Supporting information

Amidation of methyl ester-functionalised poly(2-oxazoline)s as a powerful tool to create dual pH and temperature responsive polymers as potential drug delivery systems

Meike N. Leiske,^{*a,#*} *Ronak Singha*,^{*a*} *Somdeb Jana*,^{*a*} *Bruno G. De Geest*,^{*b*} *Richard Hoogenboom*^{*a,**}

^aSupramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium

^bDepartment of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium

[#]Current address: Faculty of Biology, Chemistry & Earth Sciences, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

*Correspondence to: richard.hoogenboom@ugent.be

Figure S1. ¹H NMR spectra (300 MHz, DMSO-d6) of PMeOx_n-*b*-PC3DIPEDOx_m block (co)polymers and a representative NMR spectrum of the precursor $PMeOx_n$ -*b*-PC3MestOx_m.

Figure S2. Molar mass distribution of PC3MestOx-containing (co)polymers as derived from SEC in DMAc (PMMA-calibration).

Figure S3. Temperature-dependent turbidity of $PMeOx_{60}$ -*b*-PC3DIPEDOx₉₀ in diH₂O at indicated pH values. A: pH = 9. B: pH = 11. Polymer concentration: 5 mg mL⁻¹. Transmittance was measured *via* turbidimetry measurements (Crystal16TM). Three heating-cooling cycles were run (1 °C min⁻¹), 2nd heating cycle is shown.

Figure S4. Temperature-dependent size analysis of polymeric aggregates at different temperatures at pH = 10 as determined by DLS measurements (c = 5 mg mL⁻¹). Data shown represents the mean and SD of 3 measurements with 3 runs each. A: Size and PDI of PMeOx_n-*b*-C3DIPEDOx_m. Monomer ratio shown as (n/m). Size is shown as columns. Solid columns refer to z-average. Striped columns refer to number PSD. Scatter refers to PDI. B-D: Intensity-weighted size distributions of indicated polymers at 4 °C (B), 25 °C (C), and 37 °C (D).

Figure S5. Temperature-dependent turbidity of DIPEDOx-modified (co)polymers in diH₂O in different biologically relevant media. A: DPBS. B: DMEM/F12. C: Overlay of the temperature-dependent transmittance of PMeOx60-b-DIPEDOx90 (line) and particle size obtained from DLS measurements (scatter). Polymer concentration: 5 mg mL⁻¹. Transmittance was measured *via* turbidimetry measurements (Crystal16TM). Three heating-cooling cycles were run (1 °C min⁻¹), 2nd heating cycle is shown.

Figure S6. Overlay of intensity and number PSD traces of NPs from indicated polymers containing 5wt% Ptx and 5wt% RhB-C18 as obtained from DLS measurements at 37 °C (mean and SD of 5 measurements with 3 runs each). Polymer concentration: 1 mg mL⁻¹ in DMEM/F12. A: PMeOx₆₀-*b*-C3MestOx₉₀. B: PMeOx₆₀-*b*-C3DIPEDOx₉₀. C: PMeOx₆₀-*b*-C3IPPOx₉₀. D: PMeOx₆₀-*b*-C3AEPOx₉₀.

Figure S7. Cell viability of MDA-MB-231 breast cancer cells after incubation with polymers at indicated concentrations for 24 h. Cell viability was determined by MTT assay. Cells without polymer treatment served as negative control (NC, 100% cell viability). Values shown are relative to the NC. Cells treated with 20% DMSO served as positive control (PC, 0% cell viability, data not shown). A: $PMeOx_n$ -*b*-C3DIPEDOx_m. B: Copolymers of MeOx and different amine-modified units in a ratio of 60 (MeOx) to 90 (amine).

Figure S8. Cell viability of MDA-MB-231 breast cancer cells after incubation with polymers and dye/drug loaded NPs at indicated concentrations for 24 h. Cell viability was determined by MTT assay. Cells without polymer treatment served as negative control (NC, 100% cell viability). Values shown are relative to the NC. Cells treated with 20% DMSO served as positive control (PC, 0% cell viability, data not shown).

