Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Phosphonium Ylide/Organoaluminum-Based Lewis Pairs for the Highly Efficient Living/controlled Polymerization of Alkyl (Meth)acrylates

Zhikang Chen, $\frac{d}{d}^{a}$ Wuchao Zhao, $\frac{d}{d}^{b}$ Conglei Liu, $\frac{d}{d}$ Liuying Jiang, $\frac{d}{d}^{a}$ Gang Fu, $\frac{d}{d}$ Yuetao Zhang, $\frac{d}{d}^{b}$ and

Hongping Zhu^{*a}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
 ^b State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China

Content:

I. X-ray crystallographic analysis

II. Study on the relative Lewis acidity strength of the organoaluminum compounds

III. Study on the relative Lewis basicity strength of the P-ylide compounds

- 1. NBO analysis and computational details
- 2. ³¹P NMR spectral analysis of P-ylide-1–P-ylide-5
- 3. ³¹P NMR spectral analysis on reactions of P-ylide-1–P-ylide-5 each with AlMe(BHT)₂
- 4. ³¹P NMR spectral analysis on reactions of P-ylide-1–P-ylide-5 each with MMA AlMe(BHT)₂
- **IV. Some other polymerization results**
- V. Other collected MALDI-TOF MS spectra
- VI. Collected NMR (¹H and ³¹P) spectra
- VII. References

I. X-ray crystallographic analysis

Crystallographic data of compounds LP-1, 2 LP-2 2 C₇H₈, LP-3 C₇H₈, LPM-3 C₆H₆, and LPM-5 0.5 C_7H_8 were all collected on XtaLAB Synergy, Dualflex, HyPix diffractometer (Cu-K α radiation, λ = 1.54184 Å). Absorption corrections were applied by using the spherical harmonics program (multi-scan type). All structures were solved by direct methods (SHELXS-2015)¹ and refined against F^2 using SHELXL-2017/1.² In general, the non-hydrogen atoms were located by difference Fourier synthesis and refined anisotropically, and hydrogen atoms were included using a riding model with U_{iso} tied to the U_{iso} of the parent atoms unless otherwise specified. In 2 LP-2 2 C₇H₈, two independant molecules of LP-2 were disclosed. One of the two toluene solvent molecules was disordered, which was refined into two parts of C(110)C(111)C(112)C(113)C(114)C(115)C(116) (0.57222) and C(7A)C(1A)C(2A)C(3A)-C(4A)C(5A)C(6A) (0.42778) upon treatment by the PART method. In LP-3 C_7H_8 , the toluene solvent molecule was disordered, which was refined into two parts of C(53)C(54)C(55)C(56)C(57)C(58)C(59) (0.34621) and C(53A)C(54A)C(55A)C(56A)C(57A)C(58A)C(59A) (0.65379) upon treatment by the PART method. In LPM-3 C_6H_6 , the ethyl group was disordered that was treated by the PART method and refined into two parts C(5)C(6) and C(5A)C(6A) with the respective occupancies of 0.81371 and 0.18629. The C_6H_6 solvent molecule was seriousely disordered and treated by the PART method and refined into three parts C(61)C(62)C(63)C(64)C(65)C(66) (0.25), C(61A)C(62A)C(63A)C(64A)-C(65A)C(66A) (0.50), and C(61B)C(62B)C(63B)C(64B)C(65B)C(66B) (0.25), where C(61B)C(62B)-C(63B)C(64B)C(65B)C(66B) were not able to be performed by the geometric H-atom addition. In LPM-5 0.5 C_7H_8 , two independent toluene solvent molecules were disclosed both of 0.25 moiety. A summary of cell parameters, data collection, and structure solution and refinements is given in Table S1.

