Phosphonium Ylide/Organoaluminum-Based Lewis Pairs for the Highly

Efficient Living/controlled Polymerization of Alkyl (Meth)acrylates

Zhikang Chen, ${ }^{\text {ta }}$ Wuchao Zhao, ${ }^{\text {tb }}$ Conglei Liu, ${ }^{a}$ Liuying Jiang, ${ }^{* a}$ Gang Fu, ${ }^{a}$ Yuetao Zhang, ${ }^{* b}$ and Hongping Zhu* ${ }^{*}$

${ }^{\text {a }}$ State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
${ }^{b}$ State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China

Content:

I . X-ray crystallographic analysis
II. Study on the relative Lewis acidity strength of the organoaluminum compounds
III. Study on the relative Lewis basicity strength of the P-ylide compounds

1. NBO analysis and computational details
2. ${ }^{31}$ P NMR spectral analysis of P-ylide-1-P-ylide-5
3. ${ }^{31}$ P NMR spectral analysis on reactions of P-ylide-1-P-ylide-5 each with AIMe(BHT) $)_{2}$
4. ${ }^{31} \mathrm{P}$ NMR spectral analysis on reactions of P-ylide-1-P-ylide-5 each with MMA•AIMe(BHT) ${ }_{2}$
IV. Some other polymerization results
V. Other collected MALDI-TOF MS spectra
VI. Collected NMR (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathbf{P}$) spectra
VII. References

I. X-ray crystallographic analysis

Crystallographic data of compounds LP-1, 2 LP-2.2 $\mathrm{C}_{7} \mathrm{H}_{8}$, LP-3. $\mathrm{C}_{7} \mathrm{H}_{8}$, LPM-3. $\mathrm{C}_{6} \mathrm{H}_{6}$, and LPM-5•0.5 $\mathrm{C}_{7} \mathrm{H}_{8}$ were all collected on XtaLAB Synergy, Dualflex, HyPix diffractometer $(\mathrm{Cu}-\mathrm{K} \alpha$ radiation, $\lambda=$ $1.54184 \AA$). Absorption corrections were applied by using the spherical harmonics program (multi-scan type). All structures were solved by direct methods (SHELXS-2015) ${ }^{1}$ and refined against F^{2} using SHELXL-2017/1. ${ }^{2}$ In general, the non-hydrogen atoms were located by difference Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding model with $U_{\text {iso }}$ tied to the $U_{\text {iso }}$ of the parent atoms unless otherwise specified. In $2 \mathrm{LP}-\mathbf{2} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$, two independant molecules of LP-2 were disclosed. One of the two toluene solvent molecules was disordered, which was refined into two parts of $\mathrm{C}(110) \mathrm{C}(111) \mathrm{C}(112) \mathrm{C}(113) \mathrm{C}(114) \mathrm{C}(115) \mathrm{C}(116)$ (0.57222) and $\mathrm{C}(7 \mathrm{~A}) \mathrm{C}(1 \mathrm{~A}) \mathrm{C}(2 \mathrm{~A}) \mathrm{C}(3 \mathrm{~A})-$ $\mathrm{C}(4 \mathrm{~A}) \mathrm{C}(5 \mathrm{~A}) \mathrm{C}(6 \mathrm{~A})(0.42778)$ upon treatment by the PART method. In $\mathrm{LP}-3 \cdot \mathrm{C}_{7} \mathrm{H}_{8}$, the toluene solvent molecule was disordered, which was refined into two parts of $\mathrm{C}(53) \mathrm{C}(54) \mathrm{C}(55) \mathrm{C}(56) \mathrm{C}(57) \mathrm{C}(58) \mathrm{C}(59)$ (0.34621) and $\mathrm{C}(53 \mathrm{~A}) \mathrm{C}(54 \mathrm{~A}) \mathrm{C}(55 \mathrm{~A}) \mathrm{C}(56 \mathrm{~A}) \mathrm{C}(57 \mathrm{~A}) \mathrm{C}(58 \mathrm{~A}) \mathrm{C}(59 \mathrm{~A})$ (0.65379) upon treatment by the PART method. In LPM-3. $\mathrm{C}_{6} \mathrm{H}_{6}$, the ethyl group was disordered that was treated by the PART method and refined into two parts $\mathrm{C}(5) \mathrm{C}(6)$ and $\mathrm{C}(5 \mathrm{~A}) \mathrm{C}(6 \mathrm{~A})$ with the respective occupancies of 0.81371 and 0.18629 . The $\mathrm{C}_{6} \mathrm{H}_{6}$ solvent molecule was seriousely disordered and treated by the PART method and refined into three parts $\mathrm{C}(61) \mathrm{C}(62) \mathrm{C}(63) \mathrm{C}(64) \mathrm{C}(65) \mathrm{C}(66)$ (0.25), $\mathrm{C}(61 \mathrm{~A}) \mathrm{C}(62 \mathrm{~A}) \mathrm{C}(63 \mathrm{~A}) \mathrm{C}(64 \mathrm{~A})-$ $\mathrm{C}(65 \mathrm{~A}) \mathrm{C}(66 \mathrm{~A})(0.50)$, and $\mathrm{C}(61 \mathrm{~B}) \mathrm{C}(62 \mathrm{~B}) \mathrm{C}(63 \mathrm{~B}) \mathrm{C}(64 \mathrm{~B}) \mathrm{C}(65 \mathrm{~B}) \mathrm{C}(66 \mathrm{~B})(0.25)$, where $\mathrm{C}(61 \mathrm{~B}) \mathrm{C}(62 \mathrm{~B})-$ $\mathrm{C}(63 \mathrm{~B}) \mathrm{C}(64 \mathrm{~B}) \mathrm{C}(65 \mathrm{~B}) \mathrm{C}(66 \mathrm{~B})$ were not able to be performed by the geometric H -atom addition. In LPM-5. $0.5 \mathrm{C}_{7} \mathrm{H}_{8}$, two independant toluene solvent molecules were disclosed both of 0.25 moiety. A summary of cell parameters, data collection, and structure solution and refinements is given in Table S1.

