m)	0.02	-
19				
20	6.26 (d 15.7)	6.28 (d, 11.0)	0.02	
21	5.94 (dd 15.7, 6.0)	5.93 (dd, 15.8,	-0.01	
		6.1)		
22	4.54 (m)	4.55 (td, 7.2, 3.5)	0.01	
23				
24	2.36 (m)	2.41-2.37 (m)	0.03	

25	2.08 (m), 2.29 (m)	2.09-2.07 (m) ,	0.0, -0.01
		2.3-2.26 (m)	
26	5.43 (dt 15.2, 6.7)	5.45-5.39 (m)	-0.01
27	5.53 (dt 15.2, 6.7)	5.55-5.45 (m)	-0.03
28	2.06 (m), 2.12 (m)	2.07-2.03 (m),	-0.01, -0.01
		2.12-2.09 (m)	
29	3.68 (m)	3.67-3.64 (m)	-0.02
30	2.58 (m)	2.59-2.56 (m)	-0.005
31			
32,32a	6.98 (d 8.3)	6.98 (8.4)	0.0
33,33a	6.69 (d 8.3)	6.69 (d, 8.4)	0.0
34			
2a	0.94 (d 7.0)	0.93 (d, 7.2)	-0.01
3 a	3.14 (s)	3.12 (s)	-0.02
4 a	1.67 (s)	1.67 (s)	0.0
9a	1.88 (s)	1.89 (s)	0.01
19a	1.95 (s)	1.95 (s)	0.0
22a	1.24 (d 6.7)	1.24 (d, 6.9)	0.0
24a	1.09 (d 6.8)	1.1 (d, 6.8)	0.01
NH			
CH ₃ of ester		3.68 (s)	

2.2. Table S-2. Comparison of the ${}^{13}C$ NMR spectra (MeOD-d₄) of synthetic methyl ester 4 and isolated acid 1^1

Position	δ ¹³ C [ppm] (Natural) (MeOD-d4)	δ ¹³ C [ppm] (Synthetic) (500 MHz, MeOD-d ₄)	Δδ	Δδ - 0.1ppm**
4 a	11.0	11.1	0.1	0.0
9a	12.9	13.0	0.1	0.0
19a	13.4	13.5	0.1	0.0
2a	14.7	14.7	0.0	-0.1
24a	18.0	18.2	0.2	0.1
22a	20.8	21.0	0.2	0.1
25	38.5	38.6	0.1	0.0
28	41.0	41.1	0.1	0.0
12	42.1	42.2	0.1	0.0
24	42.3	42.4	0.1	0.0

30	43.4	43.5	0.1	0.0
2	44.4	44.4	0.0	-0.1
22	47.7	47.8	0.1	0.0
14	48.4	47.9	-0.5	-0.6
3 a	56.5	56.6	0.1	0.0
13	69.5	69.6	0.1	0.0
29	73.7	73.8	0.1	0.0
3	91.0	91.1	0.1	0.0
33,33 a	116.1	116.2	0.1	0.0
11	126.6	126.8	0.2	0.1
6	129.0	129.1	0.1	0.0
18	129.9	130.0	0.1	0.0
27	130.0	130.1	0.1	0.0
16	130.8	130.9	0.1	0.0
26	131.2	131.3	0.1	0.0
31	131.3	131.5	0.2	0.1
8	131.4	131.5	0.1	0.1
7	131.5	131.7	0.2	0.1
32,32a	131.5	131.6	0.1	0.0
5	132.9	133.1	0.2	0.1
20	134.4	134.5	0.1	0.0
4	134.8	134.7	-0.1	-0.2
21	136.1	136.2	0.1	0.0
9	137.0	137.2	0.2	0.1
10	138.8	138.9	0.1	0.0
17	140.5	140.5	0.0	-0.1
19	146.3	146.4	0.1	0.0
34	156.7	156.8	0.1	0.0
23	178.0	177.9	-0.1	-0.2
1	179.5	178.2	-1.3	-1.4
15	201.8	201.9	0.1	0.0
CH ₃ of ester		52.3		

** Corrected for what seems to be a systematic drift of ca. - 0.1 ppm

Figure S2 : UV-VIS spectrum of synthetic thailandamide A methyl ester 4 and natural thailandamide A 1^1 in methanol:

3.1. Table S-3. Initial efforts towards the hydrolysis of methyl ester of thailandamide A :

Entry	Conditions	Result
1	LiOH, THF:H ₂ O:MeOH(3:1:1), 0 °C, 30 min	Decomposed
2	Me ₃ SnOH, DCE, 60 °C, 6 h	Decomposed
3	TMSOK, THF, rt, 10 min	Trace (Product characterised
		by HRMS)

Reference

 Nguyen, T.; Ishida, K.; Jenke-Kodama, H.; Dittmann, E.; Gurgui, C.; Hochmuth, T.; Taudien, S.; Platzer, M.; Hertweck, C.; Piel, J. Exploiting the mosaic structure of transacyltransferase polyketide synthases for natural product discovery and pathway dissection. *Nat. Biotechnol.* 2008, 26, 225-233.

4.1. Copies of ¹H NMR, ¹³C NMR, 2D NMR, UV-VIS and HRMS spectra

¹H NMR spectrum of compound 10 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 10 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 11 (300 MHz, CDCl₃):

¹H NMR spectrum of pivaloyl deprotected product of compound 11 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 13 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 15a (300 MHz, CDCl₃):

¹H NMR spectrum of compound 15b (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 15b (75 MHz, CDCl₃):

¹H NMR spectrum of compound 16 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 8 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 8 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 17 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 18 (300 MHz, CDCl₃):

FT-IR spectrum of compound 18:

¹H NMR spectrum of compound 19 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 19 (75 MHz, CDCl₃):

FT-IR spectrum of compound 19:

¹H NMR spectrum of compound 24 (300 MHz, CDCl₃):

¹H NMR spectrum of compound 20 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 20 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 27 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 27 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 6 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 6 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 28 (300 MHz, CDCl₃):

¹³C NMR spectrum of compound 28 (75 MHz, CDCl₃):

¹H NMR spectrum of compound 4 (600 MHz, MeOD-*d*₄):

19a

DEPT spectrum of compound 4 (75 MHz, MeOD-d₄):

HMBC spectrum of compound 4 (300 MHz, MeOD-d₄):

HSQC spectrum of compound 4 (300 MHz, MeOD-*d*₄):

HRMS spectrum of Thailandamide A Methyl Ester (4):