Electronic Supplementary Information

Block-Random Copolymer Stabilisers for Semibatch Emulsion Polymerisation

Arthur Werner, *a Connor A. Sanders ${ }^{a}$, Sandra Smeltzer ${ }^{a}$, Sean R. George ${ }^{b}$, Andreas
Gernandtc, Bernd Reck ${ }^{c}$, Michael F. Cunningham ${ }^{a}$

"Department of Chemical Engineering, Queen’s University, Kingston, ON, Canada, K7L 3N6
*BASF Charlotte Technical Center, Charlotte, North Carolina, USA
§BASF SE, Ludwigshafen, Germany

Semi-batch Emulsion Polymerization

The sample was polymerised in the absence of salt with $2.5 \mathrm{w} / \mathrm{w} \%$ of BRC_{1}. Aggregates are observed in addition to discrete polymer particles because the sample was dry for a few weeks and redispersed into water for TEM purposes. The diameter calculated from TEM is equal to $38.3 \pm 3.5 \mathrm{~nm}$ based on 150 measurements, calculated with the use of ImageJ software.

Figure S1. Transmission electronic microscopy (TEM) of a PS latex.

pK_{a} of BRC_{1}

Figure S2. Titration of BRC_{1} in at $1 \mathrm{~g} / \mathrm{L}$, diluted into pure water. Initial pH is adjusted to ~ 12 using 1 M NaOH , and $20 \mu \mathrm{~L}$ additions of 0.5 M HCl are added at 45 s intervals. pK_{a} is estimated as the pH at the midpoint of the middle section (highlighted in red) of the conductivity trace.

Calculation of $\boldsymbol{\theta} \%$, the coverage of the particle by acrylic moieties

θ represent the percentage of the surface of the latex which is covered by an acrylic acid molecule and can be calculated with the formula:

$$
\theta \%=\frac{D P_{A A} * S_{T P S A}}{a_{s}} \times 100
$$

With $\mathrm{DP}_{\mathrm{AA}}$ the degree of polymerization of acrylic acid within the chains, $\mathrm{S}_{\mathrm{TPSA}}$ the topological polar surface area, a constant with a value of $0.373 \mathrm{~nm}^{2}$ for acrylic acid and a_{s} the area stabilized per chain, assuming spherical latex particles and that all the BRC_{1} chains are at the interface.

Study of the polymerisation at different pH and ionic strength

3	3.5	4	4.5	5	5.5	6	6.5	7	7.5

Figure S3: Polystyrene latexes polymerized at various pH in the presence of (a) 0 mM , (b) 25 mM , (c) 50 mM of salt.

Samples were prepared by addition of $\mathrm{NaCl}, \mathrm{NaOH}, \mathrm{HCl}$, or a combination of two of these salts. Samples were subsequently placed in a sonication bath at room temperature for 2 minutes. For initial $\mathrm{pH}<7.0$ the samples were turbid before polymerisation. The coagulum of the final latex was minimal $(<1 \%)$. The initial and final pH , along with the sizes $\left(\mathrm{D}_{\mathrm{h}}, \mathrm{D}_{\mathrm{n}}\right)$ and the PDI are reported in Table S 1 . The three experiments show similar trends. An increase in D_{h} is observed when the pH is decreased from $9<\mathrm{pH}<12$ to pH closer to pKa (with $\mathrm{pKa}=6.5$), reaching a maximum followed by a diminution for final $\mathrm{pH}=\mathrm{pKa}$. This diminution is accentuated in absence of added salt, the enhanced repulsion diminishing the coagulation of the growing latex. The PDI is also maximum for pH around pKa due to the presence of two populations of polymer particles.

Table S1. Characterization of PS latexes stabilized by $5 \mathrm{w} / \mathrm{v} \%$ of BRC_{1} at various initial pH and various salt concentration.

