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Materials and Methods

All synthesis and manipulations of air- and moisture-sensitive chemicals and materials were
carried out in flamed Schlenk-type glassware on a dual-manifold Schlenk line, on a high-vacuum
line, or in an inert gas (Ar)-filled glovebox. High-performance liquid chromatography (HPLC)-
grade anhydrous tetrahydrofuran (THF), toluene (TOL), and dichloromethane (DCM) were dried
via a Vigor YJC-5 solvent purification system and stored over activated Davison 4 A molecular
sieves in glovebox. All monomers were recrystallized twice from DCM and petroleum ether (PE)
to get the crystals of monomers. The crystals were dried in a vacuum oven at 60 °C for 1 day.

The initiator p-tolylmethanol was purchased from adamas and purified via sublimation at
55 °C under vacuum. The organic catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene TBD was
purchased from adamas and purified via dissolution, filtration and sublimation at 110 °C under
vacuum. The catalyst 2,6-diisopropylphenyl substituted B-diiminate zinc trimethylsilyl complex
Zn-1 was prepared according to literature procedures!. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)
was purchased from adamas and used directly without treatment.

&9

TBD Zn-1

Molecular Weight Measurements

SEC Measurements of polymer number-average molecular weight (M,) and molecular
weight distributions or polydispersity indices (D = Mw/M,) were performed via size exclusion
chromatography (SEC). The SEC instrument consisted of an Agilent LC system equipped with
one guard column and two PL gel 5 um mixed-C gel permeation columns and coupled with an
Agilent G7162A 1260 Infinity II RI detector; The analysis was performed at 40 °C using THF as
the eluent at a flow rate of 1.0 mL/min. The instrument was calibrated with 9 PS standards, and
chromatograms were processed with Agilent OpenLab CDS Acquisition 2.5 molecular weight
characterization software.

Spectroscopic Characterizations

NMR NMR spectra were recorded on an Agilent 400-MR DD?2 or a Bruker AV 11-400 MHz
spectrometer. Chemical shifts for all spectra were referenced to internal solvent resonances and
were reported as parts per million relate to SiMes. HRMS High-resolution mass spectra (HRMS)
were recorded on a Bruker Daltonics MicroTOF-Q. PXRD X-ray powder patterns of the polymers
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were obtained with a Bruker-D2 PHASER Powder X-Ray Diffractometer with Cu-Ka radiation (A
=1.5416 A) at 30 kV and 10 mA (scan of 20 = 2-30° with a step size of 0.2° and count time of 2
sec/step). Before analysis, specimens were cooled by liquid N> and grinded until a fine white
powder was obtained.

Thermal Analysis

DSC Melting-transition temperature (7) and Glass-transition temperature (7,) of purified
and thoroughly dried polymer samples were measured by differential scanning calorimetry (DSC)
on DSC25, TA Instrument. The heating rate was 10 °C/min and cooling rate was 10 °C/min. TGA
Decomposition temperature (73) and maximum rate decomposition temperatures (7max) of purified
and thoroughly dried polymer samples were measured by thermogravimetric analyzer (TGA) on
an TGASS, TA Instrument. Polymer samples were heated from ambient temperatures to 600 °C at
a heating rate of 10 °C/min. Values of Tmax were obtained from derivative (wt%/°C) vs.
temperature (°C) plots and defined by the peak values, while 74 values were obtained from wt%
vs. temperature (°C) plots and defined by the temperature of 5% weight loss.

Mechanical Analysis

Samples were made by melt press in a steel mold (50 x 40 x 0.4 mm?). Tensile stress/strain
testing was performed by an Instron 5967 universal testing system using dog-bone-shaped test
specimens (ca. 0.4 mm (thickness) x 4 mm (width) x 20 mm (grip width). Specimens were
stretched at a strain rate of 10 mm/min at ambient temperature until break. The measurements were
performed 5 times for each test, and the mechanical behavior reported are averaged from the
measured data. The Young’s modulus (£°) was calculated using the slope of the stress-strain curve
from 0 to 1% strain.



General Monomer Preparations

General Procedure for M1-M4

(0] 0] o o}
DS DS S i
OMe Br
M1 M2 M3 M4
Amount: 2619 2409 210g9 1259
Total yield: 63% 47% 31% 21%

Br

R1Jﬁ(O\Me(Et)
9 S Q OH
1 1
R ] -2 > RL@ T NaBH, > R2—©f 1
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OH o 0] Br
1 1: ON
NaOH - Z | R EDCI/HOB, Et;N ‘g’R )W/ Et
_NaOH _ 2 —_— ey 9 0
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O Br
e}
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M1-M4 were synthesized according to our previous literature?, but the procedures were
modified and thus described in detail below. Taking the synthesis of monomer M1 as an example,
the synthesis processes of M2-M4 were similar, and the detailed processes were no longer
described, the differences were pointed out separately.

