# **Supporting Information**

One-pot Catalyst-switching Synthesis of Thermoresponsive Amphiphilic Diblock Copolymers Consisting of Poly(*N*,*N*-diethylacrylamide) and Biodegradable Polyesters

Xiangming Fu,<sup>a</sup> Yanqiu Wang,<sup>a</sup> Atsushi Narumi,<sup>b</sup> Shin-ichiro Sato,<sup>c</sup> Xiande Shen,<sup>\*,a,d</sup> and

Toyoji Kakuchi\*,a,c,d

<sup>a</sup> Research Center for Polymer Materials, School of Materials Science and Engineering,
 Changchun University of Science and Technology, Weixing Road 7989, Jilin 130022, China
 <sup>b</sup> Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan,
 Yonezawa, Yamagata 992-8510, Japan

<sup>c</sup> Division of Applied Chemistry, Faculty of Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

<sup>d</sup> Chongqing Research Institute, Changchun University of Science and Technology, No. 618
 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing City 401135, China

### CORRESPONDING AUTHOR FOOTNOTE

Tel & Fax: +81-11-706-6602. E-mail: <u>kakuchi@eng.hokudai.ac.jp</u>

# Contents

| 1.        | Tables of PDEAm <sub>x</sub> -OH, PDEAM <sub>x</sub> -b-PTMC <sub>y</sub> and PDEAm <sub>x</sub> -b-PLLA <sub>y</sub>                                                   |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.        | SEC(RI) traces of PDEAm <sub>x</sub> -b-PCL <sub>y</sub> , PDEAM <sub>x</sub> -b-PTMC <sub>y</sub> and PDEAm <sub>x</sub> -b-PLLA <sub>y</sub>                          |
| 3.        | <sup>1</sup> H NMR spectra of PDEAm- <i>b</i> -PTMC and PDEAm- <i>b</i> -PLLA9                                                                                          |
| 4.        | Dynamic <sup>1</sup> H NMR spectroscopy of PDEAm <sub>30</sub> - <i>b</i> -PTMC <sub>70</sub> and PDEAm <sub>30</sub> - <i>b</i> -PLLA <sub>70</sub> 10                 |
| 5.<br>PLI | hydrodynamic radius (Rh) of $PDEAm_x$ - <i>b</i> -PCL <sub>y</sub> , $PDEAM_x$ - <i>b</i> -PTMC <sub>y</sub> and $PDEAm_x$ - <i>b</i> -LA <sub>y</sub> at 25°C and 55°C |

#### 1. Table of PDEAm<sub>x</sub>-OH, PDEAM<sub>x</sub>-b-PTMC<sub>y</sub> and PDEAm<sub>x</sub>-b-PLLA<sub>y</sub>

**Table S1.** Preparation for a stock solution of PDEAm-OH in  $CH_2CL_2$  by i) the equimolar hydrosilylation of MAm-OTBDMS and Me<sub>2</sub>EtSiH using  $B(C_6F_5)_3^a$  and ii) the GTP of DEAm using Me<sub>3</sub>SiNTf<sub>2</sub>,<sup>b</sup> followed by iii) the deprotection using TBAF <sup>c</sup>

|                         | [DEAm] <sub>0</sub> /[SKAm <sup>Me<sub>2</sub>Et-OTBDMS]<sub>0</sub></sup> | Time | $M_{ m n, calcd}$ $^d$ | $M_{ m n,SEC} \left( M_{ m w}/M_{ m n}  ight)^{e}$ |                  |
|-------------------------|----------------------------------------------------------------------------|------|------------------------|----------------------------------------------------|------------------|
| PDEAm <sub>x</sub> -OH  |                                                                            | / h  | / kg mol <sup>-1</sup> | / kg mol <sup>-1</sup>                             | $T_{\rm cp}{}^f$ |
| PDEAm <sub>30</sub> -OH | 30                                                                         | 6    | 3.8                    | 3.6 (1.07)                                         | 53.8             |
| PDEAm <sub>40</sub> -OH | 40                                                                         | 6    | 5.1                    | 4.8 (1.08)                                         | 52.5             |
| PDEAm <sub>50</sub> -OH | 50                                                                         | 6    | 6.4                    | 6.2 (1.08)                                         | 51.9             |
| PDEAm <sub>60</sub> -OH | 60                                                                         | 6    | 7.7                    | 7.9 (1.07)                                         | 51.5             |
| PDEAm70-OH              | 70                                                                         | 6    | 8.9                    | 8.7 (1.09)                                         | 51.0             |
| PDEAm <sub>80</sub> -OH | 80                                                                         | 7    | 10.1                   | 9.9 (1.10)                                         | 50.5             |
| PDEAm90-OH              | 90                                                                         | 8    | 11.4                   | 10.5 (1.10)                                        | 49.9             |