Table S1. Thermo-responsiveness of different amine-modified polymers at indicated conditions. Polymer concentration: 5 mg mL⁻¹. Transmittance was measured *via* turbidimetry measurements (Crystal16TM). Three heating-cooling cycles were run (1 °C min⁻¹), T_{CP} was calculated from 2nd heating cycle.

Bolymer	T _{CP} [°C]						
	diH ₂ O pH 9	diH ₂ O pH 10	DPBS	DMEM/F12			
PC3DIPEDOx ₁₅₀	9	15	50	49			
PMeOx ₂₀ -b-PC3DIPEDOx ₁₃₀	-	14	20	43			
PMeOx ₄₀ - <i>b</i> -PC3DIPEDOx ₁₁₀	-	13	23	42			
PMeOx ₆₀ -b-PC3DIPEDOx ₉₀	-	10 ^a	_a	70ª			
PMeOx ₆₀ -b-PC3MestOx ₉₀	n.a.	n.a.	26ª	25			
PMeOx ₆₀ - <i>b</i> -PC3IPPOx ₉₀	n.a.	n.a.	77	-			
PMeOx ₆₀ - <i>b</i> -PC3AEPOx ₉₀	n.a.	n.a.	48 ^a	85ª			

^aUpon further heating, the turbidity of the sample decreased.

n.a. not available (no analysis was conducted).

Table S2. Polymer properties of $PMeOx_n$ -*b*-C3MestOx_m (co)polymers at different temperatures in diH₂O. Size properties were determined *via* DLS measurements at indicated temperatures. Data shown represents the mean and SD of 3 measurements with 3 runs each. Polymer concentration: 5 mg mL⁻¹.

Polymer	4 °C			25 °C			37 °C		
	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI
PC3MestOx ₁₅₀	44 ± 43	6 ± 0	0.46 ± 0.06	1588 ± 124	1353 ± 48	0.11 ± 0.03	3587 ± 669	2001 ± 414	0.29 ± 0.03
PMeOx ₂₀ -b-	9 ± 0	6 ± 0	0.34 ± 0.05	n.a.	n.a.	n.a.	6668 ± 665	962 ± 343	0.54 ± 0.10
PC3MestOx ₁₃₀									
PMeOx ₄₀ -b-	9 ± 2	5 ± 0	0.29 ± 0.05	n.a.	n.a.	n.a.	140 ± 3	73 ± 13	0.16 ± 0.01
PC3MestOx ₁₁₀									
PMeOx ₆₀ - <i>b</i> -	11 ± 1	5 ± 0	0.41 ± 0.05	9439 ± 1630	1866 ± 3225	0.29 ± 0.11	2282 ± 77	2176 ± 53	0.16 ± 0.04
PC3MestOx ₉₀									

n.a. data out of range of instrument.

Table S3. Temperature-dependent properties of PC3DIPEDOx₁₅₀ at different pH values. Size properties were determined *via* DLS measurements at indicated temperatures. Data shown represents the mean and SD of 3 measurements with 3 runs each. Polymer concentration: 5 mg mL⁻¹.

pН	4 °C			25 °C			37 °C		
	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI
8	155 ± 59	3 ± 0	0.68 ± 0.13	326 ± 115	3 ± 0	0.51 ± 0.09	319 ± 132	3 ± 0	0.51 ± 0.22
9	45 ± 23	5 ± 0	0.39 ± 0.07	401 ±7	339 ± 18	0.12 ± 0.04	556 ± 154	421 ± 189	0.23 ± 0.04
10	38 ± 34	7 ± 0	0.51 ± 0.13	2980 ± 604	2731 ± 596	0.12 ± 0.11	6138 ± 473	4986 ± 378	0.37 ± 0.16
DPBS	6837 ± 1583	1773 ± 2875	0.19 ± 0.11	1029 ± 75	597 ± 45	0.65 ± 0.06	4527 ± 327	3776 ± 904	0.23 ± 0.11
DMEM/F12	3116 ± 1244	7 ± 0	1.00 ± 0.00	345 ± 104	7 ± 0	0.55 ± 0.34	217 ± 3	184 ± 9	0.18 ± 0.05

Table S4. Temperature-dependent properties of $PMeOx_{20}$ -*b*-PC3DIPEDOx₁₃₀ at different pH values. Size properties were determined *via* DLS measurements at indicated temperatures. Data shown represents the mean and SD of 3 measurements with 3 runs each. Polymer concentration: 5 mg mL⁻¹.