${ }^{\text {a }}$ Entry	Added Salt (mM)	${ }^{\mathrm{b}}$ Initial $\mathbf{p H}_{\mathrm{i}}$	${ }^{\text {b }}$ Final pHf	${ }^{\mathrm{c}} \mathrm{D}_{\mathrm{h}}(\mathrm{~nm})$	${ }^{\mathrm{c}} \mathbf{D}_{\mathrm{n}}(\mathrm{~nm})$	${ }^{\text {c PDD }}$
A_{1}	2.0	7.0	2.6	196	140	0.17
A_{2}	1.5	7.7	5.7	91	42	0.31
A_{3}	0.9	8.3	6.3	55	35	0.23
A_{4}	0.3	8.6	6.5	82	31	0.49
A_{5}	0.3	9.0	8.6	267	164	0.22
A_{6}	1.9	9.5	8.2	252	158	0.16
A_{7}	5.4	10.0	9.2	244	188	0.13
B_{1}		5.3	2.2	729	732	0.06
B_{2}		5.9	2.5	531	510	0.09
B_{3}		6.6	3.3	309	267	0.10
B_{4}		7.4	5.5	115	80	0.11
B_{5}		7.9	5.9	90	58	0.18
B_{6}	25.0	8.5	6.4	350	306	0.16
B_{7}		9.2	7.0	255	124	0.18
B_{8}		9.8	7.3	169	135	0.10
B_{9}		10.3	8.5	157	130	0.05
B_{10}		11.1	9.1	171	138	0.07
B_{11}		12.4	9.5	180	140	0.09
C_{1}		6.8	3.5	400	376	0.02
C_{2}		7.5	5.6	142	104	0.11
C_{3}		7.7	5.2	178	143	0.09
C_{4}	50.0	8.1	6.6	335	95	0.62
C_{5}	50.0	8.4	6.4	180	130	0.21
C_{6}		9.1	6.7	167	147	0.02
C_{7}		9.3	7.2	164	144	0.02
C_{8}		9.6	7.3	161	136	0.07

 probe. ${ }^{\mathrm{c}}$ Determined using Zetasizer.

The pH effect presented in the paper is not specific of BRC_{1} and can be reproduced with other PS-(PS-r-PAA) BRCs. A second polymer, BRC_{2}, was synthesised following the reported procedure. ${ }^{1}$ BRC_{2} has longer blocks and is more hydrophobic than BRC_{1} because of its lower overall acrylic acid content.

Table S2. Characterization of polystyrene-b-[polystyrene- r-poly(acrylic acid)] block-random copolymers.

Copolymer	Anchor Block			Stabilising Block			Overall		
	DP ${ }_{\text {PS }}{ }^{\text {a }}$	$\begin{gathered} \mathrm{M}_{\mathrm{n}} \\ (\mathrm{~g} / \mathrm{mol}) \end{gathered}$	Đ	$\mathrm{DP}_{\text {PS }}{ }^{\text {b }}$	$\mathrm{DP}_{\text {PAA }}{ }^{\text {b }}$	$\begin{gathered} \mathrm{mol} \% \\ \mathrm{AA}^{\mathrm{c}} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{n}}{ }^{\mathrm{d}} \\ (\mathrm{~g} / \mathrm{mol}) \end{gathered}$	Đ	$\begin{gathered} \mathrm{mol} \% \\ \mathrm{AA}^{\mathrm{c}} \\ \hline \end{gathered}$
BRC_{1}	25	2600	1.11	50	25	33 \%	10,350	1.16	25 \%
BRC_{2}	37	3800	1.17	67	29	30 \%	13,630	1.15	22 \%

${ }^{\text {a }}$ Degree of polymerisation determined from GPC molecular weight.
${ }^{\mathrm{b}}$ Degree of polymerisation based on ${ }^{1} \mathrm{H}$ NMR block copolymer composition.
${ }^{\mathrm{c}}$ Molar percentage of poly(acrylic acid) in copolymer determined by ${ }^{1} \mathrm{H}$ NMR.
${ }^{\mathrm{d}} \mathrm{M}_{\mathrm{n}}$ for the methylated copolymer, polystyrene- b-[poly(methyl acrylate)- r-polystyrene], reported as polystyrene equivalent.
BRC_{2} (3 grams) was added into pure water $(60 \mathrm{~mL})$ at $95^{\circ} \mathrm{C}$ with the addition of a 1 M NaOH solution until a clear dispersion was reached. 50 mL of the dispersion were used for a semi-batch emulsion polymerisation of styrene. The concentration of initiator, temperature, reaction time, and stirring rate were identic to the experiment presented in the manuscript, $85^{\circ} \mathrm{C}, 3$ hours, and 300 rpm , respectively. The total volume of polymerization was fixed at 250 mL with an Oil/Water ratio (O/W) of $20 / 80$ and an initial pH of 7.7.

Figure S4: Evolution of $\mathrm{D}_{\mathrm{h}}(\bullet), \mathrm{D}_{\mathrm{n}}(\bullet)$, and number of particles of a latex polymerised with a starting pH of 7.7 without addition of salt.

Similar to latexes stabilised by BRC_{1}, the latex stabilised by BRC_{2} undergo a decrease in D_{h} and a constant value of $\mathrm{D}_{\mathrm{n}}(20-30 \mathrm{~nm})$ until 100% conversion. Consequently, the number of particles consistently increases, following the samples analyzed in the manuscript. The pH effect is hence also occurring for BRC_{2} and is not limited to one specific of BRC .

