Supplementary Information

Self-assembly and salt-induced thermoresponsive properties of amphiphilic PEG/cation random terpolymers in water

Rikuto Kanno,¹ Makoto Ouchi,¹ and Takaya Terashima^{1*}

¹ Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University

Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

*Correspondence to: terashima.takaya.2e@kyoto-u.ac.jp

Contents

Experimental Section						
Supporting D	Data					
Scheme S1.	. Synthesis of amphiphilic random ter(co)polymers					
Figure S1.	Living radical copolymerization of PEGMA, DMAEMA, and DMA					
Figure S2.	¹ H NMR spectra of P/C-1/1 and the precursor					
Figure S3.	¹ H NMR spectrum of P/C-1/0					
Figure S4.	¹ H NMR spectra of P/C-0/1 and the precursor					
Table S1.	Characterization of PEG/cation (1/1) random terpolymers and their micelles	S12				
Figure S5.	DLS measurements of ter(co)polymer micelles	S14				
Figure S6.	Cloud point measurements of P/C-1/1 micelles in water with NaCl	S15				
Figure S7.	Cloud point measurements of P/C-1/0 micelles in water with NaCl	S16				
Figure S8.	Cloud point measurements of P/C-2/1 micelles in water with NaCl	S17				
Figure S9.	Cloud point measurements of P/C-1/2 micelles in water with NaCl	S18				
Figure S10.	Cloud point measurements of P/C-1/3 or -0/1 micelles in water with NaCl	S19				
Figure S11.	Cloud point measurements of P/C-1/1 micelles in water with various salts	S19				
Figure S12.	DLS measurements of P/C-1/1 micelles in water with various salts	S20				
Figure S13.	Temperature-variation DLS measurements of P/C-1/1 micelles	S21				
Figure S14.	Temperature-variation DLS measurements of P/C-2/1 micelles	S22				
Figure S15.	Temperature-variation DLS measurements of P/C-1/2 micelles	S23				
Figure S16.	Temperature-variation DLS measurements of P/C-1/3 micelles	S24				
Figure S17.	Temperature-variation DLS measurements of P/C-0/1 micelles	S25				
Figure S18.	Hydrodynamic diameters of P/C-2/1 micelles in water	S26				

Experimental Section

Materials.

Poly(ethylene glycol) methyl ether methacrylate [PEGMA: $CH_2=CMeCO_2(CH_2CH_2O)_nMe$, $M_n =$ 475, n = 8.5 on average, Aldrich], dodecyl methacrylate (DMA, Wako, purity >95%), and N,Ndimethyl amino ethyl methacrylate (DMAEMA, TCI, purity >98.5%) were purified by an inhibitor removal column (Aldrich) and degassed by triple vacuum-argon purge cycles before use. Ethyl 2chloro-2-phenylacetate (ECPA, Aldrich, purity >97%) was distilled under reduced pressure before use. Triethylamine (TCI, purity >99%) and 1,2,3,4-tetrahydronaphthalene (tetralin, TCI, purity >98%; an internal standard for ¹H NMR analysis) were dried overnight over calcium chloride and distilled from calcium hydride under reduced pressure before use. Ru(Ind)Cl(PPh₃)₂ (Aldrich) and Ru(Cp*)Cl(PPh₃)₂ (Aldrich) were used as received and handled in a glove box under moisture- and oxygen-free argon (H₂O < 1 ppm, O₂ < 1 ppm). 4-Dimethylamino-1-butanol (4-DMAB, TCI, purity > 98%) and tributylamine (TCI, purity >99%) were degassed by triple vacuum-argon purge cycles before use. Ethanol (Wako, dehydrated), toluene (Wako, deoxidized), distilled water (Wako), ultrapure water (Wako), chloroform (Wako, purity >99%), N,N-dimethylformamide (Wako, purity >99.5%), THF (Wako, purity >99.5%), acetonitrile (Wako, purity >99.5%), iodomethane (Wako, purity >99.5%), NaNO₃ (Wako, purity >99.5%), NaCl (Wako, purity >99.5%), Na₂SO₄ (Wako, purity >99%), NaI (Wako, purity >99.5%), and CH₃COONa (Wako, purity 98%) were used as received.

Characterization.