рН	4 °C			25 °C			37 °C		
	Z-average	Number PSD	PDI	Z-average	Number PSD	PDI	Z-average	Number PSD	PDI
	[a, nm]	[d, nm]		la, nmj	[d, nm]		[a, nm]	[d, nm]	
8	247 ± 239	1 ± 0	0.79 ± 0.24	459 ± 615	1 ± 0	0.71 ± 0.27	451 ± 91	1 ± 0	0.38 ± 0.07
9	29 ± 24	3 ± 0	0.40 ± 0.06	93 ± 2	67 ± 4	0.08 ± 0.01	113 ± 1	83 ± 6	0.10 ± 0.02
10	18 ± 0	7 ± 0	0.56 ± 0.45	863 ± 114	696 ± 105	0.28 ± 0.04	887 ± 13	588 ± 26	0.37 ± 0.07
DPBS	5979 ± 1479	2078 ± 1796	0.45 ± 0.26	771 ± 56	597 ± 50	0.37 ± 0.03	1828 ± 105	1086 ± 105	0.42 ±0.14
DMEM/F12	237 ± 105	7 ± 1	0.68 ± 0.02	126 ± 38	7 ± 0	0.57 ± 0.11	304 ± 13	7 ± 2	0.37 ± 0.04

Table S5. Temperature-dependent properties of PMeOx₄₀-*b*-PC3DIPEDOx₁₁₀ at different pH values. Size properties were determined *via* DLS measurements at indicated temperatures. Data shown represents the mean and SD of 3 measurements with 3 runs each. Polymer concentration: 5 mg mL⁻¹.

рН	4 °C			25 °C			37 °C		
	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI
10	205 ± 92	100 ± 153	0.60 ± 0.32	6121 ± 221	1328 ± 322	0.27 ± 0.08	4342 ± 357	1282 ± 177	0.42 ± 0.04
DPBS	3756 ± 500	1351 ± 145	0.56 ± 0.11	755 ± 73	452 ± 218	0.41 ± 0.06	1355 ± 32	1145 ± 72	0.23 ± 0.06
DMEM/F12	2370 ± 1008	5 ± 2	0.78 ± 0.31	247 ± 145	6 ± 0	0.42 ± 0.02	151 ± 2	97 ± 6	0.20 ± 0.02

Table S6. Temperature-dependent properties of $PMeOx_{60}$ -*b*-PC3DIPEDOx₉₀ at different pH values. Size properties were determined *via* DLS measurements at indicated temperatures. Data shown represents the mean and SD of 3 measurements with 3 runs each. Polymer concentration: 5 mg mL⁻¹.

pН	4 °C			25 °C			37 °C		
	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI	Z-average [d, nm]	Number PSD [d, nm]	PDI
8	89 ± 78	1 ± 0	0.70 ± 0.22	310 ± 126	1 ± 0	0.54 ± 0.19	966 ± 398	1 ± 0	0.67 ± 0.21
9	76 ± 64	2 ± 0	0.49 ± 0.15	85 ± 1	67 ± 3	0.05 ± 0.03	107 ± 1	85 ± 3	0.04 ± 0.02
10	73 ± 49	6 ± 0	0.79 ± 0.29	55 ± 1	37 ± 3	0.19 ± 0.01	53 ± 0	37 ± 0	0.14 ± 0.01
11	64 ± 55	41 ± 56	0.50 ± 0.21	42 ± 0	34 ± 1	0.02 ± 0.01	42 ± 0	34 ± 0	0.01 ± 0.01
DPBS	5803 ± 277	4543 ± 375	0.76 ± 0.42	184 ± 4	130 ± 3	0.15 ± 0.01	72 ± 0	43 ± 2	0.24 ± 0.01
DMEM/F12	205 ± 50	6 ± 0	0.73 ± 0.09	714 ± 110	7 ± 0	0.86 ± 0.02	2290 ± 304	7 ± 1	0.85 ± 0.14

Table S7. Properties of nanoparticles prepared from indicated polymers. Nanoparticles were prepared *via* thin-film assembly method. Polymer concentration was 1 mg mL⁻¹. Concentration of cargo refers to weight percent (wt%) relative to polymer mass. Size analyses were conducted *via* DLS measurements at 37 °C. Data shown represents the mean and SD of 5 measurements with 3 runs each.

