Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Supramolecular polysulfide polymers cross-linked by metal-ligand interactions

Yuichiro Kobayashi,* Daiki Kitano, Ryuto Nishimura, Yuki Yamagishi, Akiyoshi

Horiguchi, and Hiroyasu Yamaguchi*

Department of Macromolecular Science, Graduate School of Science, Osaka University, Japan.

Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research

Initiatives (ISC-OTRI), Osaka University, Japan

Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka

University, Toyonaka, Osaka 560-0043, Japan

* To whom corresponding should be addressed

E-mail: kobayashiy11@chem.sci.osaka-u.ac.jp

hiroyasu@chem.sci.osaka-u.ac.jp

Table of Contents

General Information	3
1. Preparation of poly(LS-bpy)	4
2. Preparation of poly(LS-bpyCu)	7
3. Preparation of LS-Bn	.11
4. Preparation of poly(LS-bpyFe)	15
5. Disassembly and re-assembly of poly(LS-bpyCu)	.20
6. DSC and TGA of poly(LS-bpyCu)	.21

General information

Materials.

All of the reagents and chemicals used were obtained from commercial sources, unless otherwise noted. Sulfur was purified by recrystallization from carbon disulfide.

Measurements.

The NMR spectra were obtained using a JEOL JNM-ECS 400 and 500 MHz NMR spectrometer. MALDI-TOF MS spectra were recorded in the linear positive mode on a mass spectrometer (BRUKER DALTONICS, Ultraflex III and autoflex maX). 2.5-Dihydroxybenzoic acid was used as a matrix. The molecular weights of the polymers were determined by gel permeation chromatography (GPC) measurements. GPC measurements were performed with 10 mmol LiBr in DMSO (0.40 mL·min⁻¹, 40 °C) using a TOSOH HLC-8320GPC EcoSEC® (TOSOH, Tokyo, Japan) equipped with a TOSOH TSK gel α -M column. UV-Vis measurements were performed using a JASCO V-650 spectrometer at room temperature. The thermogravimetric analysis was carried out from room temperature to 500 °C at a heating rate of 10 °C min⁻¹ using a Rigaku Instrument Thermo Plus TG8120 in a N₂ atmosphere. Differential scanning calorimetry (DSC) was carried out with a Seiko Instruments DSC 6220 under a N₂ atmosphere and 10 K min⁻¹ heating rate. Pyrolysis-GC-MS analysis was performed using a PY-2020iD pyrolyser (Frontier Laboratories Ltd.) connected to 6890 GC (Agilent Technologies International Japan, Ltd.) and JMS700 MS (JEOL). Pyrolysis was performed at a temperature of 100 °C. The purge flow of nitrogen to remove any oxygen from the sample, prior to pyrolysis, was set to 20 ml/min. The mass spectrometer ion source was set to 230 °C and the interface to 280 °C, scanning took place once per second in the range of 30 to 300 m/z..

1. Preparation of poly(LS-bpy)

Scheme S1. Preparation of poly(LS-bpy).

Sulfur (S₈) (1500 mg, 5.85 mmol) and sodium (Na) (278 mg, 12.1 mmol) were added to dry THF (60 mL) and the mixture was stirred at 75 °C for 24 h. 4-(Chloromethyl)-4'- methyl-2,2'-bipyridyl (bpydiCl) (1720 mg, 6.81 mmol) was added to the suspension and the mixture was stirred at r.t. for 24 h. The resulting solution was filtered, H₂O and CHCl₃ were added to the filtrate, and the CHCl₃ layer was extracted. After drying the CHCl₃ with MgSO₄, the solution was filtered and filtrate was evaporated. The resulting sample was purified by separation GPC to obtain poly(LS-bpy). (40% Yield from S₈)

	S_8	Na	S_8 : Na	bpydiCl	S in	Yield	M
	(mg / mmol)	(mg / mmol)		(mg / mmol)	poly(LS-bpy)	(%)	Mn
Run 1	1500 / 5.86	278 / 12.0	1:2	1720 / 6.80	41	40	2,500
Run 2	500 / 1.95	137 / 5.96	1:3	726 / 2.87	34	32	2,700
Run 3	200 / 0.78	73 / 3.17	1:4	870 / 3.44	29	46	2,600
Run 4	200 / 0.78	144 / 6.25	1:8	1739 / 6.88	22	51	1,600
Run 5	500 / 3.94	89 / 3.91	1:2	741 / 2.93	40	28	2,600
Run 6	500 / 3.94	92 / 4.00	1:2	988 / 3.91	38	41	2,700
Run 7	500 / 3.94	91 / 3.94	1:2	1482 / 5.86	34	40	2,200

Table S1. Preparation of poly(LS-bpy)

Data of poly(LS-bpy).

Physical State; Yellow powder.

Anal. Calcd. for (C₁₂H₁₀N₂S₄)_n : C 46.42, H 3.25, N 9.02, S 41.12 Found: C 46.67, H 3.39, N 8.82, S 41.31.

