Electronic Supplementary Information

Solvent-free, photoinduced block copolymer synthesis from polymerizable eutectics by simultaneous PET-RAFT and ring-opening polymerization in air

Yeasmin Nahar,^a Melissa K. Stanfield,^a Alex C. Bissember^a and Stuart C. Thickett^{a*}

^a School of Natural Sciences – Chemistry, University of Tasmania, Hobart TAS 7001 Australia

* Corresponding author: stuart.thickett@utas.edu.au

Fig S1. DSC thermograms of various mixtures prepared at different NIPAM:CL mole ratios. Shown are (A) heating thermograms of the 1:1 NIPAM:CL mixture (heating rate 2 °C min⁻¹), to accompany the data in Figure 1B and (B,C) cooling cycles of other NIPAM:CL mixtures (cooling rate 2 °C min⁻¹). Exothermic transitions are in the positive y direction; second loops shown in panels B and C. Data offset for clarity.

Fig S2. TGA analysis of 1:1 NIPAM:CL eutectic (blue), NIPAM (black) and CL (red). Heating rate was 10 °C min⁻¹ in a nitrogen atmosphere.

Fig S3. ¹H NMR spectrum of 1:1 NIPAM:CL eutectic. The spectrum was acquired by placing D₂O in a sealed capillary tube within the NMR sample tube to lock and shim the sample; spectrum was indirectly referenced to sodium trimethylsilylpropanesulfonate.

Fig S4. ¹H NMR spectra of the 1:1 NIPAM:CL eutectic in CDCl₃ performed at the specified time intervals during the simultaneous PET-RAFT and ROP polymerisation to prepare PNIPAM-b-PCL block copolymers.

Theoretical molar masses were calculated by the equation:

 $M_{n,theo} = MW_{HCTA} + \alpha^{1} \times DP_{NIPAM} \times MW_{NIPAM} + \alpha^{2} \times DP_{CL} \times MW_{CL}$

where α^1 and α^2 represent the fractional conversion of NIPAM and CL. DP_{NIPAM} and DP_{CL} represent the targeted degree of polymerization of NIPAM and CL respectively, in this case 60 units each.

Fig S5. ¹H NMR spectrum of PNIPAM-b-PCL copolymer in CDCl₃.

The peak at δ_H 4.05 ppm is assigned to the OCH₂ in PCL and the isopropyl proton in PNIPAM. Characteristic peaks of the methyl group and N–<u>H</u> of NIPAM at δ_H 1.11 and 6.5 ppm are clearly observable in addition to PCL and PNIPAM backbone peaks. Integration of methylene group of HEBCP at δ_H 3.38ppm relative to the integration of peaks at δ_H 4.05 and 6.50 ppm indicated that PNIPAM-*b*-PCL contained 52 repeating units of NIPAM and 28 repeating units of CL.

The molar mass of the block copolymer was calculated as 9392 Da via the equation

 $M_{n,NMR} = MW_{HCTA} + m \times MW_{NIPAM} + n \times MW_{CL}$

where m,n are the number of repeating units of NIPAM and CL respectively.

Fig S6. TGA of PNIPAM-b-PCL copolymer, performed at 10 °C min⁻¹ in a nitrogen atmosphere.

Fig S7. ATR-IR spectrum of PNIPAM-b-PCL.

Fig S8. DSC trace of PNIPAM-b-PCL, collected at a heating rate of 2 °C min⁻¹

DSC analysis of the block copolymer reported in the manuscript exhibits a melting point at 63 °C, attributed to the PCL block. Glass transitions were observed at -30 °C and 122 °C respectively.

Fig S9. Semi-logarithmic plots to determine the pseudo-first order polymerization rate k_p^{app} for both (A) NIPAM and (B) CL in a 1:1 eutectic (filled circles), THF (open squares) and 1,4-dioxane (open triangles).

Table S1. Pseudo-first order rate coefficient for the rate of polymerization of both NIPAM and CL within the first hour of polymerization (based on the linear fits in the above figure).

System	NIPAM k_{p}^{app} (h ⁻¹)	$CL k_p^{app}$ (h ⁻¹)
Eutectic	1.39 ± 0.07	0.39 ± 0.16
THF	0.37 ± 0.06	0.16 ± 0.05
1,4-dioxane	0.28 ± 0.08	0.15 ± 0.05