		DLS				
Polymer	Cargo	Z-average [d, nm]	Number PSD [d, nm]	PDI		
	5wt% RhB-C18	57 ± 1	25 ± 11	0.24 ± 0.00		
	5wt% RhB-C18 5wt% Ptx	148 ± 4	113 ± 5	0.23 ± 0.03		
PMaOx., h PC3MastOx.,	5wt% RhB-C18	144 ± 6	93 ± 9	0.14 ± 0.01		
	5wt% RhB-C18 5wt% Ptx	144 ± 3	52 ± 7	0.26 ± 0.01		
PMaOy	5wt% RhB-C18	164 ± 5	98 ± 14	0.28 ± 0.04		
	5wt% RhB-C18 5wt% Ptx	186 ± 6	137 ± 5	0.18 ± 0.08		
	5wt% RhB-C18	303 ± 27	217 ± 9	0.28 ± 0.05		
	5wt% RhB-C18 5wt% Ptx	168 ± 1	139 ± 1	0.07 ± 0.02		

RhB-C18: Rhodamin B-octadecylester-perchlorate. Ptx: Paclitaxel.

Table S8. Cytocompatibility of different polymers and formulations. CC_{50} refers to the concentration at which 50% cell viability was observed. MDA-MB-231 breast cancer cells were incubated with polymers or formulations at indicated concentrations for 24 h. Cell viability was determined by MTT assay. Cells without polymer treatment served as negative control (NC, 100% cell viability). Values shown are relative to the NC. Cells treated with 20% DMSO served as positive control (PC, 0% cell viability, data not shown). CC_{50} values are derived from values shown in Figure 5 and Figure S6.

Polymer	Formulation		CC ₅₀			
		Polymer	Amine / ester	Ptx		
		[µg mL-1]	[µmol mL-1]	[nmol mL ⁻¹]		
PC3DIPEDOx ₁₅₀	Polymer	85	0.3	n.a.		
PMeOx ₂₀ -b-PC3DIPEDOx ₁₃₀	Polymer	70	0.2	n.a.		
PMeOx ₄₀ - <i>b</i> -PC3DIPEDOx ₁₁₀	Polymer	150	0.6	n.a.		
	Polymer	126	0.4	n.a.		
PMeOx ₆₀ - <i>b</i> -PC3DIPEDOx ₉₀	NP + RhB-C18	72	n.a.	n.a.		
	NP + RhB-C18 + Ptx	11	n.a.	0.17		
PMeOx ₆₀ - <i>b</i> -PC3MestOx ₉₀	Polymer	> 512	> 3.5	n.a.		
	NP + RhB-C18	> 512	n.a.	n.a.		
	NP + RhB-C18 + Ptx	22	n.a.	0.36		
	Polymer	> 512	> 7.0	n.a.		
PMeOx ₆₀ -b-PC3IPPOx ₉₀	NP + RhB-C18	> 512	n.a.	n.a.		
	NP + RhB-C18 + Ptx	2	n.a.	0.06		
	Polymer	26	0.1	n.a.		
PMeOx ₆₀ -b-PC3AEPOx ₉₀	NP + RhB-C18	26	n.a.	n.a.		
	NP + RhB-C18 + Ptx	11	n.a.	0.34		

NP: Nanoparticle. RhB-C18: Rhodamin B-octadecylester-perchlorate. Ptx: Paclitaxel.

Reference

[1] J. F. R. Van Guyse, M. N. Leiske, J. Verjans, Y. Bernhard and R. Hoogenboom, Accelerated Post-Polymerization Amidation of Polymers with Side-Chain Ester Groups by Intramolecular Activation, Angew. Chem., Int. Ed. 61 (29) (2022) e202201781, <u>https://doi.org/10.1002/anie.202201781</u>.