Molecular weight distribution (MWD) curves, M_n , and M_w/M_n of the DMAEMA-based precursors of PEG/cation random terpolymers and a cation copolymer were measured by size exclusion chromatography (SEC) in THF containing 20 mM triethylamine at 40 °C (flow rate: 1 mL/min) on three linear-type polystyrene gel columns (Shodex K-805L: exclusion limit = 4 × 10⁶; particle size = 10 µm; pore size = 5000 Å; 0.8 cm i.d. × 30 cm) that were connected to a Jasco PU-2080 precision pump, a Jasco RI-1531 refractive index detector, and a Jasco UV-970 UV/vis detector set at 250 nm. The columns were calibrated against 11 standard poly(MMA) samples (PSS, Polymer Standard Service GmbH, Ready Cal Kit: $M_p = 2380-2200000$). MWD curves, number-average molecular weight (M_n), and M_w/M_n ratio of a PEG copolymer were measured by SEC in DMF containing 10 mM LiBr at 40 °C (flow rate: 1 mL/min) on three linear-type polystyrene gel columns (Shodex KF-805L: exclusion limit = 4 × 10⁶; particle size = 10 µm; pore size = 5000 Å; 0.8 cm i.d. × 30 cm) that were connected to a Jasco PU-2080 precision pump, a Jasco RI-2031 refractive index detector, and a Jasco UV-2075 UV/vis detector set at 270 nm. The columns were calibrated against 11 standard poly(MMA) samples (PSS, Polymer Standard Service GmbH, Ready Cal Kit: $M_p = 2380-2200000$). MWD curves, number-average molecular weight (M_n), and M_w/M_n ratio of all the polymer micelles were measured by SEC in water containing 100 mM NaNO₃ at 30 °C (flow rate: 1 mL/min) on a polymethacrylate gel column (TOSOH TSKgel G5000PW_{XL}-CP: exclusion limit = 1 × 10⁶; particle size = 10 µm; pore size = 1000 Å; 0.78 cm i.d. × 30 cm) that was connected to a Jasco PU-4180 precision pump, a Jasco RI-4030 refractive index detector, a Jasco FP-4020 FL detector set at 336 and 396 nm (excitation wavelength = 290 nm), and a Jasco UV-4075 UV/vis detector set at 346 nm. The columns were calibrated against 11 standard poly(ethylene oxide) and poly(ethylene glycol) samples (Agilent Technologies: M_p = 238–504000; M_w/M_n = 1.00–1.08). Before characterization, the DMAEMA-based precursors of PEG/cation random terpolymers and a cation copolymer were purified by preparative SEC in CHCl₃ containing 50 mM triethylamine at room temperature (flow rate: 10 mL/min) on Shodex KF-5003 (exclusion limit = 7 × 10⁴; particle size = 20 µm; 5.0 cm i.d. × 30 cm). The PEG copolymer was purified by preparative SEC in DMF at room temperature (flow rate: 15 mL/min) on TOSOH TSKgel α-3000 (exclusion limit = 1 × 10⁵; particle size = 13 µm; 5.5 cm i.d. × 30 cm). ¹H NMR measurement was performed in CDCl₃, acetone-*d*₆, and DMSO-*d*₆ on a JEOL JNM-ECA500 spectrometer operating at 500.16 MHz.

Absolute weight-average molecular weight (M_w) of polymers in DMF or 100 mM NaNO₃aq was determined by multi-angle laser light scattering (MALLS) equipped with SEC on a Dawn HELEOS II instrument (Wyatt Technology, semiconductor laser, $\lambda = 663$ nm). The SEC was performed in DMF containing 10 mM LiBr at 40 °C (flow rate: 1 mL/min) on three linear-type polystyrene gel columns (Shodex KF-805L) or in water containing 100 mM NaNO₃ at 30 °C (flow rate: 1 mL/min) on a polymethacrylate gel column (TOSOH TSKgel G5000PW_{XL}-CP). These columns were connected to a Jasco PU-4180 precision pump, a Jasco RI-4030 refractive index detector, and a Jasco UV-4075 UV/vis detector set at 250 nm (for DMF) or 346 nm (for 100 mM NaNO₃aq). *dn/dc* of their polymer micelles in 100 mM NaNO₃ aqueous solutions was determined by OPTILAB DSP Interferometric Refractrometer (Wyatt Technology, $\lambda = 690$ nm).

Cloud point measurement of the aqueous solutions of polymer micelles was performed on Jasco V-750 spectrophotometer equipped with a peltier thermostatted cell holder (ETCS-761, JASCO). To determine cloud point, transmittance of the aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C: optical path length = 1.0 cm, heating or cooling rate = 1.0 or -1.0 °C/min.

Dynamic light scattering (DLS) was measured on ELSZ-0 (Otsuka Electronics, Semiconductor laser: $\lambda = 658$ nm). The measuring angle was 165° and the data was analyzed by CONTIN method.