Synthesis of b

3-methoxy salicylaldehyde al (200 mmol, 1 equiv.) and ethyl 2-bromopropanoate 1 (1.1
equiv.) were added to a stirred suspension of anhydrous K>COs3 (1.5 equiv.) and KI (0.05 equiv.)
in acetonitrile (500 mL). The mixture was stirred under reflux overnight. The cooled reaction
mixture was filtrated and concentrated under reduced pressure to afford oily crude product. The
crude product was dispersed in PE/EA solution (PE = 500 mL, EA =50 mL), then the mixture was
frozen for several hours at =20 °C. While the resulting solid was crushed, the supernatant was
decanted. Then the residue was washed with PE for 2—3 times to afford a white solid product b1
which was used directly for the next step. b2—b4 were synthesized according to the synthesis
method of b1, expect that corresponding starting materials 5-bromo salicylaldehyde a2 . 2-
hydroxy-1-naphthaldehyde a3 were used instead of al. b4 obtained a new alkyl long chain group
by replacing ethyl 2-bromopropanoate 1 with methyl 2-bromooctanoate 2.
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Synthesis of ¢

Sodium borohydride (NaBHa, 0.275 equiv.) was slowly added into a stirred solution of b1 (1
equiv.) in ethanol and dichloromethane (EtOH : DCM = 250 mL : 250 mL) cooled to 0 °C with an
ice water bath. The mixture was stirred at 0 °C for 30 min and quenched by a dilute hydrochloric
acid solution (2 N, 100 mL) to pH = 5—7. The mixture was concentrated under reduced pressure
to remove EtOH, and then the resulting mixture was extracted with DCM (100 mL x 3). The
combined organic layer was concentrated under reduced pressure to give the crude product ¢l,
which was used directly in the subsequent reaction without further purification. ¢2, ¢3 and c4 were
synthesized according to the synthesis method of e¢1. Methanol (MeOH) instead of ethanol (EtOH)
was used for the synthesis of ¢4, while other conditions were same.

Synthesis of d

To the solution of crude product ¢l (1 equiv.) in tetrahydrofuran THF and H,O (THF : H.O
=300 mL : 300 mL) was added with NaOH (1.5 equiv.). The reaction mixture was extracted with
DCM after stirring at RT for 1 h. The collected lower water phase was quenched with hydrochloric
acid (6 N) solution to pH =~ 3—4 at 0 °C. Then the mixture was extracted with EtOAc (100 mL x
3). The combined organic phase was dried over Na;SO4 and concentrated under reduced pressure
to give crude product d1 as solid. The crude product was dispersed in PE/EA solution (PE = 500
mL, EA = 50 mL), then the mixture was frozen for several hours at —20 °C. The supernatant was
decanted, while the resulting solid was crushed and washed with PE for 2—3 times to obtain white
solid product d1 (40.6 g, 90% total yield in three steps) which was used directly for the next step.
d2 (36.8 g, 67% total yield in three steps), d3 (39.3 g, 53% total yield in three steps) and d4 (33.5
g, 53% total yield in three steps) were synthesized according to the synthesis method of d1.

Synthesis of M

To a solution of crude carboxylic acid ¢ (1 equiv.) in 600 mL of anhydrous DCM was added
triethylamine (Et;N) (1.5 equiv.) and hydroxybenzotriazole (HOBt) (1 equiv.). The resulting
mixture was cooled to —5 °C, and 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) (1.2
equiv.) was added to the solution. After the addition, the solution was allowed to stir at =5 °C for
1 h. After that, the solution was warmed up to RT and continued to stir at RT overnight. The
organic solution was washed with water and saturated brine, dried over anhydrous Na,;SO4, and
concentrated under reduced pressure. The crude product was purified by silica gel column
chromatography (PE/EtOAc/DCM = 8/1/1) to afford M1 (white solid, 26.1 g, 70% yield; 63%
total yield in four steps). M2 (white solid, 24.0 g, 70% yield; 47% total yield in four steps), M3
(white solid, 21.0 g, 71% yield; 31% total yield in four steps) and M4 (white solid, 12.5 g, 39%
yield; 21% total yield in four steps) were synthesized according to the synthesis method of M1.



NMR spectra of d1-d4

HO

'H NMR (400 MHz, CDCl3) & 7.05 (t, J = 7.9 Hz, 1H), 6.96-6.87 (m, 2H), 5.03 (q, J = 6.9 Hz,
1H), 4.88 (d, J = 12.2 Hz, 1H), 4.58 (d, J = 12.2 Hz, 1H), 3.86 (s, 3H), 1.63 (d, J = 7.0 Hz, 3H).
13C NMR (400 MHz, CDCls) 8 176.28, 151.21, 144.55, 133.41, 124.13, 122.16, 112.67, 75.96,
61.26, 55.89, 18.96.
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Figure S1. '"H NMR (CDCls, 25 °C) spectrum of d1.
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Figure S2. 3C NMR (CDCl3, 25 °C) spectrum of d1.
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HO o
2
Br
d2
'"H NMR (400 MHz, CDCl3) § 7.49-7.30 (m, 2H), 6.82 (br, 2H), 6.71 (d, J = 8.6 Hz, 1H), 4.99—

