Electronic Supplementary Information

Thermoresponsive "Irreversible" Property Change of POSS-Crosslinked PNIPAAm Hydrogels

Shohei Ida, *a Tenki Hikida,^a Atsumi Kawai,^a Tomonari Matsuda,^a Souma Suzuki,^a Hiroaki Imoto,^b Kensuke Naka,^b and Shokyoku Kanaoka *a

a) Department of Materials Science, Faculty of Engineering, The University of Shiga Prefecture,

2500 Hassaka, Hikone, Shiga 522-8533, Japan

b) Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology,

Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

Correspondence: ida.s@mat.usp.ac.jp (S.I.), and kanaoka.s@mat.usp.ac.jp (S.K.)

Fig. S1 SEC curves of PNIPAAm with various molecular weights obtained by RAFT polymerization. Reaction condition: [NIPAAm] = 2000 mM, [CTA]/[V-501] = 10 in 1,4-dioxane at 60 °C for 25 h.

Fig. S2 ¹H NMR spectra of PNIPAAm obtained by RAFT polymerization. Reaction condition: see Fig. S1. DP_n and $M_{n, NMR}$ were calculated from the ratio of integral values between *d* and *f*.

Entry	[NIPAAm]/[CTA]	Conv. (%)	DP _{n, NMR}	$M_{ m n, NMR}$	$M_{ m w}/M_{ m n, \ SEC}$
1	100	90	102	11,800	1.20
2	150	88	152	17,500	1.21
3	200	78	197	22,600	1.24

Table S1. RAFT polymerization of NIPAAm.^a

^{*a*} Reaction conditions: see Fig. S1.

Fig. S3 ¹H NMR spectra of telechelic PNIPAAms obtained by esterification with NHS. Reaction condition: see Table 1.

Fig. S4 SEC curves of telechelic PNIPAAms with activated ester end groups (dashed line: PNIPAAms with carboxy ends). Reaction condition: see Table 1.

Fig. S5 Appearance of a mixture of **POSS-CL** (12.5 mM) and TEA (2.4 M) in DMF/H₂O (H₂O: 22 vol%).

Fig. S6 Effect of feed TEA concentration on swelling behavior in water of POSS-crosslinked PNIPAAm gels. Reaction condition: see Fig. 3.

Fig. S7 Appearance of POSS-crosslinked PNIPAAm gels prepared from prepolymers with different molecular weights against heating/cooling cycle in water.

Fig. S8 Representative stress-strain curve obtained by uniaxial tensile test of G_{197} after applying 2nd heating/cooling cycle (in red line; Young's modulus: 2.40 ± 0.31 kPa, breaking strain: 91 ± 12%). Blue and orange markers are corresponded to the data in Fig. 5c (before and after applying 1st heating/cooling cycle).

Fig. S9 ²⁹Si NMR spectrum of a degradation product from G_{103} .

Fig. S10 ²⁹Si NMR spectrum of a degradation product from POSS-crosslinked gel prepared with short PNIPAAm ($DP_n = 25$) before and after applying a heating/cooling cycle.

Table S2. Normalized transmittance (T_n) of 500 nm light of gel films immersed in various solvents after a heating/cooling cycle.^{*a*}

Sample	<i>T</i> _n (%)
Initial State	81.7 ± 6.0
After a heating/cooling cycle in H ₂ O	28.4 ± 1.9
DMSO	50.0 ± 0.8
DMF	41.2 ± 1.6
МеОН	43.0 ± 7.7
1,4-dioxane	20.1 ± 0.8
THF	24.5 ± 8.6

^{*a*} T_n was normalized transmittance at the sample thickness of 3.0 mm. The value is calculated from the following equation: $T_n = T_{exp}^{d/3}$, where T_{exp} is the transmittance of 500 nm light of gel samples and *d* (mm) is the thickness of the sample.

Fig. S11 Solubility of **POSS-CL** (0.50 wt%) in the presence of excess Et₃N (5 wt%) in various solvents: (from left to right) DMSO, DMF, chloroform, methanol, and THF. **POSS-CL** was well soluble in DMSO and methanol.

Fig. S12 Representative stress-strain curve obtained by uniaxial tensile test of G_{103} after applying a heating/cooling cycle and immersion in DMSO, followed by the solvent substitution into water (in red line; Young's modulus: 12.3 ± 3.1 kPa, breaking strain: $35 \pm 16\%$). Blue and orange markers are corresponded to the data in Fig. 5a (before and after a heating/cooling cycle, respectively).