Polymer Synthesis.

The synthesis of P/C-1/0 and the DMAEMA-based precursors of P/C-2/1, P/C-1/1, P/C-1/2, P/C-1/3, and P/C-0/1 was carried out by syringe technique under argon in glass tubes equipped with a three-way stopcock. Typical procedures were shown below.

The DMAEMA-based precursor of P/C-1/1: Ru(Cp*)Cl(PPh₃)₂ (0.0080 mmol, 6.4 mg) was placed in a 50 mL round bottom flask. Then, ethanol (4.4 mL), tetralin (0.080 mL), a 500 mM toluene solution of 4-DMAB (4-DMAB = 0.16 mmol, 0.32 mL), PEGMA (2.0 mmol, 0.88 mL), DMAEMA (2.0 mmol, 0.35 mL), DMA (4.0 mmol, 1.2 mL), and a 39 mM ethanol solution of ECPA (ECPA = 0.050 mmol, 1.3 mL) were added sequentially into the tube at 25 °C under argon (total volume: 10 mL). The flask was placed in an oil bath kept at 40 °C. After 23 h, the reaction was terminated by cooling the solution to -78 °C. The conversion of PEGMA, DMAEMA, and DMA was determined by ¹H NMR in CDCl₃ with tetralin as an internal standard: Conv. PEGMA/DMAEMA/DMA = 71%/73%/77%. The quenched mixture was evaporated to dryness. The crude product was purified by preparative SEC in CHCl₃ containing 50 mM Et₃N as an eluent to remove their unreacted monomers and the catalyst residue. SEC (THF, 20 mM Et₃N, PMMA std.): $M_n = 44200$, $M_w/M_n =$ 1.15. ¹H NMR [500 MHz, acetone- d_6 , 25 °C, $\delta = 2.05$ (acetone)]: $\delta 8.5-8.0$ (pyrene unit in PyMA), 7.4-7.2 (Ph in ECPA), 4.2-4.1 (-COOCH2CH2O-), 4.1-4.0 (-COOCH2CH2N-), 4.0-3.9 (-COOCH₂CH₂CH₂-), 3.8–3.7 (-COOCH₂CH₂O-), 3.7–3.5 (-OCH₂CH₂O-), 3.5-3.4 (-CH₂OCH₃), 3.4-3.3 (-OCH₃), 2.6-2.4 (-COOCH₂CH₂N-), 2.3-2.1 (-N(CH₃)₂), 2.1-1.8 (-CH₂C(CH₃)-), 1.8-1.6 (- $COOCH_2CH_2(CH_2)_9CH_3$, 1.6-1.2 (- $COOCH_2CH_2(CH_2)_9CH_3$), 1.2–0.8 (- $COO(CH_2)_{11}CH_3$, -CH₂C(CH₃)-). PEGMA/DMAEMA/DMA = 43/42/92. *M*_n (NMR) = 50600.

P/C-1/0: Ru(Ind)Cl(PPh₃)₂ (0.010 mmol, 7.8 mg) was placed in a 50 mL round bottom flask. Then, toluene (7.3 mL), tetralin (0.10 mL), a 400 mM toluene solution of *n*-Bu₃N (*n*-Bu₃N = 0.10 mmol, 0.25 mL), PEGMA (2.5 mmol, 1.1 mL), DMA (2.5 mmol, 0.73 mL), and a 40 mM toluene solution of ECPA (ECPA = 0.02 mmol, 0.50 mL) were added sequentially into the tube at 25 °C under argon (total volume: 5.0 mL). The glass tube was placed in an oil bath kept at 80 °C. After 37 h, the reaction was terminated by cooling the solution to -78 °C. The conversion of PEGMA and DMA was determined by ¹H NMR in CDCl₃ with tetralin as an internal standard: Conv. PEGMA/DMA = 79%/78%. The quenched mixture was evaporated to dryness. The crude product was purified by preparative SEC in DMF as an eluent to remove their unreacted monomers and the catalyst residue. SEC (DMF, 10 mM LiBr, PMMA): $M_n = 37350$, $M_w/M_n = 1.27$. dn/dc (DMF) = 0.043. SEC-MALLS (DMF, 0.01 M LiBr): $M_{w,DMF} = 82100$. ¹H NMR [500 MHz, acetone-*d*₆, 25 °C, $\delta = 2.05$ (acetone)]: δ 7.4-7.2 (Ph in ECPA), 4.2-4.1 (-COOCH₂CH₂O-), 4.0-3.9 (-COOCH₂CH₂CH₂-), 3.8-3.7 (-COOCH₂CH₂O-), 3.7-3.5 (-OCH₂CH₂O-), 3.5-3.4 (-CH₂OCH₃), 3.4-3.3 (-OCH₃), 2.6-2.4 (-COOCH₂CH₂O-), 2.3-2.1 (-N(CH₃)₂), 2.1-1.8 (-COO(CH₂C(H₃)-), 1.8-1.6 (-COOCH₂CH₂O)-). PEGMA/DMA = 1.27 (COOCH₂CH₂O)-). PEGMA/DMA = 1.27 (COOCH₂CH₃O)-). PEGMA/DMA = 1.27 (COOCH₂CH₃)-). PEGMA/DMA = 1.27 (COOCH₃)-). PEGMA/D

