Supporting Information

Thermal Annealing Effects on the Mechanical Properties of Bio-based 3D Printed Thermosets

Karen P. Cortés-Guzmán,¹ Ankit R. Parikh,² Marissa L. Sparacin,¹ Rebecca M. Johnson¹, Lauren Adegoke,⁴ Melanie Ecker,⁴ Walter E. Voit,^{2,3} Ronald A. Smaldone^{*1,3}

¹Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States

²Department of Mechanical Engineering UT Dallas University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States

³Department of Materials Science and Engineering UT Dallas University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States

⁴Department of Biomedical Engineering, University of North Texas, 1155 Union Circle #310440, Denton, Texas 75203, United States

Figure S1. ¹ H NMR of VGE. ·····4
Figure S2. ¹ H NMR of EGE4
Figure S3. ¹ H NMR of GuGE4
Figure S4. ¹ H NMR of Vanillyl alcohol5
Figure S5. ¹ H NMR of DGEVA5
Figure S6. ¹ H NMR of VGEA. ·····6
Figure S7. ¹³ C NMR of VGEA6
Figure S8. ESI-MS of VGEA7
Figure S9. ¹ H NMR of EGEA7
Figure S10. ¹³ C NMR of EGEA8
Figure S11. ESI-MS of EGEA8
Figure S12. ¹ H NMR of GuGEA. ······9
Figure S13. ¹³ C NMR of GuGEA9
Figure S14. ESI-MS of GuGEA. 10
Figure S15. ¹ H NMR of DGEVDA10
Figure S16. ¹³ C NMR of DGEVDA11
Figure S17. ESI-MS of DGEVDA11
Figure S18. FT-IR spectra of the VGEA monomer, DGEVDA crosslinker and the varied VGEA+DGEVDA ratio thermosets. 12
Figure S19. FT-IR spectra of the VGEA+20DGEVDA resin, as printed and annealed thermosets. 13
Figure S20. FT-IR spectra of the EGEA+20DGEVDA resin, as printed and annealed thermosets. 13
Figure S21. FT-IR spectra of the GuGEA+20DGEVDA resin, as printed and annealed thermosets
Figure S22. Gel content and swelling experiments in A) water and B) Ethanol for the varied VGEA+DGEVDA ratio thermosets
Figure S23. Gel content and swelling experiments in different solvents for A) as printed (solid) and B) annealed (dashed) samples of VGEA+20DGEVDA······15
Figure S24. Gel content and swelling experiments in different solvents for A) as printed (solid) and B) annealed (dashed) samples of EGEA+20DGEVDA15

Figure S25. Gel content and swelling experiments in different solvents for A) as printed (solid) and B) annealed (dashed) samples of GuGEA+20DGEVDA.16

Figure S29. SEM (LEO 1530 VP) images of the self-healing experiment for the GuGEA+20DGEVDA thermoset at 180° C (scale bar 200 μ m).

Figure S31. Additional reprocessing experiments for extended times at 140 °C and 1500 psi for 24 h.20

Figure S3. ¹H NMR of GuGE.

Figure S6. ¹H NMR of VGEA.

Figure S7. ¹³C NMR of VGEA.

Figure S11. ESI-MS of EGEA.

m/Z

Figure S12. ¹H NMR of GuGEA.

Figure S13. ¹³C NMR of EGEA.

Figure S14. ESI-MS of GuGEA.

Figure S15. ¹H NMR of DGEVDA.

Figure S17. ¹³C NMR of DGEVDA.

printed and annealed thermosets.

Figure S23. Gel content and swelling experiments in different solvents for A) as printed (solid) and B) annealed (dashed) samples of VGEA+20DGEVDA.

Figure S26. Thermal characterization of the varied VGEA+DGEVDA ratio thermosets. A) TGAs showing the 5 weight % loss. B) DSCs showing a trend of increasing T_g with the higher crosslinker content.

Figure S27. Tensile testing of the varied VGEA+DGEVDA ratio thermosets. A bar plot comparison of the obtained A) Strain at break, B) UTS and C) Young's modulus, as well as D) the stress-strain plot.

Figure S28. Self-healing experiments for the varied VGEA+DGEVDA ratio thermosets at A) 120°C and B) 180°C (scale bar 400 μm).

Figure S29. SEM (LEO 1530 VP) images of the self-healing experiment for the GuGEA+20DGEVDA thermoset at 180°C (scale bar 200 μ m).

Figure S31. Additional reprocessing experiments for extended times at 140 °C and 1500 psi for 24 h.