Table S1. Crystal data and refinements ${ }^{\text {a }}$

	LP-1	$2 \mathrm{LP-2} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{8}$
CCDC number	2232557	2232558
formula	$\mathrm{C}_{50} \mathrm{H}_{66} \mathrm{AlO}_{2} \mathrm{P}$	$\mathrm{C}_{116} \mathrm{H}_{152} \mathrm{Al}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$
formula weight	756.98	1726.28
crystal system	orthorhombic	triclinic
space group	Pbca	$P-1$
$a / \AA{ }^{\text {a }}$	17.4083(3)	15.9438(4)
$b / A ̊$	18.0287(4)	17.9944(3)
c/Å	28.2153(5)	18.5158(4)
α / deg	90	73.892(2)
β / deg	90	88.976(2)
γ / deg	90	88.672(2)
V / \AA^{3}	8855.3(3)	5101.88(19)
Z	8	2
$\rho_{\text {calde }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.136	1.124
μ / mm^{-1}	1.016	0.939
$F(000)$	3280	1872
crystal size/mm ${ }^{3}$	$0.32 \times 0.28 \times 0.20$	0.20x0.20x0.10
θ range/deg	3.13-70.00	$2.48-58.78$
index ranges	$-21 \leq h \leq 20$	$-17 \leq h \leq 17$
	$-21 \leq k \leq 21$	$-13 \leq k \leq 19$
	$-34 \leq l \leq 28$	$-17 \leq l \leq 20$
collected data	42986	46473
unique data	$8359\left(R_{\text {int }}=0.0239\right)$	$14312\left(R_{\text {int }}=0.0197\right)$
completeness to θ	99.5\%	98.1\%
data/restraints/parameters	8359/0/510	14312/198/1191
GOF on F^{2}	1.031	1.016
final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0345$	$R_{1}=0.0378$
	$w R_{2}=0.0924$	$w R_{2}=0.0970$
R indices (all data)	$R_{1}=0.0367$	$R_{1}=0.0405$
	$w R_{2}=0.0940$	$w R_{2}=0.0987$
Largest diff peak/hole (e. \AA^{-3})	0.350/-0.366	0.520/-0.373

