- Electronic Supplementary Information -

Preparation of Mechanically Tough Poly(dimethyl siloxane) through the Incorporation of Acetylated Cyclodextrin-Based Topologically Movable Cross-links

> [‡]Daichi Yoshida,^a [‡]Junsu Park,^{a,c} Naoki Yamashita,^a Ryohei Ikura,^{a,c} Nobu Kato,^f Masanao Kamei,^f Kentaro Ogura,^f Minoru Igarashi,^f Hideo Nakagawa,^e and Yoshinori Takashima^{a,b,c,d}* Email: takasima@chem.sci.osaka-u.ac.jp [‡]Contributed equally to this work

- a. Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- b. Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- c. Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- e. Shin-Etsu Chemical Co., Ltd.,
 4-1, Marunouchi 1 chome, Chiyoda-ku, Tokyo 100-0005, Japan.
- f. Shin-Estu Chemical Co., Ltd., Silicone-Electronics Materials Research Center, 1-10, Hitomi, Matsuida-machi, Annaka-Shi, Gunma 379-0224, Japan

Content

1. Materials	S3
2. Measurements	
3. Preparation of PMMS	
4. Preparation of PDMS-SH	
5. Preparation of PDMS-TAcγCD-Pen(x)	S10
6. Preparation of chemically cross-linked PDMS (CCPDMS)	
7. Cyclic tensile tests	S18
8. Stress relaxation tests	
9. Two-dimensional NOESY NMR measurements	
10. DSC measurements	S24

1. Materials

(3-Mercaptopropyl)methyldimethoxysilane (MMDMS), octamethylcyclotetrasiloxane (D₄), vinylmodified polydimethylsiloxane (PDMS-Vi), hydrosilyl-modified polydimethylsiloxane (PDMS-SiH), and $Pt_2[(Me_2SiCH=CH_2)_2O]_3$ (Karstedt catalyst) were kindly supplied by Shin-Etsu Chemical Co., Ltd. Chloroform was obtained from Nacalai Tesque Inc. Hexamethyldisiloxane (HMDS), 1-pentene, and trifluoromethanesulfonic acid were obtained from Tokyo Chemical Industry Co., Ltd. Deuterated chloroform (CDCl₃) and methanol were obtained from FUJIFILM Wako Pure Chemical Corporation. 1-Hydroxy-cyclohexyl-phenyl-ketone (IRGACURE® 184; hereinafter described as I184) was purchased from BASF Japan Ltd. 2-Hydroxy-2-methylpropiophenone (IRGACURE® 1173; hereinafter described as I1173) was purchased from Sigma–Aldrich Co. Deionized water was obtained by a Milli-Q system. Triacetylated 6-acrylamido methylether- γ -cyclodextrin (TAc γ CDAAmMe) was purchased from Kyoeisha Chemical Co., Ltd.

2. Measurements

NMR measurements: ¹H, ¹³C, ²⁹Si and ¹H-¹H nuclear Overhauser effect spectroscopy (NOESY) spectra were recorded with a JEOL ECA-500 NMR spectrometer at 25 °C. Chemical shift values were referenced to the CHCl₃ value ($\delta = 7.26$ ppm) for ¹H and ¹³C NMR and the TMS value ($\delta = 0$ ppm) for ²⁹Si NMR. For the NMR measurements of elastomers, the elastomers were swollen by CDCl₃ in NMR tubes for at least twenty-four hours and measured by means of an NMR spectrometer.

Gel permeation chromatography (GPC): The number-average molecular weight (M_n) , weight-average molecular weight (M_w) and molecular weight distribution (PDI, M_w/M_n) were measured by GPC in chloroform at 40 °C with two columns (Tosoh TSK gel GMHHR x2). The columns were connected to a Tosoh DP-8020 pump, a CO-8020 column oven, a UV-8020 ultraviolet detector, and an RI-8020 refractive index detector. The polymer samples were dissolved in chloroform prior to loading. The molecular weights of the samples were calculated based on a calibration curve prepared using polystyrene standards. When calculating the molecular weights, the results from the RI detector were used.

Fourier transform infrared (FT-IR) spectroscopy: FT-IR spectra were acquired in ATR mode through ZnSe crystals with N₂ gas flow (JASCO FT/IR-410).

Tensile test: Tensile tests of the elastomers were performed using an Autograph AG-X plus (Shimadzu Co.) at a deformation rate of 1 mm/s. Rectangular test pieces $(20 \times 5 \times 0.6 \text{ mm}^3)$ were used for the tensile test $(n \ge 3)$. The toughness was calculated from the integral of the stress-strain curve. The Young's modulus was calculated from the initial slope of the stress-strain curve at a range of 1-6% strain. The tensile tests were carried out at room temperature.