4.78 (m, 2H), 4.41 (d, J = 12.5 Hz, 1H), 1.67 (d, J = 6.9 Hz, 3H). 3*C NMR (400 MHz, CDCl3) &
174.70, 154.92, 132.78, 132.22, 131.72, 114.47, 114.37, 73.30, 61.57, 18.63.
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Figure S3. 'H NMR (CDCls, 25 °C) spectrum of d2.
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Figure S4. 3C NMR (CDCl3, 25 °C) spectrum of d2.
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HO o
SeAR:
d3

'H NMR (400 MHz, CDCls : HFIP) & 8.04 (d, J = 8.6 Hz, 1H), 7.88-7.80 (m, 2H), 7.63-7.51 (m,
1H), 7.47-7.39 (m, 1H), 7.17 (d, J= 9.1 Hz, 1H), 5.31 (d, /= 12.0 Hz, 1H), 5.20 (d, J= 12.0 Hz,
1H), 5.11 (q, J = 6.9 Hz, 1H), 1.75 (d, J = 6.9 Hz, 3H). 3*C NMR (400 MHz, CDCl; : HFIP) &
176.69, 153.29, 132.56, 131.09, 130.00, 128.81, 127.74, 124.75, 122.68, 121.87, 114.21, 73.62,
55.84, 18.69.
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Figure S5. '"H NMR (CDCl; : HFIP, 25 °C) spectrum of d3.
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Figure S6. 3*C NMR (CDCl; : HFIP, 25 °C) spectrum of d3.
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0]
SOP A

d4

'H NMR (CDCls, 25 °C) & 8.01 (d, J = 8.6 Hz, 1H), 7.70 (d, J= 8.1 Hz, 1H), 7.62 (d, J=9.1 Hz,
1H), 7.44 (t, J = 7.0 Hz, 1H), 7.32 (t, J = 7.5 Hz, 1H), 6.98 (d, J= 9.1 Hz, 1H), 5.17 (d,J=11.8
Hz, 1H),4.98 (d,J=11.8 Hz, 1H), 4.74 (t, J = 6.0 Hz, 1H), 1.94-1.71 (m, 2H), 1.50-1.38 (m, 2H),
1.31-1.21 (m, 6H), 0.90-0.84 (m, 3H). 3C NMR (CDCls, 25 °C) § 176.32, 153.52, 132.80, 130.27,
129.59, 128.40, 127.12, 124.09, 123.19, 122.35, 114.35, 77.67, 55.00, 32.92, 31.69, 29.00, 25.38,

22.69, 14.16.
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Figure S7. '"H NMR (CDCls, 25 °C) spectrum of d4.
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Figure S8. 3C NMR (CDCl3, 25 °C) spectrum of d4.
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NMR spectra of monomers M1-M4

0
OJS/
0

OMe
M1

'H NMR (CDCls, 25 °C) § 7.06 (dd, J = 8.3, 7.5 Hz, 1H), 6.97 (dd, J = 8.3, 1.6 Hz, 1H), 6.86 (dd,
J=17.5,1.5Hz, 1H), 5.36 (d,J= 12.7 Hz, 1H), 5.30 (d, /= 12.7 Hz, 1H), 5.00 (q, J = 6.8 Hz, 1H),
3.87 (s, 3H), 1.73 (d, J = 6.8 Hz, 3H). 3C NMR (CDCls, 25 °C) & 171.66, 151.19, 145.66, 128.65,
124.29, 120.60, 113.63, 76.94, 67.92, 56.12, 18.81. HRMS (LCMS-IT-TOF): m/z calculated for
C11H1304 [M + H]* 209.0809, found 209.0814.
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Figure S9. 'H NMR (CDCls, 25 °C) spectrum of M1.
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Figure S10. 3C NMR (CDCls, 25 °C) spectrum of M1.
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0
OJS/
0

Br
M2

'HNMR (CDCls, 25 °C) § 7.41 (dd, J= 8.7, 2.4 Hz, 1H), 7.30 (d, J = 2.4 Hz, 1H), 6.89 (d, /= 8.6
Hz, 1H), 5.51 (d, J = 14.0 Hz, 1H), 5.16 (q, J = 6.6 Hz, 1H), 5.07 (d, J = 14.0 Hz, 1H), 1.64 (d, J
= 6.6 Hz, 3H). 13C NMR (CDCl, 25 °C) § 170.48, 155.62, 133.70, 131.84, 125.80, 121.79, 115.22,
73.99, 67.61, 18.16. HRMS (LCMS-IT-TOF): m/z calculated for C1oH10BrOs [M + H]" 256.9808,

found 256.9813.
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Figure S11. '"H NMR (CDCls, 25 °C) spectrum of M2.
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Figure S12. 3C NMR (CDCls, 25 °C) spectrum of M2.
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0N
M3