${ }^{a}$ All data were collected at 173(2) K. $R_{1}=\sum\left(\| F_{0}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \sum\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \sum\left[w\left(F_{\mathrm{o}}\right)^{2}\right)^{2}\right\}^{2}\right\}^{1 / 2}$, GOF $=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right\}^{1 / 2}$.
(continued)

	LP-3. $\mathrm{C}_{7} \mathrm{H}_{8}$	LPM-3. $\mathrm{C}_{6} \mathrm{H}_{6}$	LPM-5.0.5 $\mathrm{C}_{7} \mathrm{H}_{8}$
CCDC number	2232559	2232560	2232561
formula	$\mathrm{C}_{59} \mathrm{H}_{78} \mathrm{AlO}_{2} \mathrm{P}$	$\mathrm{C}_{63} \mathrm{H}_{82.5} \mathrm{AlO}_{4} \mathrm{P}$	$\mathrm{C}_{60.5} \mathrm{H}_{82} \mathrm{AlO}_{4} \mathrm{P}$
formula weight	877.16	961.74	931.21
crystal system	monoclinic	triclinic	orthorhombic
space group	P2(1)/c	$P-1$	Pbca
a / \AA	18.8537(3)	12.6448(2)	12.9446(4)
b/A	15.5489(2)	15.3492(2)	14.8659(6)
c/A	18.2578(3)	16.4061(2)	17.9817(7)
$\alpha /$ deg	90	67.9540(10)	109.495(4)
$\beta /$ deg	103.1110(10)	89.1970(10)	92.100(3)
γ / deg	90	74.8020(10)	107.404(3)
V / \AA^{3}	5212.83(14)	2835.47(7)	3076.5(2)
Z	4	2	2
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.118	1.126	1.005
μ / mm^{-1}	0.926	0.919	0.833
$F(000)$	1904	1041	1010
crystal size/mm ${ }^{3}$	$0.32 \mathrm{x} 0.26 \times 0.15$	$0.20 \times 0.20 \times 0.20$	0.10x0.10x0.05
θ range/deg	2.41-65.93	2.92-69.98	2.64-58.85
index ranges	$-22 \leq h \leq 14$	$-15 \leq h \leq 14$	$-7 \leq h \leq 14$
	$-18 \leq k \leq 18$	$-18 \leq k \leq 18$	$-16 \leq k \leq 15$
	$-21 \leq l \leq 21$	$-19 \leq l \leq 19$	$-19 \leq l \leq 19$
collected data	60880	66703	25538
unique data	8966 ($\left.R_{\text {int }}=0.0236\right)$	$10645\left(R_{\text {int }}=0.0244\right)$	$8588\left(R_{\text {int }}=0.0432\right)$
completeness to θ	98.9 \%	99.1 \%	97.3\%
data/restraints/parameters	8966/576/624	10645/565/734	8588/576/690
GOF on F^{2}	1.055	1.023	1.130
final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0533$	$R_{1}=0.0343$	$R_{1}=0.0969$
	$w R_{2}=0.1449$	$w R_{2}=0.0907$	$w R_{2}=0.2643$
R indices (all data)	$R_{1}=0.0553$	$R_{1}=0.0351$	$R_{1}=0.1128$
	$w R_{2}=0.1466$	$w R_{2}=0.0913$	$w R_{2}=0.2786$
Largest diff peak/hole (e $\cdot \AA^{-3}$)	0.861/-0.687	0.364/-0.296	1.027/-0.397

${ }^{a}$ All data were collected at 173(2) K. $R_{1}=\sum\left(| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right) / \sum\left|F_{\mathrm{o}}\right|, w R_{2}=\left\{\sum\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \sum\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{2}\right\}^{1 / 2}\right.$, GOF $=\left\{\sum\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right\}^{1 / 2}$.