90/89. M_n (NMR) = 65800. $M_{w,calcd} = M_n$ (NMR) x $M_w/M_n = 83300$.

The DMAEMA-based precursor of **P/C-0/1**: Ru(Ind)Cl(PPh₃)₂ (0.015 mmol, 12 mg) was placed in a 50 mL round bottom flask. Then, toluene (12 mL), tetralin (0.15 mL), a 400 mM toluene solution of *n*-Bu₃N (*n*-Bu₃N = 0.15 mmol, 0.38 mL), DMAEMA (3.8 mmol, 0.63 mL), DMA (3.8 mmol, 1.10 mL), and a 40 mM toluene solution of ECPA (ECPA = 0.030 mmol, 0.75 mL) were added sequentially into the tube at 25 °C under argon (total volume: 10 mL). The flask was placed in an oil bath kept at 80 °C. After 47 h, the reaction was terminated by cooling the solution to -78 °C. The conversion of DMAEMA and DMA was determined by ¹H NMR in CDCl₃ with tetralin as an internal standard: Conv. DMAEMA/DMA = 73%/70%. The quenched mixture was evaporated to dryness. The crude product was purified by preparative SEC in CHCl₃ containing 50 mM Et₃N, PMMA std.): *M*_n = 33900, *M*_w/*M*_n = 1.27. ¹H NMR [500 MHz, acetone-*d*₆, 25 °C, δ = 2.05 (acetone)]: δ 7.4-7.2 (Ph in ECPA), 4.1–4.0 (-COOCH₂CH₂N-), 4.0–3.9 (-COOCH₂CH₂CH₂CH₂), 2.6-2.4 (-COOCH₂CH₂N-), 2.3-2.1 (-N(CH₃)₂), 2.1–1.8 (-CH₂C(CH₃)-), 1.8-1.6 (-COOCH₂CH₂(CH₂)₉CH₃), 1.6-1.2 (-COOCH₂CH₂(CH₂)₉CH₃), 1.2–0.8 (-COO(CH₂)₁₁CH₃, -CH₂C(CH₃)-). DMAEMA/DMA = 98/90. *M*_n (NMR) = 38400.

The DMAEMA-based precursors of PEG/cation (1/1) terpolymers with different DPs: Ru(Cp*)Cl(PPh₃)₂ (0.030 mmol, 24 mg) was placed in a 100 mL round bottom flask. Then, ethanol (20 mL), tetralin (0.30 mL), a 500 mM toluene solution of 4-DMAB (4-DMAB = 0.60 mmol, 0.60 mmolmL), PEGMA (7.5 mmol, 3.3 mL), DMAEMA (7.5 mmol, 1.3 mL), DMA (15 mmol, 4.4 mL), and a 570 mM ethanol solution of ECPA (ECPA = 0.15 mmol, 0.26 mL) were added sequentially into the tube at 25 °C under argon (total volume: 30 mL). The flask was placed in an oil bath kept at 40 °C. The polymerization solution (about 10 mL) was sampled by a syringe at 5 h and 10 h and cooled to -78 °C to terminate the reaction. At 17 h, the remaining solution was also cooled to -78 °C to terminate the reaction. The conversion of PEGMA, DMAEMA, and DMA was determined by ¹H NMR in CDCl₃ with tetralin as an internal standard: Conv. PEGMA/DMAEMA/DMA = 29%/32%/35% (5 h), 45%/50%/53% (10 h), and 63%/68%/69% (17 h). The quenched mixtures were evaporated to dryness. The crude products were purified by preparative SEC in CHCl₃ containing 50 mM Et₃N as an eluent to remove their unreacted monomers and the catalyst residue. SEC (THF containing 20 mM Et₃N, PMMA std.): $M_n = 18600, 26100, 32100; M_w/M_n = 1.12, 1.13, 1.17.$ ¹H NMR [500 MHz, acetone- d_6 , 25 °C, δ = 2.05 (acetone)]: δ 8.5–8.0 (pyrene unit in PyMA), 7.4-7.2 (Ph in ECPA), 4.2–4.1 (-COOCH₂CH₂O-), 4.1–4.0 (-COOCH₂CH₂N-), 4.0–3.9 (-COOCH₂CH₂CH₂-), 3.8-3.7 (-COOCH₂CH₂O-), 3.7-3.5 (-OCH₂CH₂O-), 3.5-3.4 (-CH₂OCH₃), 3.4-3.3 (-OCH₃), 2.6-2.4 (-COOCH₂C<u>H</u>₂N-), 2.3-2.1 (-N(C<u>H</u>₃)₂), 2.1–1.8 (-C<u>H</u>₂C(CH₃)-), 1.8-1.6 (-COOCH₂C<u>H</u>₂(CH₂)₉CH₃), 1.6-1.2 $(-COOCH_2CH_2(CH_2)_9CH_3),$ 1.2 - 0.8(-COO(CH₂)₁₁CH₃, -CH₂C(CH₃)-). PEGMA/DMAEMA/DMA = 17/17/41, 25/25/57, 36/31/71. *M*_n (NMR) = 21500, 30700, 39000.