	LP- 1	2 LP- 2 2 C ₇ H ₈
CCDC number	2232557	2232558
formula	$C_{50}H_{66}AlO_2P$	$C_{116}H_{152}Al_2O_4P_2$
formula weight	756.98	1726.28
crystal system	orthorhombic	triclinic
space group	Pbca	<i>P</i> –1
a/Å	17.4083(3)	15.9438(4)
b/Å	18.0287(4)	17.9944(3)
c/Å	28.2153(5)	18.5158(4)
a/deg	90	73.892(2)
β/deg	90	88.976(2)
γ/deg	90	88.672(2)
$V/\text{\AA}^3$	8855.3(3)	5101.88(19)
Ζ	8	2
$\rho_{\rm calcd}/{\rm g\cdot cm}^{-3}$	1.136	1.124
μ/mm^{-1}	1.016	0.939
<i>F</i> (000)	3280	1872
crystal size/mm ³	0.32x0.28x0.20	0.20x0.20x0.10
heta range/deg	3.13-70.00	2.48-58.78
index ranges	$-21 \le h \le 20$	$-17 \le h \le 17$
	$-21 \le k \le 21$	$-13 \le k \le 19$
	$-34 \le l \le 28$	$-17 \le l \le 20$
collected data	42986	46473
unique data	8359 ($R_{\rm int} = 0.0239$)	14312 ($R_{\rm int} = 0.0197$)
completeness to θ	99.5%	98.1%
data/restraints/parameters	8359/0/510	14312/198/1191
GOF on F^2	1.031	1.016
final Dindiana [b 2-(b]	$R_1 = 0.0345$	$R_1 = 0.0378$
main K marces $[1>2\sigma(1)]$	$wR_2 = 0.0924$	$wR_2 = 0.0970$
R indices (all data)	$R_1 = 0.0367$	$R_1 = 0.0405$
	$wR_2 = 0.0940$	$wR_2 = 0.0987$
Largest diff peak/hole (e·Å ⁻³)	0.350/-0.366	0.520/-0.373

Table S1. Crystal data and refinements^a

^aAll data were collected at 173(2) K. $R_1 = \sum (||F_0| - |F_c||) / \sum |F_0|, wR_2 = \{\sum [w(F_0^2 - F_c^2)^2 / \sum [w(F_0^2)^2]\}^2\}^{1/2},$ GOF = $\{\sum [w(F_0^2 - F_c^2)^2] / (N_0 - N_p)\}^{1/2}.$

	× ×	,	
	LP-3 C ₇ H ₈	LPM-3 C_6H_6	LPM-5 0.5 C ₇ H ₈
CCDC number	2232559	2232560	2232561
formula	$C_{59}H_{78}AlO_2P$	$C_{63}H_{82.5}AlO_4P$	$C_{60.5}H_{82}AlO_4P$
formula weight	877.16	961.74	931.21
crystal system	monoclinic	triclinic	orthorhombic
space group	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> –1	Pbca
$a/ m \AA$	18.8537(3)	12.6448(2)	12.9446(4)
$b/{ m \AA}$	15.5489(2)	15.3492(2)	14.8659(6)
c/Å	18.2578(3)	16.4061(2)	17.9817(7)
α/deg	90	67.9540(10)	109.495(4)
β/deg	103.1110(10)	89.1970(10)	92.100(3)
γ/deg	90	74.8020(10)	107.404(3)
$V/Å^3$	5212.83(14)	2835.47(7)	3076.5(2)
Ζ	4	2	2
$ ho_{ m calcd}/ m g\cdot m cm^{-3}$	1.118	1.126	1.005
μ/mm^{-1}	0.926	0.919	0.833
<i>F</i> (000)	1904	1041	1010
crystal size/mm ³	0.32x0.26x0.15	0.20x0.20x0.20	0.10x0.10x0.05
θ range/deg	2.41-65.93	2.92-69.98	2.64–58.85
index ranges	$-22 \le h \le 14$	$-15 \le h \le 14$	$-7 \le h \le 14$
	$-18 \le k \le 18$	$-18 \le k \le 18$	$-16 \le k \le 15$
	$-21 \le l \le 21$	$-19 \le l \le 19$	$-19 \le l \le 19$
collected data	60880	66703	25538
unique data	8966 ($R_{\rm int} = 0.0236$)	10645 ($R_{\rm int} = 0.0244$)	8588 ($R_{\rm int} = 0.0432$)
completeness to θ	98.9 %	99.1 %	97.3%
data/restraints/parameters	8966/576/624	10645/565/734	8588/576/690
GOF on F^2	1.055	1.023	1.130
final Pindicas [I > 2-(1)]	$R_1 = 0.0533$	$R_1 = 0.0343$	$R_1 = 0.0969$
mat κ mutces $[I > 20(I)]$	$wR_2 = 0.1449$	$wR_2 = 0.0907$	$wR_2 = 0.2643$
R indices (all data)	$R_1 = 0.0553$	$R_1 = 0.0351$	$R_1 = 0.1128$
	$wR_2 = 0.1466$	$wR_2 = 0.0913$	$wR_2 = 0.2786$
Largest diff peak/hole (e·Å ⁻³)	0.861/-0.687	0.364/-0.296	1.027/-0.397