Fig. S1 X-ray crystal structure of LP-1 with thermal ellipsoids at 50\% probability level. The hydrogen atoms except for the CH_{2} are omitted for clarity. Selected bond lengths (A) and angles $\left(^{\circ}\right.$): P1-C1 1.7767(12), C1-Al1 2.0781(13), Al1-O1 1.7682(8), Al1-O2 1.7756(8); P1-C1-Al1 130.96(7), O1-Al1-O2 108.32(4).

Fig. S2 X-ray crystal structure of another independant molecule of LP-2 with thermal ellipsoids at 50\% probability level. The hydrogen atoms except for the CH are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{P} 2-\mathrm{C} 531.7805(17), \mathrm{C} 53-\mathrm{Al} 22.0949(18), \mathrm{Al2-O} 31.7811(12), \mathrm{Al} 2-\mathrm{O} 41.7569(12)$; P2-C53-Al2 122.14(9), O3-Al2-O4 112.24(6).

Fig. S3 X-ray crystal structure of LP-3 with thermal ellipsoids at 50% probability level. The hydrogen atoms except for the CH are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$: P1-C1 $1.7835(19), \mathrm{C} 1-\mathrm{Al1} 2.1011(19), \mathrm{Al1-O1} 1.7601(14)$, Al1-O2 1.7765(14); P1-C1-Al1 120.86(10), O1-Al1-O2 110.50(7).

Fig. S4 X-ray crystal structure of LPM-3 with thermal ellipsoids at 50% probability level. The hydrogen atoms are omitted for clarity. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): ~ \mathrm{P} 1-\mathrm{C} 41.8305(11), \mathrm{C} 4-\mathrm{C} 3$ $1.5561(16), \mathrm{C} 3-\mathrm{C} 21.5108(15), \mathrm{C} 2-\mathrm{C} 71.5017(17), \mathrm{C} 2-\mathrm{C} 11.3389(17), \mathrm{C} 1-\mathrm{O} 11.3880(14), \mathrm{C} 1-\mathrm{O} 2$
1.3186(14), O1-C8 1.4294(15), Al1-O2 1.7777(8), Al1-O3 1.7531(8), Al1-O4 1.7475(8); P1-C4-C3 109.00(7), C3-C2-C7 117.25(10), O1-C1-O2 115.66(10), O3-Al1-O4 110.32(4), O2-Al1-O3 106.27(4), O2-Al1-O4 105.14(4).

II. Study on the relative Lewis acidity strength of the organoaluminum compounds

The Gutmann-Beckett method

The method uses comparison of the ${ }^{31} \mathrm{P}$ NMR resonances of the $\mathrm{Et}_{3} \mathrm{PO}$ standard versus $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{LA}$ to determine the Lewis acidity strength of the Al-based LAs, where $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ was settled as a comparator (100%) instead of $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{3,4}$ The same concentration solutions of $\mathrm{Et}_{3} \mathrm{PO}$ and $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{LA}$ each by 0.025 mmol in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ in a $2-\mathrm{mL}$ NMR tube were employed for the ${ }^{31} \mathrm{P}$ NMR measurement, where $\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{LA}$ was obtained by in-situ mixing $\mathrm{Et}_{3} \mathrm{PO}$ and equivalent LA . The solution obtained was kept after 30 min at room temperature (298 K) prior to test.