Quaternization of DMAEMA-Based Precursors for PEG/Cation or Cation Ter(co)polymers.

A typical procedure to produce **P/C-1/1** was given: In a 50 mL round-bottomed flask, the dichloromethane solution of the DMAEMA-based precursor (100 mg/mL, 11 mL, M_n (NMR) = 50600) was added and evaporated to dryness. The resulting polymer (1.1 g, 0.022 mmol, DMAEMA unit = 0.9 mmol) was dissolved in THF/acetonitrile (1/1, v/v, 22 mL). Into the solution, iodomethane (3.0 mL, 48 mmol; [CH₃I]/[DMAEMA] = 50/1, mol/mol) was added. The mixture was stirred at 0 °C overnight. After removing THF, acetonitrile, and iodomethane in vacuo, **P/C-1/1** was obtained. ¹H NMR [500 MHz, DMSO-*d*₆, 25 °C, δ = 2.50 (DMSO)] (Figure S2): δ 7.4-7.1 (Ph in ECPA), 4.7-4.2 (-COOCH₂CH₂CH₂N⁺-), 4.1-3.9 (-COOCH₂CH₂O-), 3.9-3.7 (-COOCH₂CH₂CH₂CH₂-), 3.57-3.45 (-COOCH₂CH₂O-), 3.57-3.45 (-OCH₂CH₂O-), 3.45-3.4 (-CH₂OCH₃), 3.3-3.1 (-OCH₃, -COOCH₂CH₂CH₂N⁺-, -N⁺(CH₃)₃), 2.0-1.7 (-CH₂C(CH₃)-), 1.6-1.5 (-COOCH₂CH₂(CH₂)₉CH₃), 1.4-1.1 (-COOCH₂CH₂(CH₂)₉CH₃), 1.1-0.7 (-COO(CH₂)₁₁CH₃, -CH₂C(CH₃)-). The quantitative quaternization of the DMAEMA-based precursors with iodomethane was confirmed by ¹H NMR.

The counter anions of the P/C-1/1 micelle measured in SEC-MALLS would be changed from I⁻ into NO₃⁻ that is originating from NaNO₃ included in the eluent of the SEC system, because the concentration of the NaNO₃ is higher than that of the original counter anion (I⁻) of P/C-1/1. To determine the aggregation number (N_{agg}) of the P/C-1/1 micelle, we herein estimated M_n (NMR) and $M_{w,calcd}$ of P/C-1/1, assuming that all the counter anions are NO₃⁻. P/C-1/1 with NO₃⁻ as counter anions: M_n (NMR) = 50600 (M_n (NMR) of the precursor) + 42 (m) x 77 (Fw, -CH₃NO₃) = 56600. $M_{w,calcd} = M_n$ (NMR) x $M_w/M_n = 61900$ (Table 2). Other DMAEMA-based precursors were also treated similarly to produce corresponding PEG/cation or cation random ter(co)polymers.

Preparation of Polymer Micelles.