'H NMR (CDCls, 25 °C) & 7.88-7.79 (m, 3H), 7.62-7.51 (m, 1H), 7.50-7.38 (m, 1H), 7.22 (d, J
— 8.8 Hz, 1H), 5.87 (d, J = 13.7 Hz, 1H), 5.77 (d, J = 13.7 Hz, 1H), 5.13 (q, J = 6.7 Hz, 1H), 1.72
(d, J = 6.7 Hz, 3H). 3C NMR (CDCls, 25 °C) & 171.64, 155.56, 131.36, 131.25, 130.59, 129.01,
127.63, 125.03, 121.83, 120.54, 119.19, 76.36, 63.42, 18.70. HRMS (LCMS-IT-TOF): m/z
calculated for C14H1303 [M + H]* 229.0860, found 229.0855.
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Figure S13. '"H NMR (CDCls, 25 °C) spectrum of M3.
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Figure S14. 3C NMR (CDCls, 25 °C) spectrum of M3.
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"
M4

'"H NMR (CDCl3, 25 °C) 8 7.90 (d, J = 8.6 Hz, 1H), 7.87-7.78 (m, 2H), 7.57 (t, J = 7.4 Hz, 1H),
7.46 (t,J=7.5 Hz, 1H), 7.24 (d, J = 8.8 Hz, 1H), 5.90 (d, J = 13.5 Hz, 1H), 5.74 (d, J = 13.5 Hz,
1H), 4.89 (t, J = 6.1 Hz, 1H), 2.15-2.06 (m, 2H), 1.73-1.56 (m, 2H), 1.45-1.31 (m, 6H), 0.98—
0.83 (m, 3H). *C NMR (CDCl;s, 25 °C) & 171.53, 155.97, 131.43, 131.38, 130.75, 129.03, 127.64,
125.11, 121.91, 120.35, 120.31, 81.18, 63.25, 33.06, 31.80, 29.08, 25.45, 22.72, 14.19. HRMS
(LCMS-IT-TOF): m/z calculated for C19H2303 [M + H]" 299.1642, found 299.1638.
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Figure S15. '"H NMR (CDCls, 25 °C) spectrum of M4.
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Figure S16. 3°C NMR (CDCls, 25 °C) spectrum of M4.
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General polymerization procedures

In glovebox, vigorously stirred prepared monomer and initiator (p-tolylmethanol) in solution
were mixed with catalyst in solution in 4 mL glass vial for ambient temperature runs. (Note: the
solution of catalyst was prepared freshly each time.) After an expected time, the mixture solution
was quenched by chloroform solution with dissolved benzoic acid (1% w.t.). Then 10 pL. quenched
mixture solution was taken out for 'H NMR analysis to monitor the conversion of monomer. The
remaining solution was dripped into 50 mL cold MeOH twice to precipitate polymer to remove
unreacted monomer and catalyst residue. The white polymer was filtered, washed with cold
methanol and dried in a vacuum oven at 60 °C overnight to a constant weight.

Copolymerization procedure was similar with the above procedure for homopolymerization
of M1-M4. M3 and M5 were added into the 4 mL glass vial at the same time, and then initiator,
solution, and catalyst in solution were also added. Copolymerization results were summarized in
Table S1.
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Copolymerization of monomers

o] O fo) le}
Me "He.
d + o X Copolymerization /PS/O OWH/O Oﬂ/
OO TBD, Initiator Mo % " nHex "
M3 M5 P[(M3),-co-(M5),,]

Table S1. Copolymerization results of M3 and M5.¢

Entry [M3)/[MS]/[TBD)/[PMBA]  Time Conv.? (%) My¢ (kDa) 123 7,7 (°C)
30s 79/45 N.D. N.D /
1 min 91/61 N.D N.D /
1¢ 200/200/1/1 2 min 97/83 47.8 1.12 /
10 min 99/98 49.5 1.09 /
30 min 99/99 63.2 1.28 39
. 10 min 96/77 61.2 1.06 /
2 160722407171 30 mim 99/99 67.7 1.10 25
. 10 min 94/61 46.9 1.12 /
3 80732011 30 min 99/99 57.4 1.09 11
4 400/400/2/1 8h 99/99 80.6 1.82 37
5/ 360/440/2/1 8h 99/99 95.8 1.81 32
6 320/480/2/1 8h 99/99 83.6 1.72 22

“Conditions: [monomer] = 1.0 M, DCM as the solvent, TBD as the catalyst, p-tolylmethanol (PMBA) as the initiator, room
temperature. “Monomer conversion measured by 'H NMR of the quenched solution. “Number-average molecular weight
(M,) and dispersity index (D = M,/M,), determined by size exclusion chromatography (SEC) at 40 °C in THF. “Glass
transition temperature 7, was measured by DSC with the cooling and heating rate of 10 °C min! for all samples. ‘n(M3+M5)
= 0.5 mmol. /n(M3+M35) = 10 mmol.
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Characterization of polymers