Table S2. The relative Lewis acidity data obtained through the Gutmann-Beckett method

compound	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (δ / ppm)	$\Delta \delta$ values relative to that of free $\mathrm{Et} 3 \mathrm{PO}(\delta / \mathrm{ppm})$	relative Lewis acidity $(\%)$
$\mathrm{Et}_{3} \mathrm{PO}$	46.0	0	-
$\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	75.3	29.3	100%
$\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	69.5	23.5	80%
$\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{AlEt}(\mathrm{BHT})_{2}$	69.3	23.3	79%
$\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{AliBu}(\mathrm{BHT})_{2}$	69.3	23.3	79%
$\mathrm{Et}_{3} \mathrm{PO} \cdot \mathrm{AliBu}_{2}(\mathrm{BHT})$	66.2	20.2	69%

Fig. S5 The ${ }^{31} \mathrm{P}$ NMR spectra profile for $\mathrm{Et}_{3} \mathrm{PO}$ and $\mathrm{Et}_{3} \mathrm{PO}$. LAs measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

III. Study on the relative Lewis basicity strength of the \mathbf{P}-ylide compounds

1. NBO analysis and computational details

Density functional theory calculations were performed using M06-2X ${ }^{5}$ with the $6-311+G(3 d, 2 p)$ basis sets to all atoms of the P-ylide molecules. ${ }^{6,7}$ Geometries were fully optimized, and vibrational frequencies were calculated to ensure no other imaginary frequency at a native minimum of the molecules studied. The charge analyses were performed with the natural bond orbital (NBO) scheme. ${ }^{8-13}$

All calculations were carried out using the Gaussian 09 package. ${ }^{14}$
The charge distributions at the atoms for the $\mathrm{P}=\mathrm{C}$ bond of the P -ylides were calculated (Table S3), which indicate that the P -atom holds the positive charge by $1.593,1.613,1.619,1.635$, and 1.631 whereas the C -atom the negative charge by $-1.219,-0.984,-0.980,-0.922$, and -0.785 corresponding from P-ylide- $\mathbf{1}$ to P -ylide-5, respectively. This implies that the nucleophilic reactivity is settled at the C -atom, with strength in better sequence decreasing from P -ylide- $\mathbf{1}$ to P -ylide-5.

Table S3. The charge distributions calculated at the atoms for the $\mathrm{P}=\mathrm{C}$ bond of the P -ylides

$\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CR}_{2}$			
compound	R_{2}	P	C
P-ylide-1	H, H	1.593	-1.219
P-ylide-2	H, Me	1.613	-0.984
P-ylide-3	H, Et	1.619	-0.980
P-ylide-4	H, Ph	1.635	-0.922
P-ylide-5	Me, Me	1.631	-0.785

2. ${ }^{31} \mathbf{P}$ NMR spectral analysis of \mathbf{P}-ylide-1-P-ylide-5

The ${ }^{31} \mathrm{P}$ NMR spectra analysis show resonances at $\delta 21.20,14.57,12.31,7.79$, and 9.86 corresponding from P -ylide- $\mathbf{1}$ to P -ylide-5, respectively. These data indicate variation of the phosphorus resonances of the five P -ylides due to change of the substituents at $\mathrm{P}=\mathrm{C}$ carbon atom, as appears little influence direct to the nucleophilic reactivity strength at the C -atom.

Table S4. The ${ }^{31} \mathrm{P}$ NMR data measured for P-ylides

compound	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm)
P-ylide-1	21.20
P-ylide-2	14.57
P-ylide-3	12.31
P-ylide-4	7.79
P-ylide-5	9.86

Fig. S6 The ${ }^{31}$ P NMR spectra profile for P-ylide-1-P-ylide-5 measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K .

