Electronic Supplementary Information (ESI)

Post-Polymerisation Modification of Poly(3-hydroxybutyrate) (PHB) using Thiol-ene and Phosphine Addition

Lucas Al-Shok,^a James S. Town,^a Despina Coursari,^a Paul Wilson,^a David M. Haddleton*^a

a. Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. E-mail: d.m.haddleton@warwick.ac.uk

1 Data

1.1 NMR of starting materials

Figure S1: ¹H-NMR spectrum (400 MHz. CDCl₃) of tributylphosphine.

Figure S2: ³¹P NMR spectrum (162 MHz, CDCl₃) of tributylphosphine.

Figure S3: ¹H NMR spectrum (400 MHz, CDCl₃) of dimethylphenylphospine.

Figure S4: ³¹P NMR spectrum (162 MHz, CDCl₃) of dimethylphenylphosphine.

1.2 Polymer-Synthesis

Figure S5: ¹H NMR spectrum (400 MHz, CDCl₃) of low molecular weight PHB.

Figure S6: ¹H NMR spectrum (400 MHz, CDCl₃) of medium molecular weight PHB.

Figure S7: ¹H NMR spectrum (400 MHz, CDCl₃) of medium-high molecular weight PHB.

Figure S8: ¹H NMR spectrum (400 MHz, CDCl₃) of high molecular weight PHB.

Figure S9: Size-exclusion chromatogram showing distributions of molecular weights of synthetic PHB.

Figure S10: MALDI-ToF spectrum of low molecular weight PHB, measured via reflectron positive ion mode.

Figure S11:MALDI-ToF spectrum of medium molecular weight PHB, measured via reflectron positive ion mode.

Figure S12: MALDI-ToF spectrum of medium-high molecular weight PHB, measured via reflectron positive ion mode.

Figure S13: MALDI-ToF spectrum of high molecular weight PHB, measured via linear positive ion mode.

1.3 Polymer Functionalisation

Low molecular weight PHB

Chemical Shift (ppm)

Figure S14: ¹H-NMR (400 MHz, CDCl₃) of low molecular weight PHB functionalised with DMPP.

Figure S15: 31 P-NMR (162 MHz, CDCl₃) of low molecular weight PHB functionalised with DMPP.

Figure S16: ¹H-NMR (400 MHz. CDCl₃) of low molecular weight PHB functionalised with Bu_3P .

Figure S17: $^{31}\text{P-NMR}$ (162 MHz CDCl_3) of low molecular weight PHB functionalised with Bu_3P.

Figure S18: Plots of the relationship between fluorescence emission at 338 nm and 333 nm with a logarithmic concentration, measured for different low molecular weight polymer adduct concentrations in the presence of pyrene. PHB DMPP (left), PHB Bu₃P (right).

Figure S19: Zeta potential recorded for low molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Figure S20: Intensity-weighed particle diameter measured via dynamic light scattering recorded for low molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Thiol-ene functionalisation

Figure S21: $^1\!\text{H-NMR}$ of PHB functionalised with MTG via thiol-ene click chemistry.

Figure S22: 1 H-NMR (400 MHz. CDCl₃) of medium molecular weight PHB functionalised with DMPP.

Figure S23: $^{31}\mbox{P-NMR}$ (162 MHz. CDCl_3) of medium molecular weight PHB functionalised with DMPP.

Figure S24: ¹H-NMR (400 MHz. CDCl₃) of medium molecular weight PHB functionalised with Bu_3P .

Figure S25: $^{31}\text{P-NMR}$ (162 MHz. CDCl₃) of medium molecular weight PHB functionalised with Bu₃P.

Figure S26: MALDI-ToF spectra of unfunctionalised (uf) medium molecular weight PHB compared to PHB functionalised with DMPP and Bu₃P, respectively.

Figure S27: Plots of the relationship between fluorescence emission at 338 nm and 333 nm with a logarithmic concentration, measured for different medium molecular weight polymer adduct concentrations in the presence of pyrene. PHB DMPP (left), PHB Bu_3P (right).

Figure S28: Zeta potential recorded for medium molecular weight PHB functionalised with DMPP (left) and Bu_3P (right), respectively.

Figure S29: Intensity-weighed particle diameter measured via dynamic light scattering recorded for medium molecular weight PHB functionalised with DMPP (left) and Bu_3P (right), respectively.

Figure S30: TEM pictures taken for medium molecular weight PHB, functionalised with DMPP (left) and Bu_3P (right), respectively. Samples were prepared by drying aqueous polymer suspensions.

Medium high molecular weight PHB

Chemical Shift (ppm)

Figure S31: $^1\text{H-NMR}$ (400 MHz. CDCl_3) of medium high molecular weight PHB functionalised with DMPP.

Figure S32: $^{31}\text{P-NMR}$ (162 MHz. CDCl_3) of medium high molecular weight PHB functionalised with DMPP.

Figure S33: 1 H-NMR (400 MHz. CDCl₃) of medium high molecular weight PHB functionalised with Bu₃P.

Figure S34: ${}^{31}P$ -NMR (162 MHz. CDCl₃) of medium high molecular weight PHB functionalised with Bu₃P.

Figure S35: MALDI-ToF spectra of unfunctionalised (uf) medium high molecular weight PHB compared to PHB functionalised with DMPP and Bu₃P, respectively.

Figure S36: Plots of the relationship between fluorescence emission at 338 nm and 333 nm with a logarithmic concentration, measured for different medium high molecular weight polymer adduct concentrations in the presence of pyrene. PHB DMPP (left), PHB Bu₃P (right).