(continued)

^aAll data were collected at 173(2) K. $R_1 = \sum (||F_o| - |F_c||) / \sum |F_o|, wR_2 = \{\sum [w(F_o^2 - F_c^2)^2 / \sum [w(F_o^2)^2]\}^2\}^{1/2}, GOF = \{\sum [w(F_o^2 - F_c^2)^2 / (N_o - N_p)\}^{1/2}.$

Fig. S1 X-ray crystal structure of LP-1 with thermal ellipsoids at 50% probability level. The hydrogen atoms except for the CH₂ are omitted for clarity. Selected bond lengths (Å) and angles (⁹): P1–C1 1.7767(12), C1–Al1 2.0781(13), Al1–O1 1.7682(8), Al1–O2 1.7756(8); P1–C1–Al1 130.96(7), O1–Al1–O2 108.32(4).

Fig. S2 X-ray crystal structure of another independant molecule of LP-2 with thermal ellipsoids at 50% probability level. The hydrogen atoms except for the CH are omitted for clarity. Selected bond lengths (Å) and angles (): P2–C53 1.7805(17), C53–Al2 2.0949(18), Al2–O3 1.7811(12), Al2–O4 1.7569(12); P2–C53–Al2 122.14(9), O3–Al2–O4 112.24(6).

Fig. S3 X-ray crystal structure of LP-3 with thermal ellipsoids at 50% probability level. The hydrogen atoms except for the CH are omitted for clarity. Selected bond lengths (Å) and angles (): P1–C1 1.7835(19), C1–Al1 2.1011(19), Al1–O1 1.7601(14), Al1–O2 1.7765(14); P1–C1–Al1 120.86(10), O1–Al1–O2 110.50(7).

Fig. S4 X-ray crystal structure of LPM-3 with thermal ellipsoids at 50% probability level. The hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (⁹): P1–C4 1.8305(11), C4–C3 1.5561(16), C3–C2 1.5108(15), C2–C7 1.5017(17), C2–C1 1.3389(17), C1–O1 1.3880(14), C1–O2 1.3186(14), O1–C8 1.4294(15), Al1–O2 1.7777(8), Al1–O3 1.7531(8), Al1–O4 1.7475(8); P1–C4–C3 109.00(7), C3–C2–C7 117.25(10), O1–C1–O2 115.66(10), O3–Al1–O4 110.32(4), O2–Al1–O3 106.27(4), O2–Al1–O4 105.14(4).

II. Study on the relative Lewis acidity strength of the organoaluminum compounds

The Gutmann-Beckett method

The method uses comparison of the ³¹P NMR resonances of the Et₃PO standard *versus* Et₃PO LA to determine the Lewis acidity strength of the Al-based LAs, where Et₃PO Al(C₆F₅)₃ was settled as a comparator (100%) instead of Et₃PO B(C₆F₅)₃.^{3,4} The same concentration solutions of Et₃PO and Et₃PO LA each by 0.025 mmol in C₆D₆ (0.5 mL) in a 2-mL NMR tube were employed for the ³¹P NMR measurement, where Et₃PO LA was obtained by *in-situ* mixing Et₃PO and equivalent LA. The solution obtained was kept after 30 min at room temperature (298 K) prior to test.

compound	${}^{31}P{}^{1}H{}$	$\Delta\delta$ values relative to	relative Lewis	
	(<i>δ</i> /ppm)	that of free Et ₃ PO (δ /ppm)	acidity (%)	
Et ₃ PO	46.0	0	_	
Et ₃ PO Al(C_6F_5) ₃	75.3	29.3	100%	
Et ₃ PO AlMe(BHT) ₂	69.5	23.5	80%	
Et ₃ PO AlEt(BHT) ₂	69.3	23.3	79%	
Et ₃ PO AliBu(BHT) ₂	69.3	23.3	79%	
Et ₃ PO AliBu ₂ (BHT)	66.2	20.2	69%	

Table S2. The relative Lewis acidity data obtained through the Gutmann-Beckett method

Fig. S5 The ³¹P NMR spectra profile for Et_3PO and Et_3PO LAs measured in C_6D_6 at 298 K.