3. ${ }^{31} \mathrm{P}$ NMR spectral analysis on reactions of P-ylide-1-P-ylide-5 each with AIMe(BHT) $)_{2}$

As seen from Fig. S7, reactions of P-ylide-1-P-ylide-3 each with $\mathrm{AlMe}(\mathrm{BHT})_{2}$ resulted in formation of LP-1-LP-3. No reaction happened between P-ylide-4 and $\mathrm{AlMe}(\mathrm{BHT})_{2}$ whereas complex reaction occurred for P-ylide-5 and $\mathrm{AlMe}(\mathrm{BHT})_{2}$. The LP-1-LP-3 are of the classical Lewis pair (CLP) character whereas P -ylide- $\mathbf{4}$ and $\mathrm{AlMe}(\mathrm{BHT})_{2}$ form a frustrated Lewis pair (FLP). These results detect varied interactions between the P -ylides and $\mathrm{AlMe}(\mathrm{BHT})_{2}$.

Table S5. The ${ }^{31} \mathrm{P}$ NMR data measured for reactions of P-ylide-1-P-ylide-5 with $\mathrm{AlMe}(\mathrm{BHT})_{2}$

reaction	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm)
P-ylide-1 + AlMe(BHT) 2	32.00 (LP-1)
P-ylide-2 + AlMe(BHT) 2	37.01 (LP-2)
P-ylide-3 + AlMe(BHT) 2	35.11 (LP-3)
P-ylide-4 + AlMe(BHT) 2_{2}	7.79 (P-ylide-4)
P -ylide-5 $+\mathrm{AlMe}(\mathrm{BHT})_{2}$	41.75 (27\%, LP-5), 40.67 (2\%, unknown), 39.32 (2\%, unknown), 32.35 (15%, unknown), 30.87 (3%, unknown), 9.92 (10%, P-ylide-5), -5.36 (41\%, unknown)

Fig. S7 The ${ }^{31} \mathrm{P}$ NMR spectra profile for reactions of P-ylide-1-P-ylide-5 with $\mathrm{AlMe}(\mathrm{BHT})_{2}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K.

4. ${ }^{31} \mathbf{P}$ NMR spectral analysis on reactions of P -ylide-1-P-ylide- 5 each with MMA•AIMe $(\mathrm{BHT})_{2}$

As seen from Fig. S8 and Table S6, reaction of P-ylide-1 with MMA•AlMe(BHT) $)_{2}$ produced LPM-1 as minor part while LP-1 as the major one. Reactions of either P-ylide-2 or P-ylide-3 with $\operatorname{AlMe}(\mathrm{BHT})_{2}$ gave completely LPM-2 or LPM-3. And reactions of P-ylide-4 and P-ylide-5 each with $\mathrm{AlMe}(\mathrm{BHT})_{2}$ generated besides LPM-4 and LPM-5 the unknown species. These results detect influence due to change of the P -ylides.

Table S6. The ${ }^{31}$ P NMR data measured for reactions of P-ylide-1-P-ylide-5 each with MMA• $\mathrm{AlMe}(\mathrm{BHT})_{2}$

reaction	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ / ppm)
P-ylide-1 + MMA $\cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	$\begin{gathered} 31.95 \text { (80\%, LP-1), } 25.18(4 \%, \text { cis-LPM-1), } \\ 24.65(16 \%, \text { trans-LPM-1 }) \end{gathered}$
P-ylide-2 + MMA $\cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	27.56 (trans-LPM-2)
P-ylide-3 + MMA $\cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	$\begin{gathered} 29.42 \text { (18\%, cis-LPM-3), } 28.77(82 \%, \\ \text { trans-LPM-3) } \end{gathered}$
P-ylide-4 + MMA $\cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	24.01 (12%, cis-LPM-4), 20.90 (69%, trans-LPM-4), -5.49 (19\%, unknown)
P-ylide-5 + MMA $\cdot \mathrm{AlMe}(\mathrm{BHT})_{2}$	$\begin{gathered} 35.66(95 \%, \text { trans-LPM-5), }-5.34(5 \%, \\ \text { unknown }) \end{gathered}$

Fig. S8 The ${ }^{31} \mathrm{P}$ NMR spectra profile for reactions of P-ylide-1-P-ylide-5 each with MMA•AlMe $(\mathrm{BHT})_{2}$ measured in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K (Note: detailed assignemnts are seen in Fig.s S25, S27, S29, S31, and S33 in VI).