Cyclic tensile test: Cyclic tensile tests were performed using an Autograph AG-X plus (Shimadzu Co.) ($n \ge 3$). The rectangular test pieces ($20 \times 5 \times 0.6 \text{ mm}^3$) were continuously stretched and retracted without intervals at a deformation rate of 1.0 mm/s, and the maximum strains are summarized in **Table S3**. The cyclic tensile tests were carried out at room temperature.

Stress relaxation test: Stress relaxation tests were performed using an Autograph AG-X plus (Shimadzu Co.). The rectangular test pieces ($20 \times 5 \times 0.6 \text{ mm}^3$) stretched until certain strains were reached, as summarized in **Table S4**. Then, the strain was held, and the stress was recorded for 6000 seconds. The stress relaxation tests were carried out at room temperature.

Differential scanning calorimetry (DSC): The glass transition temperature (T_g) of the polymers was measured by a DSC machine under a N₂ atmosphere (DSC 7020, Hitachi High-tech Corporation).

X-ray scattering measurements: The internal structures of the elastomers were determined by ultrasmall-angle X-ray scattering (USAXS) and small-angle X-ray scattering (SAXS) measurements at the BL19B2 and BL40B2 beam lines in SPring-8, Nishi-harima, Japan. The powers of the incident X-ray beams for BL19B2 and BL40B2 were 18 and 12 keV, respectively. The sample-to-detector lengths for BL19B2 and BL40B2 were 41 m and 2 m, respectively. The length of the scattering vector q in the USAXS and SAXS measurements was 0.01-0.1 and 0.1-3 nm⁻¹, respectively, where $q = 4\pi \sin\theta/\lambda$ (2 θ and λ are the scattering angle and the wavelength, respectively). The scattering intensities were normalized by exposure times (60 seconds for USAXS and 5 seconds for SAXS), machine coefficient (0.0118 counts second⁻¹·cm⁻¹ for USAXS), transmittance, and thickness. The machine coefficients for SAXS measurements for each sample were appropriately adjusted to combine USAXS profiles and SAXS profiles.

3. Preparation of PMMS

Scheme S1. Preparation of PMMS

(3-Mercaptopropyl)methyldimethoxysilane (40 g, 0.18 mol) was added to 1 M HCl aq. (14 mL) at 0 °C. The mixture was stirred at room temperature for 3 h. Volatile components were distilled off under vacuum to give PMMS (30 g, 82%).

¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 2.49 (2H, a), 1.61 (1H, b), 1.31 (1H, c), 0.62 (2H, d), 0.08 (3H, e) ppm
²⁹Si NMR (CDCl₃, 99 MHz, 25 °C): δ -20.1 (D_{OH}), -22.6 (D) ppm

S6

Fig. S1. ¹H NMR spectrum of PMMS (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Fig. S2. ²⁹Si NMR spectrum of PMMS (CDCl₃, 99.4 MHz, 25 °C).

4. Preparation of PDMS-SH

Scheme S2. Preparation of PDMS-SH.

PMMS (9.6 g, 58 mmol of SH units) was mixed with octamethylcyclotetrasiloxane (71 mL, 0.23 mol of Me₂SiO units), hexamethyldisiloxane (330 μ L, 1.5 mmol) and trifluoromethanesulfonic acid (400 μ L, 4.5 mmol). The mixture was stirred at 80 °C for 5 days. This precursor copolymer was dissolved in dichloromethane (150 mL), and the solution was washed several times with water until a neutral pH was attained. The copolymer solution was concentrated under vacuum and poured into methanol (200 mL) to remove oligomers. The precipitated oil was recovered by decantation and dried under vacuum to give PDMS-SH (36 g, 46%). The thiol group concentration calculated from the ¹H NMR spectrum was approximately 10 mol%. After establishing the preparation scheme, Shin-Etsu Chemical Co., Ltd., kindly provided PDMS-SH on a large scale (approximately 1 kg).

¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 2.51 (2H, a), 1.65 (2H, b), 1.20 (1H, c), 0.60 (2H, d), 0.06 (57H, e) ppm

²⁹Si NMR (CDCl₃, 99 MHz, 25 °C): δ 7.68 (M), -21.4 (D_{Me}), -22.8 (D_{SH}) ppm

Molecular weight: $M_n = 7.2 \times 10^4$ (end-group analysis by ²⁹Si NMR) $M_n = 4.1 \times 10^4$, $M_w = 1.1 \times 10^5$, PDI = 2.7 (GPC)

Fig. S3. ¹H NMR spectrum of PDMS-SH (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Fig. S4. ²⁹Si NMR spectrum of PDMS-SH (CDCl₃, 99.4 MHz, 25 °C, * indicates the solvent residue peak).