The morphological change of BRC_{1} aggregates in water can be detected in DLS with the increasing signal as the pH decreases. Sixteen dispersions of BRC_{1} at $5 \mathrm{~g} . \mathrm{L}^{-1}$ were analyzed (Fig. S4) and a clear transition appeared at $\mathrm{pH}=8.7$ where the count rate increased by a factor of 12 .

Figure S5: Count rate by DLS plot as function of the pH of a $5 \mathrm{~g} . \mathrm{L}^{-1} \mathrm{BRC}_{1}$ dispersion.

Determination of the populations by sedimentation

Using DLS for the determination of size is fairly accurate when it comes to relatively narrow, monomodal populations. The presence of two or more peaks is a source of error and has to be corrected. To this end, two latexes mixed with a solution of sodium alginate, a creaming agent. After solubilisation in water, the sodium alginate was added to diluted latexes (solid content $=2 \%$), reaching a concentration of $0.3 \mathrm{~g} \cdot \mathrm{~L}^{-1}$. The latexes were stored 24 h at room temperature before centrifugation and redispersion. Both fractions were analyzed by DLS (Fig. S4) confirming the separation of the two population initially present in the two latexes. The fractions were subsequently dried and the N_{p} for each population was calculated using Eq. (1).

Figure S5: DLS of two polystyrene latexes polymerised at different pH before and after fractional separation with $0.3 \mathrm{~g} . \mathrm{L}^{-1}$ sodium alginate.

Table S3: D_{h} and N_{p} calculation for latexes before and after fractionation by size with the addition of $0.3 \mathrm{~g} . \mathrm{L}^{-1}$ of sodium alginate

	$\mathbf{D}_{\mathbf{h}}$ before $(\mathbf{n m})$	$\mathbf{D}_{\mathbf{h}}$ skim $(\mathbf{n m})$	$\mathbf{D}_{\mathbf{h}}$ cream $(\mathbf{n m})$	weight \% of $\mathbf{~ s k i m}$	weight \% of cream	$\mathbf{N}_{\mathbf{p}}$ before	$\mathbf{N}_{\mathbf{p}}$ skim	$\mathbf{N}_{\mathbf{p}}$ cream
$\mathbf{p H}$	81	57	119	71	29	7.2×10^{17}	1.4×10^{18}	6.3×10^{16}
$\mathbf{7 . 9}$	819	170	78	22	2.7×10^{17}	1.3×10^{18}	1.8×10^{16}	
$\mathbf{p H}$	100	63	$\mathbf{7 . 5}$					

Although the quantification of both population was still an estimation, since there were partial overlap of the DLS signals in both case, the number of particle in the skim was similar. For the $\mathrm{pH}=7.5$ latex, because of the initial pH , closer to pKa and closer to the second order transition observed and described in the manuscript, the number of particles in the cream is three times lower than the $\mathrm{pH}=7.9$ latex. Closer to this transition, the initial aggregates of BRC_{1} were expected to be lower in number, leading to a higher degree of coagulation, hence a wider latex, as verified by this technique.

Rate of polymerisation

The rate of polymerisation is directly related to the number of growing particles in the medium following the equation

$$
R_{p}=k_{p} \times[M]_{p} \times \sum_{i=1}^{\infty} N_{i} / N_{A}
$$

$k_{p}[\mathrm{M}]_{\mathrm{p}}$ is the molar rate of propagation for a chain radical in a particle, $[\mathrm{M}]_{\mathrm{p}}$ is the monomer concentration in a particle, and N_{i} is the number of polymer particles and N_{A} the Avogadro number.

In the case of emulsion polymerisation with BRC_{1} involving the pH effect, the number of particles is around two orders of magnitude higher than the same emulsion polymerisation started at $\mathrm{pH}=9.5$. A semi-batch emulsion polymerisation initiated at $\mathrm{pH}=8.0$ was compared to a batch emulsion polymerisation initiated at $\mathrm{pH}=9.5$. The feeding time of the semi-batch was set to 1.33%.min (total time 60 min). As visible on Fig. S5, the rate of polymerisation of the semi-batch experience is over three time higher than the equivalent batch polymerisation, and reach 94% in 60 min .

Figure S6: Evolution of the conversion through time for two emulsion polymerisation sample, semi-batch initiated at $\mathrm{pH} 8.0, \Delta$ batch initiated at $\mathrm{pH}=9.5$

REFERENCE

1 C. A. Sanders, S. R. George, G. A. Deeter, J. D. Campbell, B. Reck and M. F. Cunningham, Macromolecules, 2019, 52, 4510-4519.