NMR spectra of polymers

0
)HK( OUOJK
MeO
P(M1)

'H NMR (CDCls, 25 °C) § 7.00-6.90 (m, 1H), 6.88-6.77 (m, 2H), 5.41 (t, J = 12.8 Hz, 1H), 5.29—
5.19 (m, 1H), 4.93-4.83 (m, 1H), 3.73-3.68 (m, 3H), 1.57-1.47 (m, 3H). 3C NMR (CDCls, 25 °C)

0 172.36, 151.42, 144.96, 129.53, 123.78, 121.33 112.60, 76.70, 62.10, 55.80, 19.08.
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Figure S17. '"H NMR (CDCls, 25 °C) spectrum of P(M1).
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Figure S18. 3C NMR (CDCls, 25 °C) spectrum of P(M1).
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Ay

Br
P(M2)
"H NMR (CDCls, 25 °C) & 7.36-7.18 (m, 2H), 6.67-6.52 (m, 1H), 5.30-5.15 (m, 2H), 4.83-4.71

(m, 1H), 1.60 (d, J = 6.5 Hz, 3H). *C NMR (CDCls, 25 °C) & 171.18, 154.48, 132.36, 132.24,
126.52, 113.79, 113.72, 72.99, 61.94, 18.66.
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Figure S19. '"H NMR (CDCls, 25 °C) spectrum of P(M2).
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Figure S20. 3C NMR (CDCls, 25 °C) spectrum of P(M2).
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ook
0

P(M3)

'HNMR (CDCls : HFIP, 25 °C) § 7.75-7.39 (m, 3H), 7.34-7.06 (m, 2H), 6.97-6.78 (m, 1H), 5.90—
5.57 (m, 1H), 5.55-5.30 (m, 1H), 4.86-4.50 (m, 1H), 1.63-1.32 (m, 3H). 13C NMR (CDCls : HFIP,
25°C) 8 174.35, 153.92, 133.18, 131.74, 129.60, 128.66, 127.64, 124.60, 122.78, 116.53, 114.06,

74.21, 59.14, 18.17.
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Figure S21. '"H NMR (CDCls : HFIP, 25 °C) spectrum of P(M3).
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Figure S22. 3C NMR (CDCls : HFIP, 25 °C) spectrum of P(M3).

1 (ppm)

T

745 740 735

110

L

h“

|

174.0

|

1745
1 (ppm)




(0]

0]
PN ool
"Hex OQ

P(M4)

'H NMR (CDCls, 25 °C) § 7.73-7.39 (m, 3H), 7.30-7.25 (m, 1H), 7.24-7.02 (m, 1H), 7.00-6.85
(m, 1H), 5.87-5.32 (m, 2H), 4.79-4.50 (m, 1H), 2.00~1.75 (m, 2H), 1.50-1.30 (m, 2H), 1.28-1.09
(m, 6H), 0.89-0.72 (m, 3H). 3C NMR (CDCls, 25 °C) 5 171.65, 154.46, 133.34, 131.19, 129.28,
128.46, 127.09, 123.97, 123.02, 116.63, 114.18, 77.64, 58.23, 32.96, 31.67, 29.04, 25.17, 22.66,
14.15.
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Figure S23. '"H NMR (CDCls, 25 °C) spectrum of P(M4).
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Figure S24. 3C NMR (CDCls, 25 °C) spectrum of P(M4).
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NMR spectra of P[(M3)n-co-(M5)m]
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Figure S25. 'H NMR (CDCls, 25 °C) spectrum of P[(M3)io-co-(M5)10] produced by
[M3]/[M5)/[TBDJ/[I] = 400/400/2/1.
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Figure S26. 'H NMR (CDCls, 25 °C) spectral analysis of P[(M3)io-co-(M5)10] produced by
[M3]/[M5]/[TBD]/[1] = 400/400/2/1.
a) P(M3), top; b) P(M5), middle; ¢) P[(M3)10-co-(M5)10], bottom.
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Figure S28. 'H NMR (CDCls;, 25 °C) spectrum of P[(M3)o-co-(M5)i1] produced by

[M3]/[M5]/[TBDJ/[I] = 360/440/2/1.
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Figure S29. 'H NMR (CDCl;, 25 °C) spectrum of P[(M3)s-co-(M5)i2] produced by

4.5

5.5

6.5

7.5

[M3]/[M5]/[TBDJ/[I] = 320/480/2/1.