IV. Some other polymerization results

Table S7. The MMA polymerization results by using only the P-ylide initiators ${ }^{a}$

Run	LB	$[\mathrm{MMA}]:[\mathrm{LB}]$	$t(\mathrm{~h})$	Conv. $^{b}(\%)$
1	P-ylide-1	$200: 1$	24	2.0
2	P-ylide-2	$200: 1$	24	4.7
3	P-ylide-3	$200: 1$	24	3.8
4	P-ylide-4	$200: 1$	24	0
5	P-ylide-5	$200: 1$	24	9.0

${ }^{a}$ Conditions: MMA 4.6 mmol , toluene 5 mL , at 298 K . ${ }^{b}$ Monomer conversion was calculated according to the ${ }^{1} \mathrm{H}$ NMR data measured.

Table S8. The copolymerization results by using the P -ylide-2/ $/ \mathrm{AliBu}_{2}$ (BHT) initiator system ${ }^{a}$

run	[P-ylide-2]:[AliBu $\left.{ }_{2}(\mathrm{BHT})\right]:[\mathrm{M}]$	t $(\mathrm{~min})$	Conv. b $(\%)$	$M_{\mathrm{n}}{ }^{c}$ $(\mathrm{~kg} / \mathrm{mol})$	D^{c}
1	1:2:(200 MMA/200 MMA)	5	>99	46.9	1.19
2	1:2:(200 MMA/200 EMA)	5	>99	53.2	1.18
3	1:2:(200 MMA/200 BnMA)	5	>99	83.8	1.05
				30.5	1.02
4	1:2:(200 MMA/200 nBuMA)	5	>99	76.6	2.28

${ }^{a}$ Conditions: carried out at 298 K in toluene (10 mL); first monomer (MMA) 4.6 mmol , second monomer 4.6 mmol . ${ }^{b}$ Monomer conversions were calculated according to ${ }^{1}$ H NMR data measured. ${ }^{c} M_{\mathrm{n}}$ and \doteq determined by GPC relative to PMMA standards in THF.

Fig. S9 The GPC traces of PMMA samples obtained from chain-extension and copolymerization experiments by using the P -ylide- $\mathbf{2} / \mathrm{AliBu}_{2}(\mathrm{BHT})$ initiator system.

Table S9. The chain-extension polymerization results by using the P -ylide-2/AlMe $(\mathrm{BHT})_{2}$ initiator system ${ }^{a}$

run	$\left.[\mathrm{P}-\text { ylide-2]:[AlMe(BHT) })_{2}\right]:[\mathrm{M}]$	Conv. b $(\%)$	$M_{\mathrm{n}}{ }^{c}$ $(\mathrm{~kg} / \mathrm{mol})$	Ξ^{c}	$I^{* d}(\%)$
1	1:2:(200 MMA)	>99	31.7	1.18	64
2	1:2:(200 MMA/200 MMA)	>99	51.4	1.16	78
3	1:2:(200 MMA/200 MMA/200 MMA)	>99	71.1	1.12	85

${ }^{a}$ Condition: carried out at 298 K in toluene; [MMA] $=0.92 \mathrm{M} .{ }^{b}$ Monomer conversions were calculated according to ${ }^{1} \mathrm{H}$ NMR data measured. ${ }^{c} M_{\mathrm{n}}$ and \doteq determined by GPC relative to PMMA standards in THF. ${ }^{\text {I }}$ Initiator efficiency $\left(I^{*}\right)=M_{\mathrm{n}}($ calcd $) / M_{\mathrm{n}}\left(\right.$ exptl), where $M_{\mathrm{n}}(\mathrm{calcd})=[\mathrm{MW}(\mathrm{MMA})]\left([\mathrm{MMA}]_{0} /[\mathrm{I}]_{0}\right)$ (conversion \%) + MW of chain-end groups.