Micelles of P/C-1/0, P/C-2/1, P/C-1/1, P/C-1/2, P/C-1/3, and P/C-0/1 were prepared in pure water or water containing 2 M NaCl and those aqueous solutions were employed for SEC-MALLS and cloud point measurements. The micelle solutions in water containing 100 mM NaNO₃, 1M CH₃COONa, NaCl, NaI, NaNO₃, and Na₂SO₄, and 2 M NaCl were prepared for DLS measurements. Typical preparation procedures of polymer micelles were shown below.

PEG/cation random terpolymer micelles. The dichloromethane solution of a terpolymer (e.g., **P/C-**1/1, **P/C-2/1**, **P/C-2/1**, and **P/C-1/3**) was evaporated, and the resulting polymer was dissolved in ultrapure water or in water containing 100 mM NaNO₃ or 2 M NaCl. The solution was sonicated for 10 minutes at room temperature. Then, the solution was placed in a water bath kept at 50 or 40 °C. After 24 h, the solution was gradually cooled at room temperature and used for SEC-MALLS, cloud point, and DLS measurements.

PEG random copolymer micelles. The dichloromethane solution of **P/C-1/0** was evaporated, and the resulting polymer was dissolved in ultrapure water or in water containing 100 mM NaNO₃ or 2 M NaCl. The solution was sonicated for 10 minutes at room temperature. Then, the solution was placed at room temperature for one hour before SEC-MALLS, cloud point, and DLS measurements. **Cation random copolymer micelles.** A solid **P/C-0/1** was dissolved in ultrapure water or in water containing 100 mM NaNO₃ or 2 M NaCl, and the solution was sonicated for 10 minutes at room temperature. Then, the solution was placed in a water bath kept at 50 °C. After 24 h, the solution was gradually cooled at room temperature and and used for SEC-MALLS, cloud point, and DLS measurements.

dn/dc of Polymer Micelles

To determine M_w of the polymer micelles by SEC-MALLS (Tables 1 and S1), dn/dc of their polymer micelles in water containing 100 mM NaNO₃ was determined by Refractrometer. To calculate M_w of the PEG/cation (1/1) terpolymer micelles with different DPs (DP = 76, 107, and 135), we used the dn/dc value of the P/C-1/1 micelle, since the composition of three monomer units is almost identical each other.

P/C-1/0 micelle: dn/dc = 0.140, P/C-2/1 micelle: dn/dc = 0.142, P/C-1/1 micelle: dn/dc = 0.145, P/C-1/2 micelle: dn/dc = 0.148, P/C-1/3 micelle: dn/dc = 0.154, P/C-0/1 micelle: dn/dc = 0.154.

Supporting Data

Scheme S1. (a) Synthesis of PEG/cation random terpolymers (P/C-2/1, -1/1, -1/2, -1/3, and PEG/cation = 1/1 with different DPs) via Ru-catalyzed living radical terpolymerization of PEGMA, DMAEMA, and DMA, followed by the quaternization of the resulting terpolymer with methyl iodide. (b) Synthesis of a PEG random copolymer (P/C-1/0) via Ru-catalyzed living radical copolymerization of PEGMA, and DMA. (c) Synthesis of a cation random copolymer (P/C-0/1) via Ru-catalyzed living radical copolymerization of DMAEMA, and DMA, followed by the quaternization of DMAEMA, and DMA, followed by the quaternization of DMAEMA, and DMA, followed by the quaternization of the resulting terpolymer with methyl iodide.

Figure S1. (a-h) Ru-catalyzed living radical copolymerization of PEGMA, DMAEMA, and DMA for the precursors of (a, b) P/C-1/1, (c, d) P/C-1/2, (e, f) P/C-2/1, (g, h) PEG/cation (1/1) random terpolymers with different DPs (76, 107, 135), and (i. j) P/C-1/3: [PEGMA]₀/[DMAEMA]₀/ $[DMA]_0/[ECPA]_0/[Ru(Cp^*)Cl(PPh_3)]_0/[4-DMAB]_0 = (a, b) 250/250/500/4.0/1.0/20 mM, (c, d)$ 167/333/500/4.0/1.0/20 mM, (e, f) 333/167/500/4.0/1.0/20 mM, (g, h) 250/250/500/5.0/1.0/20 mM, and (i, j) 125/375/500/4.0/1.0/20 mM in ethanol at 40 °C. (k, l) Ru-catalyzed living radical copolymerization of PEGMA and DMA for **P/C-1/0**: [PEGMA]₀/[DMA]₀/[ECPA]₀/ $[Ru(Ind)Cl(PPh_3)]_0/[n-Bu_3N]_0 = 250/250/2.0/1.0/10$ mM in toluene at 80 °C. (m, n) Ru-catalyzed living radical copolymerization of DMAEMA and DMA for the precursor of P/C-0/1: $[DMAEMA]_0/[DMA]_0/[ECPA]_0/[Ru(Ind)Cl(PPh_3)]_0/[n-Bu_3N]_0 = 250/250/2.0/1.0/10 \text{ mM in toluene}$ at 80 °C. (a, c, e, g, i, k, m) Time-conversion curves and (b, d, f, h, j, l, n) SEC curves of the products. The final products (b, d, f, h, j, l, n) and the intermediates (h) were purified by preparative SEC and used as the precursors of P/C-1/1, P/C-1/2, P/C-2/1, PEG/cation (1/1) random terpolymers with different DPs (76, 107, 135), and P/C-1/3 or P/C-1/0.