=0.7

[M3] x—y 34-2

y

[M5]

39



Thermal properties of polymers

0.4

0.3

0.2 A ‘\

0.1 1

0.0 1
-0.1-
-0.2-
-0.3-
0.4

-0.54 cooling scan and isothermal

-0-6 I I I I I
0 50 100 150 200

Temperature (°C)

Heat flow (W/g)

Tg=49°C

Figure S30. DSC curves of P(M1) produced by [M1]/[TBD]/[I] = 1000/1/1 in DCM at a heating
and cooling scanning rate of 10 °C/min. (Table 1, entry 5)
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Figure S31. DSC curves of P(M2) produced by [M2]/[TBD]/[I] = 1000/1/1 in DCM at a heating
and cooling scanning rate of 10 °C/min. (Table 1, entry 9)
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Figure S32. DSC curves of P(M3) produced by [M3]/[TBD]/[I] = 200/1/1 in DCM at a heating
and cooling scanning rate of 10 °C/min. (Table 1, entry 10)

a) Ramp 10 °C/min to 200 °C. b) Ramp 10 °C/min to 240 °C. c) TGA curve of the weight change
of P(M3) at 240 °C for 1 h
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Figure S33. DSC curves of P(M4) produced by [M4]/[TBD]/[I] = 1000/1/1 in DCM at a heating
and cooling scanning rate of 10 °C/min. (Table 1, entry 13)
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Figure S34. TGA curves of P(M1) produced by [M1]/[TBD]/[I] = 1000/1/1 in DCM at a heating
rate of 10 °C/min. (Table 1, entry 5)
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Figure S35. TGA curves of P(M2) produced by [M2]/[TBD]/[I] = 1000/1/1 in DCM at a heating
rate of 10 °C/min. (Table 1, entry 9)
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Figure S36. TGA curves of P(M3) produced by [M3]/[TBD]/[I] = 200/1/1 in DCM at a heating
rate of 10 °C/min. (Table 1, entry 10)
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Figure S37. TGA curves of P(M4) produced by [M4]/[TBD]/[I] = 1000/1/1 in DCM at a heating
rate of 10 °C/min. (Table 1, entry 13)
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Thermal properties of P[(M3),-co-(M5)m]
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Figure S38. DSC curves of P[(M3)i0-co-(M5)10] produced by [M3]/[MS]/[TBD]/[1] =
400/400/2/1 in DCM at a heating and cooling scanning rate of 10 °C/min. (Table S1, entry 4)
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Figure S39. DSC curves of P[(M3)9-co-(M5)11] produced by [M3]/[MS]/[TBD]/[1] = 360/440/2/1
in DCM at a heating and cooling scanning rate of 10 °C/min. (Table S1, entry 5)

49



0.3 A
0.2 1
0.1 1
0.0 -
-0.1 1
-0.2 4
-0.3 1

Heat flow (W/Qq)

-0.41 Tg=22.0°C
0.5

-0.6 1 cooling scan and isothermal

'07 T I I I I I
-50 0 50 100 150 200

Temperature (°C)

Figure S40. DSC curves of P[(M3)s-co-(M5)12] produced by [M3]/[MS]/[TBD]/[1] = 320/480/2/1
in DCM at a heating and cooling scanning rate of 10 °C/min. (Table S1, entry 6)
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SEC traces of polymers
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Figure S41. SEC trace of P(M1) produced by [M1]/[TBD]/[I] = 1000/1/1 in DCM. M, = 122 kDa,
D =1.19. (Table 1, entry 5)
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Figure S42. SEC trace of P(M2) produced by [M2]/[TBD]/[I] = 1000/1/1 in DCM. M, = 158 kDa,
D =1.48. (Table 1, entry 9)
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Figure S43. SEC trace of P(M4) produced by [M4]/[TBD]/[1] =200/1/1 in DCM. M, =47.6 kDa,
D =1.09. (Table 1, entry 12)
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SEC traces of P[(M3)s-co-(M5)m]
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Figure S44. SEC trace of P[(M3)10-co-(M5)10] produced by [M3]/[MS]/[TBD]/[1] = 400/400/2/1
in DCM. M, = 80.6 kDa, ® = 1.82. (Table S1, entry 4)
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Tensile testings and mechanical properties of polymers
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Figure S45. Molded polymer images of P(M1)-P(M4).
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Figure S46. Tensile testing of P(M1) (M, = 97.5 kDa, B = 1.81) produced by [M1]/[TBD]/[1] =
500/2/1 at a strain rate of 10 mm/min.

Table S2. Mechanical properties of P(M1).¢

Sample number Yield strength? Tensile strength® Strain? E*
(MPa) (MPa) (%) (GPa)

1 44.8 40.5 10.8 2.53

2 / 342 4.37 2.22

3 / 31.3 9.39 2.16

4 / 294 4.47 2.33

5 / 35.7 8.80 2.29
Average / 34.2 7.57 2.31
Standard deviation / 4.28 2.96 0.14

“Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at yield. “Stress
at break. “Strain at break. °Young’s modulus (E”) calculated as the slope from 0 to 1% strain.
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Figure S47. Tensile testing of P(M4) (M, = 65.7 kDa, B = 1.16) produced by [M4]/[TBD]/[1] =
500/2/1 at a strain rate of 10 mm/min.