Figure S37: Zeta potential recorded for medium high molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Figure S38: Intensity-weighed particle diameter measured via dynamic light scattering recorded for medium high molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Figure S39: TEM pictures taken for medium high molecular weight PHB, functionalised with DMPP (left) and Bu_3P (right), respectively. Samples were prepared by drying aqueous polymer suspensions.

High molecular weight PHB

Figure S40: ¹H-NMR (400 MHz. CDCl₃) of high molecular weight PHB functionalised with DMPP.

Figure S41: 31 P-NMR (162 MHz. CDCl₃) of high molecular weight PHB functionalised with DMPP.

Figure S42: ¹H-NMR (400 MHz. CDCl₃) of high molecular weight PHB functionalised with Bu_3P .

Figure S43: 31 P-NMR (162 MHz. CDCl₃) of high molecular weight PHB functionalised with Bu₃P.

Figure S44: MALDI-ToF spectra of unfunctionalised (uf) high molecular weight PHB compared to PHB functionalised with DMPP and Bu₃P, respectively. All spectra have been measured in linear mode.

Figure S45: Plots of the relationship between fluorescence emission at 338 nm and 333 nm with a logarithmic concentration, measured for different high molecular weight polymer adduct concentrations in the presence of pyrene. PHB DMPP (left), PHB Bu_3P (right).

Figure S46: Zeta potential recorded for high molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Figure S47: Intensity-weighed particle diameter measured via dynamic light scattering recorded for high molecular weight PHB functionalised with DMPP (left) and Bu₃P (right), respectively.

Figure S48: TEM pictures taken for high molecular weight PHB, functionalised with DMPP (left) and Bu_3P (right), respectively. Samples were prepared by drying aqueous polymer suspensions.

1.4 Control experiments on small molecules

1.4.1 Crotonic acid and DMPP

Figure S49: ¹H-NMR (400 MHz, DMSO-d⁶) of crotonic acid functionalised with DMPP.

Figure S50: ³¹P-NMR (162 MHz, DMSO-d⁶) of crotonic acid functionalised with DMPP.

Figure S51: ¹H-NMR (400 MHz, CDCl₃) of crotonic acid functionalised with Bu₃P.

Figure S52: ³¹P-NMR (162 MHz, DMSO-d⁶) of crotonic acid functionalised with Bu₃P.

Figure S53: ${}^{1}H{}^{31}P$ correlation NMR (500 MHz ${}^{1}H$; 200 MHz ${}^{31}P$. CDCl₃) of crotonic acid functionalised with Bu₃P.

1.4.2 Methyl crotonate/*n*-butyric acid and DMPP

Figure S54: ¹H-NMR (400 MHz. CDCl₃) of Methyl-crotonate functionalised with DMPP and n-butyric acid.

Figure S55: 31 P-NMR (162 MHz. CDCl₃) of Methyl-crotonate functionalised with DMPP.

Figure S56: ¹H-NMR (400 MHz. CDCl₃) of Methyl-crotonate functionalised with Bu_3P and *n*-butyric acid.

Figure S57: ³¹P-NMR (162 MHz. CDCl₃) of Methyl-crotonate functionalised with Bu₃P.

1.4.3 Self-assembly as a function of salt and pH

NaCl

Figure S58:Zeta potential recorded for low molecular weight functionalised PHB measured in 0.9 wt% NaCl solution.

Figure S59:Zeta potential recorded for low molecular weight functionalised PHB measured in 0.09 wt% NaCl solution.

Figure S60: DLS recorded for low molecular weight functionalised PHB measured in 0.09 wt% NaCl solution.

Figure S61: Zeta potential recorded for low molecular weight functionalised PHB measured in pH 4 0.9 wt% buffer solution.

Figure S62: Zeta potential recorded for low molecular weight functionalised PHB measured in pH 4 0.09 wt% buffer solution.

Figure S63:DLS recorded for low molecular weight functionalised PHB-Bu₃P measured in pH 4 0.9 wt% buffer solution.

Figure S64:Zeta potential recorded for low molecular weight functionalised PHB measured in pH 7 0.9 wt% buffer solution.

Figure S65: Zeta potential recorded for low molecular weight functionalised PHB measured in pH 7 0.09 wt% buffer solution.

Figure S66:DLS recorded for low molecular weight functionalised PHB Bu₃P measured in pH 7 0.9 wt% buffer solution.

Figure S67:DLS recorded for low molecular weight functionalised PHB measured in pH 7 0.09 wt% buffer solution.

Figure S68:Zeta potential recorded for low molecular weight functionalised PHB measured in pH 9 0.9 wt% buffer solution.

Figure S69:Zeta potential recorded for low molecular weight functionalised PHB measured in pH 9 0.09 wt% buffer solution.

Figure S70: DLS recorded for low molecular weight functionalised PHB measured in pH 9 0.9 wt% buffer solution.

Figure S71: DLS recorded for low molecular weight functionalised PHB measured in pH 9 0.09 wt% buffer solution.

Figure S72: ¹H-NMR (400 MHz. $CDCl_3$) Comparison of untreated PHB to PHB treated with 0.9 wt% basic and acidic buffer. The Increase of the molecular weight is attributed to the loss of low molecular weight chains during purification of the samples.

Figure S73: ¹H-NMR (400 MHz. $CDCI_3$) Comparison of untreated PHB-DMPP to PHB-DMPP treated with 0.9 wt% basic and acidic buffer. The Increase of the molecular weight is attributed to the loss of low molecular weight chains during purification of the samples.