Figure S2. ¹H NMR spectra of (a) a PEGMA/DMAEMA/DMA random terpolymer (the precursor of P/C-1/1) in acetone- d_6 and (b) P/C-1/1 in DMSO- d_6 at 25 °C: [polymer] = 20 mg/mL.

Figure S3. ¹H NMR spectrum of P/C-1/0 in acetone- d_6 at 25 °C: [polymer] = 20 mg/mL.

Figure S4. ¹H NMR spectra of (a) a DMAEMA/DMA random copolymer (the precursor of P/C-0/1) in acetone- d_6 and (b) P/C-0/1 in DMSO- d_6 at 25 °C: [polymer] = 20 mg/mL.

$\mathrm{D}\mathrm{P}^{b}$	<i>l/m/n^b</i>	$M_{\rm n}{}^c$	$M_{\rm w}/M_{\rm n}^{\ c}$	$M_{\rm n}{}^d$	$M_{\rm w}{}^e$	$M_{ m w,H2O}^{f}$	$N_{\rm agg}{}^{\rm g}$	$\mathbf{C}\mathbf{p}^{\mathrm{h}}$
	(NMR)	(SEC)	(SEC)	(NMR)	(calcd)	(MALLS)		(°C)
76	17/17/41	18600	1.12	24000	25600	618000	24	57
107	25/25/57	26100	1.13	34200	36900	414000	11	56
135	34/31/71	32100	1.15	43400	48400	355000	7.3	55

Table S1. Characterization of PEG/Cation (1/1) Random Terpolymers and Their Micelles^a

^{*a*} PEG/cation (1/1) random terpolymers with different DPs (76, 107, and 135) were synthesized by living radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), and dodecyl methacrylate (DMA), followed by the quaternization of the terpolymers with methyl iodide.

^b The total degree of polymerization (DP) of the copolymers and DP of the PEGMA (l), DMAEMA (m), and DMA (n) units determined by ¹H NMR.

^{*c*} Number-average molecular weight (M_n) and molecular weight distribution (M_w/M_n) of the DMAEMA-based terpolymer precursors determined by SEC in THF (20 mM Et₃N) with PMMA standard calibration.

^{*d*} Number-average molecular weight (M_n) of the PEG/cation random terpolymers bearing PEG, quaternary ammonium salts [-CH₂N(CH₃)₃I], and dodecyl groups determined by ¹H NMR.

^{*e*} Weight-average molecular weight of the polymer chains calculated with M_n (NMR) and M_w/M_n (SEC): M_w (calcd) = M_n (NMR) x M_w/M_n (SEC). M_n (NMR) used for M_w (calcd) was re-calculated, assuming that all the counter anions on their micelles were changed to NO₃⁻ originating from NaNO₃ included in the eluent of SEC-MALLS.

^{*f*} Absolute weight-average molecular weight of the polymer micelles ($M_{w,H2O}$) was determined by SEC-MALLS in H₂O containing 100 mM NaNO₃.

^g Aggregation number (N_{agg}) of the terpolymer micelles was estimated as follows: $N_{agg} = M_{w,H2O}$ (MALLS)/ M_w (calcd).

^{*h*} Cloud point (C_p) temperature was determined by monitoring the transmittance of the aqueous solutions of their polymer micelles ([polymer] = 4 mg/mL in pure water) at 670 nm upon heating from 25 °C to 90 °C. Cp was defined as a temperature, at which the transmittance became 90%.

Figure S5. DLS intensity distribution of (a, g) P/C-1/0, (b, h) P/C-2/1, (c, i) P/C-1/1, (d, j) P/C-1/2, (e, k) P/C-1/3, and (f, l) P/C-0/1 in water containing (a-e) 100 mM NaNO₃ or (f-j) 2 M NaCl: [polymer] = 1.0 mg/mL.