Fig. S10 The GPC trace of the PMMA sample obtained from random copolymerization by using the P-ylide-2/AlMe(BHT) $)_{2}$ initiator system (run 10, Table 2).

V. Other collected MALDI-TOF MS spectra

Fig. S11 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-1/AlMe $(\mathrm{BHT})_{2}$ in toluene at 298 K .

Fig. S12 Plot of m / z values from Fig. $11 v s$ the number of MMA repeat units (n).

Fig. S13 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-3/AlMe $(\mathrm{BHT})_{2}$ in toluene at 298 K.

Fig. S14 Plot of m / z values from Fig. S13 vs the number of MMA repeat units (n).

Fig. S15 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-4/AlMe $(\mathrm{BHT})_{2}$ in toluene at 298 K .

Fig. S16 Plot of m / z values from Fig. S15 vs the number of MMA repeat units (n).

Fig. S17 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-1/ $\mathrm{AliBu}_{2}(\mathrm{BHT})$ in toluene at 298 K .

Fig. S18 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-2/AliBu ${ }_{2}$ (BHT) in toluene at 298 K .

VI. Collected NMR (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathbf{P}$) spectra

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of LP-1 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S20 ${ }^{31} \mathrm{P}$ NMR spectrum of LP-1 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S21 ${ }^{1} \mathrm{H}$ NMR spectrum of LP-2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S22 ${ }^{31}$ P NMR spectrum of LP-2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

LP-3

$$
t B u
$$

CH

Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum of LP-3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S24 ${ }^{31}$ P NMR spectrum of LP-3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K
$\stackrel{\varrho}{\stackrel{\infty}{1}}$

LP-1

trans-LPM-1

P (trans-LPM-1)
$P(c i s-L P M-1)$

Fig. S25 ${ }^{31}$ P NMR spectrum of LPM-1 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

trans-LPM-2

Fig. S26 ${ }^{1} \mathrm{H}$ NMR spectrum of LPM-2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S27 ${ }^{31} \mathrm{P}$ NMR spectrum of LPM-2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S28 ${ }^{1} \mathrm{H}$ NMR spectrum of LPM-3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K (Note: the data were labeled for trans-LPM-3)

Fig. S29 ${ }^{31}$ P NMR spectrum of LPM-3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S30 ${ }^{1} \mathrm{H}$ NMR spectrum of LPM-4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K (Note: the data were labeled for trans-LPM-4)

$$
\begin{aligned}
& P \text { (trans-LPM-4) }
\end{aligned}
$$

Fig. S31 ${ }^{31}$ P NMR spectrum of LPM-4 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

Fig. S32 ${ }^{1} \mathrm{H}$ NMR spectrum of LPM-5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

\oplus $\stackrel{\circ}{\circ}$ $\stackrel{\sim}{0}$

Fig. S33 ${ }^{31}$ P NMR spectrum of LPM-5 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 298 K

VI. References

1 G. M. Sheldrick, Acta. Cryst. Sect. C, 2015, 71, 3-8.
2 G. M. Sheldrick, Acta. Cryst. Sect. A, 2008, 64, 112-122.
3 M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, Inorg. Chem. Commun., 2000, 3, 530-533.
4 Z. M. Heiden and A. P. Lathem, Organometallics, 2015, 34, 1818-1827.
5 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
6 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
7 M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-3269.
8 A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066-4073.
9 A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735-746.
10 A. E. Reed, Weinhold, F. J. Chem. Phys., 1985, 83, 1736-1740.
11 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899-926.
12 J. E. Carpenter and F. Weinhold, J. Mol. Struct. (Theochem), 1988, 46, 41-62.
13 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211-7218.
14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.

Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

END

