Supporting Information

For

Isoquinoline-1,3-dione-derived conjugated polymers for field-effect transistors: Synthesis, properties, and the effect of inner aromatic bridges

Yankai Zhou,^{a,c} Qian Che,^{a,c} Weifeng Zhang,^{*a} Hao Li,^b Xuyang Wei,^{a,c} Xitong Liu,^{a,c} Liping Wang,^{*b} and Gui Yu^{*a,c}

^{*a*} Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^b School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing 100083, P. R. China

^c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing
100049, P. R. China

Content

- 1. The GPC measurements
- 2. The TGA and DSC tests
- 3. The NMR Spectra of intermediates and polymers

Figure S2. TGA traces and DSC curves of P1–P3.

Figure S3. ¹H NMR spectrum of Compound 4.

Figure S4. ¹³C NMR spectrum of Compound 4.

Figure S6. ¹³C NMR spectrum of Compound 5a.

Figure S8. ¹³C NMR spectrum of Compound 5b.

Figure S9. ¹H NMR spectrum of Compound 5c.

Figure S10. ¹³C NMR spectrum of Compound 5c.

Figure S12. ¹H NMR spectrum of P2.

Figure S13. ¹H NMR spectrum of P3.