Figure S1. ¹H NMR spectra of bpydiCl (upper) and poly(LS-bpy) (bottom) in CDCl₃ at 30 °C.

Figure S2. ¹³C NMR spectra of bpydiCl (upper) and poly(LS-bpy) (bottom) in CDCl₃ at 30 °C.

Figure S3. MALDI-TOF MS spectrum of poly(LS-bpy). Peaks for a number of the repeating unit of bpy (m/z 184) and sulfur (32) could be detected.

Figure S4. GPC profiles of poly(LS-bpy). The GPC measurement was performed in 0.1 wt% LiBr in DMSO solution at 40 °C. Molecular weight are based on the calibration of polyethylene glycol (PEG) standard.

2. Preparation of poly(LS-bpyCu)

Scheme S2. Preparation of poly(LS-bpyCu).

Poly(LS-bpy) (3.3 mg, 10.4 μ mol (bpy part)) and copper(II) nitrate pentahydrate [Cu(NO₃)₂·5H₂O] (1.3 mg, 5.2 μ mol) were added to mixed solution of CHCl₃ (16.0 mL) and MeOH (4.0 mL), stirred at r.t. for 24 h, and the solution was removed to obtain poly(LS-(bpyCu).

Figure S5. XRD patterns of $Cu(NO_3)_2 \cdot 5H_2O$, poly(LS-bpy), and poly(LS-bpyCu). Introduction of Cu(II) into the poly(LS-bpy) was confirmed by the absence of diffraction peaks for neat $Cu(NO_3)_2 \cdot 5H_2O$ in the XRPD measurement of poly(LS-bpyCu).

UV-Vis measurement Poly(LS-bpyCu)

To confirm the complex formation of bpy part in poly(LS-bpy) and Cu(II), we performed the UV-Vis measurement of mixture of poly(LS-bpy) and Cu(NO₃)₂·3H₂O. Mixed solution of CHCl₃ and MeOH (4:1) of 46.7 μ M poly(LS-bpy) was prepared in a UV cuvette (1 cm path length). Aliquots (2.67 μ L) of the mixed solution of CHCl₃ and MeOH (4:1) solution of 10.5 mM Cu(NO₃)₂·3H₂O were added to the solution of poly(LS-bpy) in the UV cuvette. After each aliquot addition, the solution was allowed to stand until the absorbance reached a constant value. A new peak appeared at 308 nm due to the addition of Cu(NO₃)₂·3H₂O (Fig. S5). This peak was also observed in mixture of bpy and Cu(NO₃)₂·3H₂O (Fig. S6). These results indicate that poly(LS-bpy) forms a complex by the coordination bond between bpy in poly(LS-bpy)₂ and Cu(II).

Figure S6. UV-Vis absorption spectra of addition of aliquots (2.67 μ L) of 10.5 mM Cu(NO₃)₂·3H₂O CHCl₃/MeoH (4:1) solution to the 46.7 μ M poly(LS-bpy) CHCl₃/MeOH (4:1) solution at 25 °C.

Figure S7. UV-Vis spectra of $Cu(NO_3)_2 \cdot 3H_2O$ (black), bpy (blue), and mixture of bpy and $Cu(NO_3)_2 \cdot 3H_2O$ (red) in CHCl₃/MeoH (4:1) at 25 °C. The concentrations of bpy and $Cu(NO_3)_2 \cdot 3H_2O$ were 40 µM and 14 µM, respectively.

3. Preparation of LS-Bn

Scheme S3. Preparation of LS-Bn.

 S_8 (169.7 mg, 1.01 mmol) and benzyl bromide (BnBr, 480 µL, 4.04 mmol) were dissolved in a Na₂S · 5H₂O aqueous solution and CHCl₃, respectively. The two solutions were mixed and stirred at r.t. for 24 h. After the reaction, CHCl₃ was extracted and purified by silica column chromatography to obtain LS-Bn.

Data of LS-Bn. Physical State; Orange oil. Anal. Calcd. for C₁₄H₁₄S₃: C 60.39, H 5.07, S 34.54, Found: C 60.19, H 5.02, S 34.23.

Figure S8. ¹H NMR spectra of LS-Bn (red) and BnBr (black).

Figure S9. ¹³C NMR spectrum of LS-Bn.

Figure S10. Raman spectra of S_8 (black) and LS-Bn (red).

Figure S11. UV-Vis spectra of $Cu(NO_3)_2 \cdot 3H_2O$ (black), LS-Bn (green), and mixture of LS-Bn and $Cu(NO_3)_2 \cdot 3H_2O$ (orange) in CHCl₃/MeoH (4:1) at 25 °C. The concentrations of LS-Bn and $Cu(NO_3)_2 \cdot 3H_2O$ were 1.4 and 14 μ M, respectively.

4. Preparation of Poly(LS-bpyFe)

Poly(LS-bpy) (7.5 mg, 21.6 μ mol (bpy part)) and Iron(II) tetrafluoroborate hexahydrate (Fe(BF₄)₂·6H₂O (2.4 mg, 7.19 μ mol) were added to mixed solution of CHCl₃ (16.0 mL) and MeOH (4.0 mL) and stirred at r.t. for 24 h. Precipitation occurred in the solution during the reaction. The precipitate was collected and dried to obtain poly(LS-(bpyFe).