III. Study on the relative Lewis basicity strength of the P-ylide compounds

1. NBO analysis and computational details

Density functional theory calculations were performed using M06-2X⁵ with the 6-311+G(3d,2p) basis sets to all atoms of the P-ylide molecules.^{6,7} Geometries were fully optimized, and vibrational frequencies were calculated to ensure no other imaginary frequency at a native minimum of the molecules studied. The charge analyses were performed with the natural bond orbital (NBO) scheme.^{8–13}

All calculations were carried out using the Gaussian 09 package.¹⁴

The charge distributions at the atoms for the P=C bond of the P-ylides were calculated (Table S3), which indicate that the P-atom holds the positive charge by 1.593, 1.613, 1.619, 1.635, and 1.631 whereas the C-atom the negative charge by -1.219, -0.984, -0.980, -0.922, and -0.785 corresponding from P-ylide-1 to P-ylide-5, respectively. This implies that the nucleophilic reactivity is settled at the C-atom, with strength in better sequence decreasing from P-ylide-1 to P-ylide-5.

Table S3. The charge distributions calculated at the atoms for the P=C bond of the P-ylides

compound	R_2	Р	С
P-ylide-1	H,H	1.593	-1.219
P-ylide-2	H,Me	1.613	-0.984
P-ylide-3	H,Et	1.619	-0.980
P-ylide-4	H,Ph	1.635	-0.922
P-ylide-5	Me,Me	1.631	-0.785

Ph₃P=CR₂

2. ³¹P NMR spectral analysis of P-ylide-1–P-ylide-5

The ³¹P NMR spectra analysis show resonances at δ 21.20, 14.57, 12.31, 7.79, and 9.86 corresponding from P-ylide-**1** to P-ylide-**5**, respectively. These data indicate variation of the phosphorus resonances of the five P-ylides due to change of the substituents at P=C carbon atom, as appears little influence direct to the nucleophilic reactivity strength at the C-atom.

compound	³¹ P{ ¹ H} NMR (δ /ppm)
P-ylide-1	21.20
P-ylide-2	14.57
P-ylide-3	12.31
P-ylide-4	7.79
P-ylide-5	9.86

Table S4. The ³¹P NMR data measured for P-ylides

Fig. S6 The ³¹P NMR spectra profile for P-ylide-1–P-ylide-5 measured in C_6D_6 at 298 K.

3. ³¹P NMR spectral analysis on reactions of P-ylide-1–P-ylide-5 each with AlMe(BHT)₂

As seen from Fig. S7, reactions of P-ylide-1–P-ylide-3 each with AlMe(BHT)₂ resulted in formation of LP-1–LP-3. No reaction happened between P-ylide-4 and AlMe(BHT)₂ whereas complex reaction occurred for P-ylide-5 and AlMe(BHT)₂. The LP-1–LP-3 are of the classical Lewis pair (CLP) character whereas P-ylide-4 and AlMe(BHT)₂ form a frustrated Lewis pair (FLP). These results detect varied interactions between the P-ylides and AlMe(BHT)₂.

Table S5. The ³¹P NMR data measured for reactions of P-ylide-1–P-ylide-5 with AlMe(BHT)₂

reaction	³¹ P{ ¹ H} NMR (δ /ppm)	
$P-ylide-1 + AlMe(BHT)_2$	32.00 (LP-1)	
$P-ylide-2 + AlMe(BHT)_2$	37.01 (LP- 2)	
P-ylide- 3 + AlMe(BHT) ₂	35.11 (LP- 3)	
P-ylide-4 + AlMe(BHT) ₂	7.79 (P-ylide-4)	
P-ylide- 5 + AlMe(BHT) ₂	41.75 (27%, LP- 5), 40.67 (2%, unknown), 39.32	
	(2%, unknown), 32.35 (15%, unknown), 30.87	
	(3%, unknown), 9.92 (10%, P-ylide-5), -5.36	
	(41%, unknown)	

Fig. S7 The ³¹P NMR spectra profile for reactions of P-ylide-1–P-ylide-5 with AlMe(BHT)₂ measured in C_6D_6 at 298 K.