Table S3. Mechanical properties of P(M4).“

Sample number Tensile strength? Strain® E"
(MPa) (%) (GPa)

1 7.68 1.05 0.80

2 4.72 0.62 0.81

3 4.46 0.6 0.82

4 4.08 0.54 0.77

5 4.10 0.54 0.75

Average 5.01 0.67 0.79

Standard deviation 1.51 0.22 0.03

Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at break. “Strain
at break. “Young’s modulus (£’) calculated as the slope from 0 to 1% strain.
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Tensile testings and mechanical properties of copolymers

P(M3),-co-(MS)p]

a) . b) ¢)
*iﬁo\f‘f"k
P[(M3),p-co-(M5),(] P[(M3)4-co-(M5) ;] P[(M3)g-co-(M5),,]

Figure S48. Molded and stretched copolymer images of P[(M3)n-co-(M5)m].
Molded copolymers produced by a) [M3]/[MS5]/[TBD]/[I] = 400/400/2/1, left; b)
[M3]/[M5]/[TBD]/[1] = 360/440/2/1, middle; ¢) [M3]/[M5]/[TBD]/[1] = 320/480/2/1, right.
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Figure S49. Tensile testing of P[(M3)10-co-(M5)10] (Table S1, entry 4, M, = 80.6 kDa, D = 1.82)
produced by [M3]/[M5]/[TBD]/[I] = 400/400/2/1 repeated with five replicates at a strain rate of

10 mm/min.
Table S4. Mechanical properties of P[(M3)10-co-(M5)10].*
Sample number Tensile strength? Strain® E"
(MPa) (%) (GPa)
1 40.8 4.86 1.56
2 37.8 3.95 1.84
3 41.7 5.29 1.61
4 37.1 3.54 1.68
5 37.1 3.54 1.73
Average 38.9 4.24 1.68
Standard deviation 2.19 0.80 0.11

Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at break. “Strain

at break. “Young’s modulus (£’) calculated as the slope from 0 to 1% strain.
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Figure S50. Tensile testing of P[(M3)o-co-(M5)11] (Table S1, entry 5, M, = 95.8 kDa, b = 1.89)
produced by [M3]/[M5]/[TBD]/[I] = 360/440/2/1 repeated with five replicates at a strain rate of
10 mm/min.

Table S5. Mechanical properties of P[(M3)o-co-(M5)11].%

Sample number Yield strength? Tensile strength® Strain? E*
(MPa) (MPa) (%) (GPa)

1 12.9 11.4 54.4 0.63

2 14.9 12.2 62.7 0.67

3 18.0 14.7 142 0.88

4 154 12.4 78.8 0.81

5 20.7 13.6 61.4 0.96
Average 16.4 12.9 79.9 0.79
Standard deviation 3.02 1.30 35.9 0.14

“Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at yield. “Stress
at break. “Strain at break. °Young’s modulus (E”) calculated as the slope from 0 to 1% strain.
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Figure S51. Tensile testing of P[(M3)s-co-(M5):2] (Table S1, entry 6, M, = 83.6 kDa, b = 1.72)

produced by [M3]/[M5]/[TBD]/[I] = 320/480/2/1 repeated with five replicates at a strain rate of
10 mm/min.

Table S6. Mechanical properties of P[(M3)s-co-(M5)12].%

Sample number Yield strength? Tensile strength® Strain? E*
(MPa) (MPa) (%) (GPa)

1 4.32 9.28 500 0.32

2 4.76 9.52 503 0.37

3 4.87 9.79 545 0.29

4 5.94 9.89 492 0.35

5 5.59 9.34 509 0.32

Average 5.10 9.56 510 0.33

Standard deviation 0.66 0.27 20.6 0.03

“Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at yield. “Stress
at break. “Strain at break. °Young’s modulus (E”) calculated as the slope from 0 to 1% strain.
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Table S7. A summary of mechanical properties of P[(M3)s-co-(MS5)12] and commercial polymer

materials.
Polymer materials Tensile strength (MPa) Straind (%) E’ (GPa)
P[(M3)s-co-(M5)12]* 9.6 510¢ 0.334

LDPE? 9.9 312 -

HDPE? 30.2 900 -

P3HB* 32 2.1 2.8

PLLA* 28-50 2-6 1.2-3.0
iPP? 26 420 1.2

Condition: Tested by uniaxial tensile tests at a strain rate of 10 mm/min. *Stress at break. “Strain
at break. “Young’s modulus (E”) calculated as the slope from 0 to 1% strain. The mechanical
properties of the other polymers listed in the Table S7 were from the literatures®->.

Chemical Recycling to Monomer (CRM)
General procedure for the CRM of polymers under bulk thermal.

PEO and polymer were mixed in a ratio of 10:1, and a catalytic amount of Sn(AcO), was
added. The mixture was kept at 110 °C—140 °C with stirring under vacuo for a certain time. After

the reaction was stopped, the sublimate was collected, weighted, and characterized by 'H NMR
spectroscopy.