Figure S12. Photographs of poly(LS-bpy) (left), $Fe(BF_4)_2 \cdot 6H_2O$ (center), and mixture of poly(LS-bpy) and $Fe(BF_4)_2 \cdot 6H_2O$ (poly(LS-bpyFe)) (right) in CHCl₃/MeOH (4:1), respectively.

Figure S13. XRD patterns of $Fe(BF_4)_2 \cdot 6H_2O$, poly(LS-bpy), and poly(LS-bpyFe). Introduction of Fe(II) into the poly(LS-bpy) was confirmed by the absence of diffraction peaks for neat $Fe(BF_4)_2 \cdot 6H_2O$ in the XRPD measurement of poly(LS-bpyFe).

UV-Vis measurement Poly(LS-bpyFe)

To confirm the complex formation of bpy part in poly(LS-bpy) and Fe(II), we performed the UV-Vis measurement of mixture of poly(LS-bpy) and Cu(NO₃)₂·3H₂O. Mixed solution of CHCl₃ and MeOH (4:1) of 46.7 μ M poly(LS-bpy) was prepared in a UV cuvette (1 cm path length). Aliquots (2.32 μ L) of the mixed solution of CHCl₃ and MeOH (4:1) solution of 6.04 mM Fe(BF₄)₂·6H₂O were added to the solution of poly(LSbpy) in the UV cuvette. After each aliquot addition, the solution was allowed to stand until the absorbance reached a constant value. A new peak appeared at 545 nm due to the addition of Fe(BF₄)₂·6H₂O (Fig. S12). This peak was also observed in mixture of bpy and Fe(BF₄)₂·6H₂O (Fig. S13). These results indicate that poly(LS-bpy) forms a complex by the coordination bond between bpy in poly(LS-bpy) and Fe.

Figure S14. UV-Vis absorption spectra of addition of aliquots (2.32 μ L) of 6.04 mM Fe(BF₄)₂·6H₂O CHCl₃/MeOH (4:1) solution to the 46.7 μ M poly(LS-bpy) CHCl₃/MeoH (4:1) solution at 25 °C.

Figure S15. UV-Vis spectra of $Fe(BF_4)_2 \cdot 6H_2O$ (black), bpy (blue), and mixture of bpy and $Fe(BF_4)_2 \cdot 6H_2O$ (red) in CHCl₃/MeoH (4:1) at 25 °C. The concentrations of bpy and $Fe(BF_4)_2 \cdot 6H_2O$ were 66.7 µM and 7.55 mM, respectively.

Figure S16. UV-Vis spectra of Cu(NO₃)₂·3H₂O (black), LS-Bn (green), and mixture of LS-Bn and Cu(NO₃)₂·3H₂O (red) in CHCl₃/MeOH (4:1) at 25 °C. The concentrations of LS-Bn and Cu(NO₃)₂·3H₂O were 47.5 and 7.55 μ M, respectively.

Figure S17. UV-Vis spectra of EDTA-Na (gray), 46.7 μ M poly(LS-bpy) (blue), 40 μ M poly(LS-bpyCu) (red), a mixture of poly(LS-bpyCu) and 10 eq. of EDTA-Na (green), 14 μ M Cu(NO₃)₂·5H₂O (black), and re-assembled poly(LS-bpyCu) where 0.6 eq. of Cu(NO₃)₂·5H₂O was added to the filtrate of the mixture of poly(LS-(bpy)₂Cu) and EDTA-Na (orange) in CHCl₃/CH₃OH = 4:1 solution. The increase in the overall absorbance in the UV-Vis spectra is due to the absorption of EDTA-Na or Cu(NO₃)₂·3H₂O. For samples with Abs. greater than 1, the samples were diluted and measured to reduce absorbance to ~1.

6. DSC and TGA of poly(LS-bpyCu)

Figure S18. DSC profiles of poly(LS-bpy) (blue) and poly(LS-bpyCu) (red).

In the TG profiles, the weight loss of poly(LS-bpyCu) was in two steps, 95 and 249 °C. Pyrolysis-GC-MS measurements were performed at 100 °C to investigate the compounds decomposing in the first step. In the pyrolysis-GC-MS profiles of poly(LS-bpyCu), a peak of O₂ (m/z = 32) when nitric acid decomposes was observed (Fig. S17). The peak of O₂ (m/z = 32) was also observed in the pyrolysis-GC-MS profiles of nitric acid (Fig S18). These results indicated that the weight loss in the first step was due to nitrate ions coordinated to Cu(II). The decomposition temperature of poly(LS-bpyCu) was higher than that of poly(LS-bpy).

Figure S19. TG profiles of poly(LS-bpy) (blue) and poly(LS-bpyCu) (red).

Figure S20. Pyrolysis-GC-MS profiles of poly(LS-bpyCu).

Figure S21. Pyrolysis-GC-MS profiles of nitric acid.