5. Preparation of PDMS-TAcyCD-Pen(x)

PDMS-TAcγCD-Pen(x)

Scheme S3. Preparation of PDMS-TAcγCD-Pen(*x*).

TAc γ CDAAmMe (*x* equiv.; *x* = 0.5, 1, 1.5, 1.8, 2, 2.3, 2.5, and 3), PDMS-SH (SH group: 10 eq.), 1pentene (10-*x* eq.), and I1173 (1 eq.) were dissolved in CHCl₃ (6.0 mL). The solution was irradiated by UV light with a high-pressure Hg lamp (λ = 253 and 365 nm) for 30 min. Then, 1-pentene (200 µL) was added to the reaction mixture. The reaction mixture was irradiated by UV light with an LED lamp (λ = 253 and 365 nm) for 30 min to consume the unreacted SH groups. After UV irradiation, the obtained material was left in a fume hood overnight to roughly evaporate CHCl₃. The elastomer was dried at 70 °C in vacuum for at least 12 h to afford PDMS-TAc γ CD-Pen(*x*). The amounts of each reagent used to prepare each elastomer are summarized in Table S1.

	PDMS-SH		ТАсүСDААтМе		1-P	entene	I1173		
x	/mg	/mmol ^a	/mg	/mmol	/µL	/mmol	/µL	/mmol	
1	600	0.748	176	0.0748	73.8	0.674	11.4	0.0748	
1.5	600	0.748	264	0.112	69.7	0.636	11.4	0.0748	
1.8	600	0.748	316	0.135	67.3	0.614	11.4	0.0748	
2	600	0.748	351	0.150	65.6	0.599	11.4	0.0748	
2.3	600	0.748	404	0.172	63.1	0.576	11.4	0.0748	
2.5	600	0.748	439	0.187	61.5	0.561	11.4	0.0748	
3	600	0.748	527	0.225	57.4	0.524	11.4	0.0748	

Table S1. Amount of each reagent for PDMS-TAcyCD-Pen(*x*).

a: The molar ratio of the SH groups on PDMS-SH.

¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 6.83 (a), 5.33 (3), 5.14 (1), 4.74 (2, b), 4.50~4.28 (6', b), 4.07~3.70 (4, 5, 6), 2.80 (c), 2.51 (d), 2.09 (AcO), 1.62 (e), 1.35 (f), 0.90 (g), 0.63 (h), 0.08 (i) ppm
¹³C NMR (CDCl₃, 125 MHz, 25 °C): δ 169.5, 96.5, 77.2, 70.9, 62.6, 43.6, 35.3, 82.2, 31.2, 29.4, 23.2, 22.5, 21.0, 17.2, 14.1, 1.2, -0.49 ppm

Fig. S5. ¹H NMR spectrum of PDMS-TAcγCD-Pen(1) (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Fig. S6. ¹H NMR spectrum of PDMS-TAcγCD-Pen(2) (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Fig. S7. ¹H NMR spectrum of PDMS-TAcγCD-Pen(3) (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Table S2. CD modification ratio in PDMS-TAc γ CD-Pen(x) calculated from ¹H NMR spectra.

x	CD modification ratio ^a
1	0.80
2	1.46
3	2.54

a: The CD modification ratio was calculated from the integral ratio of the ¹H NMR spectrum between peak OAc in CD and peak h.

Fig. S8. ¹³C NMR spectrum of PDMS-TAcγCD-Pen(3) (CDCl₃, 125 MHz, 25 °C, * indicates the solvent residue peak).

6. Preparation of chemically cross-linked PDMS (CCPDMS)

Scheme S4. Preparation of CCPDMS.

CCPDMS was prepared from a two-part addition of cured silicone elastomer kindly supplied by Shin-Etsu Chemical Co. Ltd. PDMS-Vi, PDMS-SiH, and Karstedt catalyst were mixed by a kneading machine (Thinky ARE-300). The mixture was heat-pressed and dried *in vacuo* at room temperature for an hour to be degassed. The mixture was pressed to obtain the elastomer. The elastomer was dried at 70 °C *in vacuo* for at least 12 h to give CCPDMS.

¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 0.07 (a) ppm

Fig. S9. ¹H NMR spectrum of CCPDMS (CDCl₃, 500 MHz, 25 °C, * indicates the solvent residue peak).

Fig. S10. FT-IR spectra of PDMS-SH, CCPDMS, PDMS-TAcyCD-Pen(3), and TAcyCDAAmMe.