Table S8. Results of bulk thermal chemical recycling of M1-M4.¢

Entry Polymers Sn(AcO), (mol%) Time (h) T (°C) xgﬁi%n(}g)
1 P(M1) 3 24 110 99
2 P(M2) 3 40 110 98
3 P(M3) 10 54 140 86
4 P(M4) 10 54 140 88

“Condition: all polymers were purified twice, catalyst: Sn(AcO),, cooling temperature: 5 °C with ethyl alcohol. m[PEO] : m[M]

=10 : 1. *The monomer yield determined by the amount of the sublimate and the purity of recycled monomer determined by 'H
NMR spectroscopy.

Table S9. Result of re-polymerization of recycled M4 produced by bulk thermal chemical
recycling.”

Entry Monomer [M]/[Cat]/[T] Time (h) Conv.” (%) M€ (kg/mol) D¢ (My/My)

1 M4 50/1/1 1 99% 12.2 1.46

Condition [M] = 1 M, DCM as the solvent, TBD as the catalyst, p-tolylmethanol as the initiator, room temperature. “Monomer
conversion was measured by 'H NMR of quenched solution. “Number average eight (M,) and dispersity (P = My/M,),
determined by size exclusion chromatography at 40 °C in THF.
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Figure S52. '"H NMR spectra of recycled M1 by bulk thermal depolymerization of P(M1).
a) P(M1) obtained by [M1])/[TBD]/[I] = 200/1/1, top; b) recycled M1 by the thermal
depolymerization, middle; c) starting M1 for comparison, bottom.
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Figure S53. '"H NMR spectra of recycled M2 by bulk thermal depolymerization of P(M2).
a) P(M2) obtained by [M2])/[TBD]/[I] = 200/1/1, top; b) recycled M2 by the thermal

depolymerization, middle; c) starting M2 for comparison, bottom.
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Figure S54. '"H NMR spectra of recycled M3 by bulk thermal depolymerization of P(M3).
a) P(M3) obtained by [M3]/[TBD]/[I] = 200/1/1, top; b) recycled M3 by the thermal

depolymerization, middle; c) starting M3 for comparison, bottom.

65



LEvey

o}

P(M4)

-

b)

| LJLL
J?nHex

started M4

T T T T T T T

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5

T T T T T T T

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

f1 (ppm)

Figure S55. '"H NMR spectra of recycled M4 by bulk thermal depolymerization of P(M4).
a) P(M4) obtained by [M4]/[TBD]/[I] = 200/1/1, top; b) recycled M4 by the thermal
depolymerization, middle; c) starting M4 for comparison, bottom.
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General procedure for the CRM of polymers in dilute solutions

A tube containing the purified polymer sample with 3 mol% Zn-1 in toluene (0.02 M) was
sealed and heated to 140 °C for 21 h and 58 h under an argon atmosphere. After cooling back to
room temperature, the reaction mixture was concentrated to give a solid, which was used for 'H
NMR analysis to determine the recycled monomer yield.

—N
¢ Zn-N(TMS),

=N

Zn-1

Table S10. Results of chemical recycling of M3—-M4 in dilute solution.”

Polymers® T (°C) Time (h) Monomer Yield® (%)
21 92
P(M3) 140 53 08
21 93
P(M4) 140 53 %

“Condition: All reactions were in toluene (0.02 M) and glovebox, catalyst: Zn-1 3 mol%. “P(M3) obtained by [M3]/[Zn-
1]/[1] = 200/1/1; P(M4) obtained by [M4]/[Zn-1]/[T] = 200/1/1. “The monomer yield determined by '"H NMR analysis.
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Figure S56. '"H NMR spectra of recycled M3 by solution depolymerization of P(M3) at 21 h.
a) P(M3) obtained by [M3]/[TBD]/[I] = 200/1/1, top; b) recycled M3 by the solution
depolymerization, middle; c) starting M3 for comparison, bottom.
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Figure S57. '"H NMR spectra of recycled M3 by solution depolymerization of P(M3) at 58 h.
a) P(M3) obtained by [M3]/[TBD]/[I] = 200/1/1, top; b) recycled M3 by the solution

depolymerization, middle; c) starting M3 for comparison, bottom.
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Figure S58. '"H NMR spectra of recycled M4 by solution depolymerization of P(M4) at 21 h.
a) P(M4) obtained by [M4]/[TBD]/[I] = 200/1/1, top; b) recycled M4 by the solution
depolymerization, middle; c) starting M4 for comparison, bottom.
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Figure S59. '"H NMR spectra of recycled M4 by solution depolymerization of P(M4) at 58 h.
a) P(M4) obtained by [M4]/[TBD]/[I] = 200/1/1, top; b) recycled M4 by the solution
depolymerization, middle; c) starting M4 for comparison, bottom.
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Chain transesterification

Transesterification
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Figure S60. Chain transesterification in this polymerization systems.
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