<sup>*a*</sup> Solvent, CH<sub>2</sub>Cl<sub>2</sub>; room temperature; argon atmosphere; MAm-OTBDMS, 0.22 mmol; [MAm-OTBDMS]<sub>0</sub>/[Me<sub>2</sub>EtSiH]<sub>0</sub>/[B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>]<sub>0</sub> = 1.1/1.0/0.25. <sup>*b*</sup> [DEAm]<sub>0</sub>, 1.0 mol L<sup>-1</sup>; SKAm<sup>Me2Et</sup>-OTBDMS, 0.20 mmol; [SKAm<sup>Me2Et</sup>-OTBDMS]<sub>0</sub>/[Me<sub>3</sub>SiNTf<sub>2</sub>]<sub>0</sub>, 1/0.05; monomer conversion determined by <sup>1</sup>H NMR spectra in CDCl<sub>3</sub>, >99%. <sup>*c*</sup> Tetrabutylammonium fluoride (TBAF) solution, 1.0 mol L<sup>-1</sup> in THF. <sup>*d*</sup>  $M_{n,cacld}$  = (MW of PDEAm-OH ) + [TMC]<sub>0</sub>/[PDEAm-OH]<sub>0</sub> x (monomer conversion) x (MW of TMC) + (M.W. of H) x 2. <sup>*e*</sup> Determined by SEC equipped with a RI detector in DMF containing LiCl (0.01 mol L<sup>-1</sup>) using PMMA standards. <sup>*f*</sup> Determined by UV-vis measurements in water (3 g L<sup>-1</sup>).

**Table S2.** Synthesis of PDEAm-*b*-PTMC by the ring-opening polymerization (ROP) of trimethylene carbonate (TMC) using PDEAm-OH as the macroinitiator and *t*-Bu-P<sub>2</sub> as the organocatalyst <sup>*a*</sup>

| Somula codo                                        | [TMC] <sub>0</sub> /[PDEAm-OH] <sub>0</sub> | $M_{ m n,calcd}~^b$    | $M_{ m n,SEC} \left( M_{ m w}/M_{ m n}  ight)$ c |
|----------------------------------------------------|---------------------------------------------|------------------------|--------------------------------------------------|
| Sample code                                        |                                             | / kg mol <sup>-1</sup> | / kg mol <sup>-1</sup>                           |
| PDEAm <sub>30</sub> -b-PTMC <sub>70</sub>          | 70                                          | 11.0                   | 11.5 (1.10)                                      |
| PDEAm <sub>40</sub> -b-PTMC <sub>60</sub>          | 60                                          | 11.2                   | 11.7 (1.18)                                      |
| PDEAm <sub>50</sub> -b-PTMC <sub>50</sub>          | 50                                          | 11.5                   | 11.2 (1.17)                                      |
| PDEAm <sub>60</sub> - <i>b</i> -PTMC <sub>40</sub> | 40                                          | 11.7                   | 12.5 (1.10)                                      |
| PDEAm <sub>70</sub> -b-PTMC <sub>30</sub>          | 30                                          | 12.0                   | 12.2 (1.09)                                      |
| PDEAm <sub>80</sub> -b-PTMC <sub>20</sub>          | 20                                          | 12.2                   | 13.2 (1.09)                                      |
| PDEAm <sub>90</sub> - <i>b</i> -PTMC <sub>10</sub> | 10                                          | 12.5                   | 13.5 (1.19)                                      |

<sup>*a*</sup> [TMC]<sub>0</sub>, 1.0 mol L<sup>-1</sup>; solvent, CH<sub>2</sub>Cl<sub>2</sub>; room temperature; argon atmosphere; polymerization time, 24 h; monomer conversion determined by <sup>1</sup>H NMR spectra in CDCl<sub>3</sub>, >99%. <sup>*b*</sup>  $M_{n,cacld} =$ (MW of PDEAm-OH ) + [TMC]<sub>0</sub>/[PDEAm-OH]<sub>0</sub> x (monomer conversion) x (MW of TMC) + (M.W. of H) x 2. <sup>*c*</sup> Determined by SEC equipped with a RI detector in DMF containing LiCl (0.01 mol L<sup>-1</sup>) using PMMA standards.