Figure S6. Cloud point measurements on a P/C-1/1 micelle in water with various concentrations of NaCl [(a) 0, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1.0, (f) 1.5, and (g) 2.0 M]. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or - 1 °C /min, [polymer] = 4.0 mg/mL.

Figure S7. Cloud point measurements on a P/C-1/0 micelle in water with various concentrations of NaCl [(a) 0, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1.0, (f) 1.5, and (g) 2.0 M]. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 70 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or -1 °C /min, [polymer] = 4.0 mg/mL.

Figure S8. Cloud point measurements on a P/C-2/1 micelle in water with various concentrations of NaCl [(a) 0, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1.0, (f) 1.5, and (g) 2.0 M]. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or - 1 °C /min, [polymer] = 4.0 mg/mL.

Figure S9. Cloud point measurements on a P/C-1/2 micelle in water with various concentrations of NaCl [(a) 0, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1.0, (f) 1.5, and (g) 2.0 M]. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or - 1 °C /min, [polymer] = 4.0 mg/mL.

Figure S10. (a, b) Cloud point measurements on a P/C-1/3 micelle in (a) pure water or (b) water with 2 M NaCl. (c, d) Cloud point measurements on a P/C-0/1 micelle in (c) pure water or (d) water with 2 M NaCl. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or -1 °C /min, [polymer] = 4.0 mg/mL.

Figure S11. Cloud point measurements on a P/C-1/1 micelle in water with 1 M (a) Na₂SO₄, (b) NaNO₃, (c) NaI, and (d) CH₃COONa. The transmittance of their aqueous solutions was monitored at 670 nm upon heating or cooling in the temperature range between 25 °C and 90 or 100 °C (red solid line: heating, blue dashed line: cooling): Heating or cooling rate = 1 or -1 °C /min, [polymer] = 4.0 mg/mL.

Figure S12. DLS intensity distribution of **P/C-1/1** micelles in water containing 1 M (a) CH₃COONa, (b) NaCl, (c) NaI, (d)NaNO₃, or (e) Na₂SO₄ at 25 °C: [polymer] = 1.0 mg/mL.

Figure S13. DLS intensity distribution of **P/C-1/1** micelles in water containing (a-f) 100 mM NaNO₃ or (g-l) 2 M NaCl at (a, g) 25 °C, (b, h) 30 °C, (c, i) 40 °C, (d, j) 50 °C, (e, k) 60 °C, and (f, l) 70 °C: [polymer] = 1.0 mg/mL.

Figure S14. DLS intensity distribution of **P/C-2/1** micelles in water containing (a-g) 100 mM NaNO₃ or (h-n) 2 M NaCl at (a, h) 25 °C, (b, i) 30 °C, (c, j) 40 °C, (d, k) 50 °C, (e, l) 60 °C, (f, n) 70 °C, and (g, n) 80 °C: [polymer] = 1.0 mg/mL.

Figure S15. DLS intensity distribution of P/C-1/2 in water containing (a-g) 100 mM NaNO₃ or (h-n) 2 M NaCl at (a, h) 25 °C, (b, i) 30 °C, (c, j) 40 °C, (d, k) 50 °C, (e, l) 60 °C, (f, n) 70 °C, and (g, n) 80 °C: [polymer] = 1.0 mg/mL.

Figure S16. DLS intensity distribution of P/C-1/3 in water containing (a-g) 100 mM NaNO₃ or (h-n) 2 M NaCl at (a, h) 25 °C, (b, i) 30 °C, (c, j) 40 °C, (d, k) 50 °C, (e, l) 60 °C, (f, n) 70 °C, and (g, n) 80 °C: [polymer] = 1.0 mg/mL.

Figure S17. DLS intensity distribution of P/C-0/1 in water containing (a-g) 100 mM NaNO₃ or (h-n) 2 M NaCl at (a, h) 25 °C, (b, i) 30 °C, (c, j) 40 °C, (d, k) 50 °C, (e, l) 60 °C, (f, n) 70 °C, and (g, n) 80 °C: [polymer] = 1.0 mg/mL.

Figure S18. Hydrodynamic diameters of **P/C-2/1** micelles and aggregates in water containing 100 mM NaNO₃ (black circles) or 2 M NaCl (green squares) at various temperatures (25, 30, 40, 50, 60, 70, and 80 °C): [polymer] = 1.0 mg/mL.