7. Cyclic tensile tests.

Flastomer	Maximum strain at the nth cycle/%										
Liastomer	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th
PDMS-TAcyCD-Pen(1)	5	10	25	50	75	-	-	-	-	-	-
PDMS-TAcyCD-Pen(1.5)	5	10	50	100	150	200	250	300	-	-	-
PDMS-TAcyCD-Pen(2)	10	50	100	200	300	400	500	-	-	-	-
PDMS-TAcyCD-Pen(2.5)	5	10	50	100	150	200	250	300	-	-	-
PDMS-TAcyCD-Pen(3)	5	10	20	30	40	50	60	70	80	90	100
CCPDMS	5	10	25	50	75	100	150	-	-	-	-

 Table S3. Maximum strains for the cyclic tensile test.

Fig. S11. (a) Chemical structure of PDMS-TAc γ CD-Pen(*x*) and cyclic stress–strain curves of PDMS-TAc γ CD-Pen(*x*) when *x* = (b) 1, (c) 1.5, (d) 2, (e) 2.5, and (f) 3.

8. Stress relaxation tests

 Table S4. Holding strains for stress relaxation tests.

Elastomer	Holding strain/%
PDMS-TAcyCD-Pen(1)	200
PDMS-TAcyCD-Pen(2)	400
PDMS-TAcyCD-Pen(3)	50
CCPDMS	100

Fig. S12. Stress relaxation curves of (a) CCPDMS and (f) PDMS-TAc γ CD-Pen(x) when x = (b) 1, (b) 2, and (b) 3 with fitting curves focusing on the initial 600 second regime. The parameters for fitting curves were determined from the 600 second regime and fixed when expanded the range by 6000 seconds. (i) Plots by 600 seconds and (ii) plots by 6000 seconds (raw data: cyan solid line, fitting curves: red dashed line).

Fig. S13. Stress relaxation curves of (a) CCPDMS and (f) PDMS-TAc γ CD-Pen(x) when x = (b) 1, (b) 2, and (b) 3 with fitting curves over the entire range (6000 seconds). The parameters for fitting curves were determined from the entire range and fixed when focused on the range by 600 seconds (i) Plots by 6000 seconds and (ii) plots by 600 seconds (raw data: cyan solid line, fitting curves: red dashed line).

Table S5.	Fitting parameters	of PDMS-TAcyCD	\mathbf{P} -Pen (x) and \mathbf{Q}	CCPDMS for	the KWW	models (over the
entire rang	ge (6000 seconds).						

DDMS motorials	Relaxable	components	Residual components		
I DIVIS materiais	$\sigma_r^{a}/\sigma_o^{e}$	τ^{b} (second)	β°	$\sigma_{\infty}{}^{d}/\sigma_{o}{}^{e}$	
CCPDMS	0.15	111	0.33	0.86	
PDMS-TAcyCD-Pen(1)	0.61	895	0.25	0.45	
PDMS-TAcyCD-Pen(2)	0.72	102	0.23	0.35	
PDMS-TAcyCD-Pen(3)	0.73	205	0.18	0.27	

^a Relaxable stress, ^b Relaxation time, ^c Stretching exponent, ^d Residual stress, ^e Initial stress

9. Two-dimensional NOESY NMR measurements

Scheme S5. Preparation of the model mixture for PDMS-Pen/TAcyCD.

Triacetylated- γ CD (TAc γ CD; 144 mg, 0.0624 mmol), PDMS-SH (100 mg, SH group: 0.125 mmol), 1pentene (13.7 µL, 0.125 mmol), and I184 (2.55 mg, 0.0125 mmol) were dissolved in CHCl₃ (1 mL). The solution was irradiated by UV light with a high-pressure Hg lamp (λ = 253 and 365 nm) for 30 min. Then, 1-pentene (30 µL) was added to the reaction mixture. The reaction mixture was irradiated by UV light with a high-pressure Hg lamp (λ = 253 and 365 nm) for 30 min to consume the unreacted SH groups. After UV irradiation, the obtained material was left in a fume hood overnight to roughly evaporate CHCl₃. The residue was dried at 70 °C under vacuum for at least 12 hours to afford the model compound. The obtained polymers (20 mg) were dissolved in CDCl₃ (600 µL), and the 500 MHz 2D ¹H-¹H NOESY-NMR spectrum of the solution was measured (mixing time = 200 ms).

10. DSC measurements

Fig. S14. (a) DSC thermograms of CCPDMS and PDMS-TAc γ CD-Pen(*x*) on the second scan and (b) T_g versus the amount of TAc γ CD (x = 1, 1.5, 2, 2.5, and 3).

X

2

2.5

3

3.5

1.5

1

0.5

0

and PDMS-TAcyCD-Pen(3) on the second scan.