| Somula ando                               | [L-LA] <sub>0</sub> /[PDEAm-OH] <sub>0</sub> | $M_{ m n, calcd}$ $^b$ | $M_{ m n,SEC} \left( M_{ m w}/M_{ m n}  ight) ^c$ |
|-------------------------------------------|----------------------------------------------|------------------------|---------------------------------------------------|
| Sample code                               |                                              | / kg mol <sup>-1</sup> | / kg mol <sup>-1</sup>                            |
| PDEAm <sub>30</sub> -b-PLLA <sub>70</sub> | 70                                           | 13.9                   | 11.6 (1.13)                                       |
| PDEAm <sub>40</sub> -b-PLLA <sub>60</sub> | 60                                           | 13.7                   | 11.2 (1.16)                                       |
| PDEAm <sub>50</sub> -b-PLLA <sub>50</sub> | 50                                           | 13.5                   | 12.5 (1.17)                                       |
| PDEAm <sub>60</sub> -b-PLLA <sub>40</sub> | 40                                           | 13.4                   | 11.8 (1.15)                                       |
| PDEAm <sub>70</sub> -b-PLLA <sub>30</sub> | 30                                           | 13.2                   | 13.9 (1.19)                                       |
| PDEAm <sub>80</sub> -b-PLLA <sub>20</sub> | 20                                           | 13.0                   | 12.9 (1.20)                                       |
| PDEAm <sub>90</sub> -b-PLLA <sub>10</sub> | 10                                           | 12.9                   | 14.3 (1.14)                                       |

**Table S3.** Synthesis of PDEAm-*b*-PLLA by the ring-opening polymerization (ROP) of Llactide (L-LA) using PDEAm-OH as the macroinitiator and *t*-Bu-P<sub>2</sub> as the organocatalyst <sup>*a*</sup>

<sup>*a*</sup> [L-LA]<sub>0</sub>, 1.0 mol L<sup>-1</sup>; solvent, CH<sub>2</sub>Cl<sub>2</sub>; room temperature; argon atmosphere; polymerization time, 24 h; monomer conversion determined by <sup>1</sup>H NMR spectra in CDCl<sub>3</sub>, >99%. <sup>*b*</sup>  $M_{n,cacld} =$ (MW of PDEAm-OH) + [L-LA]<sub>0</sub>/[PDEAm-OH]<sub>0</sub> x (monomer conversion) x (MW of L-LA) + (MW of H) x 2. <sup>*c*</sup> Determined by SEC equipped with a RI detector in DMF containing LiCl (0.01 mol L<sup>-1</sup>) using PMMA standards.

## 2. SEC(RI) traces of PDEAM<sub>x</sub>-b-PTMC<sub>y</sub> and PDEAm<sub>x</sub>-b-PLLA<sub>y</sub>



Figure S1. SEC traces of PDEAm and PDEAm-b-PTMC in CDCl<sub>3</sub>.



Figure S2. SEC traces PDEAm and of PDEAm-b-PLLA in CDCl<sub>3</sub>.

## 3. <sup>1</sup>H NMR spectra of PDEAm-*b*-PTMC and PDEAm-*b*-PLLA



Figure S3. <sup>1</sup>H NMR spectra of a) PDEAm-*b*-PTMC and b) PDEAm-*b*-PLLA in CDCl<sub>3</sub>.



4. Dynamic <sup>1</sup>H NMR spectroscopy of PDEAm<sub>30</sub>-*b*-PTMC<sub>70</sub> and PDEAm<sub>30</sub>-*b*-PLLA<sub>70</sub>

Figure S4. <sup>1</sup>H NMR spectra of a) PDEAm<sub>30</sub>-*b*-PTMC<sub>70</sub> and b) PDEAm<sub>30</sub>-*b*-PLLA<sub>70</sub> measured at 25, 30, 35 °C in D<sub>2</sub>O.

5. Distribution of hydrodynamic radius (Rh) of PDEAm<sub>x</sub>-b-PCL<sub>y</sub>, PDEAM<sub>x</sub>-b-PTMC<sub>y</sub> and PDEAm<sub>x</sub>-b-PLLA<sub>y</sub> at 25°C and 55°C



Figure S5. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PCL<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 25°C.



Figure S6. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PCL<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 55°C.



Figure S7. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PTMC<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 25°C.



Figure S8. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PTMC<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 55°C.



Figure S9. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PLLA<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 25°C.



Figure S10. Distribution of hydrodynamic radii for PDEAm<sub>x</sub>-*b*-PLLA<sub>y</sub> with x/y ratios of (a) 30/70, (b) 40/60, (c) 50/50, (d) 60/40, (e) 70/30, (f) 80/20, and (g) 90/10 at 55°C.