4. ³¹P NMR spectral analysis on reactions of P-ylide-1–P-ylide-5 each with MMA AlMe(BHT)₂

As seen from Fig. S8 and Table S6, reaction of P-ylide-1 with MMA AlMe(BHT)₂ produced LPM-1 as minor part while LP-1 as the major one. Reactions of either P-ylide-2 or P-ylide-3 with AlMe(BHT)₂ gave completely LPM-2 or LPM-3. And reactions of P-ylide-4 and P-ylide-5 each with AlMe(BHT)₂ generated besides LPM-4 and LPM-5 the unknown species. These results detect influence due to change of the P-ylides.

³¹ P{ ¹ H} NMR (δ /ppm)
31.95 (80%, LP-1), 25.18 (4%, cis-LPM-1),
24.65 (16%, trans-LPM-1)
27.56 (trans-LPM-2)
29.42 (18%, cis-LPM-3), 28.77 (82%,
trans-LPM-3)
24.01 (12%, cis-LPM-4), 20.90 (69%,
trans-LPM-4), -5.49 (19%, unknown)
35.66 (95%, trans-LPM-5), -5.34 (5%,
unknown)

Table S6. The ³¹P NMR data measured for reactions of P-ylide-1–P-ylide-5 each withMMA AlMe(BHT)2

Fig. S8 The ³¹P NMR spectra profile for reactions of P-ylide-**1**–P-ylide-**5** each with MMA AlMe(BHT)₂ measured in C_6D_6 at 298 K (Note: detailed assignemnts are seen in Fig.s S25, S27, S29, S31, and S33 in VI).

IV. Some other polymerization results

Run	LB	[MMA]:[LB]	<i>t</i> (h)	$\operatorname{Conv.}^{b}(\%)$
1	P-ylide-1	200:1	24	2.0
2	P-ylide-2	200:1	24	4.7
3	P-ylide-3	200:1	24	3.8
4	P-ylide-4	200:1	24	0
5	P-ylide-5	200:1	24	9.0

Table S7. The MMA polymerization results by using only the P-ylide initiators^{*a*}

^{*a*}Conditions: MMA 4.6 mmol, toluene 5 mL, at 298 K. ^{*b*}Monomer conversion was calculated according to the ¹H NMR data measured.

Table S8. The copolymerization results by using the P-ylide-2/AliBu₂(BHT) initiator system^a

run	[P-ylide-2]:[AliBu ₂ (BHT)]:[M]	t (min)	Conv. ^b (%)	$M_{\rm n}^{\ c}$ (kg/mol)	D^{c}
1	1:2:(200 MMA/200 MMA)	5	>99	46.9	1.19
2	1:2:(200 MMA/200 EMA)	5	>99	53.2	1.18
3	1:2:(200 MMA/200 BnMA)	5	>99	83.8	1.05
				30.5	1.02
4	1:2:(200 MMA/200 <i>n</i> BuMA)	5	>99	76.6	2.28

^{*a*}Conditions: carried out at 298 K in toluene (10 mL); first monomer (MMA) 4.6 mmol, second monomer 4.6 mmol. ^{*b*}Monomer conversions were calculated according to ¹H NMR data measured. ^{*c*} M_n and D determined by GPC relative to PMMA standards in THF.

Fig. S9 The GPC traces of PMMA samples obtained from chain-extension and copolymerization experiments by using the P-ylide-2/Al*i*Bu₂(BHT) initiator system.

Table S9. The chain-extension polymerization results by using the P-ylide- $2/AlMe(BHT)_2$ initiator system^{*a*}

run	[P-ylide-2]:[AlMe(BHT) ₂]:[M]	Conv. ^b (%)	$M_{\rm n}^{\ c}$ (kg/mol)	D^{c}	$I^{*^{d}}(\%)$
1	1:2:(200 MMA)	>99	31.7	1.18	64
2	1:2:(200 MMA/200 MMA)	>99	51.4	1.16	78
3	1:2:(200 MMA/200 MMA/200 MMA)	>99	71.1	1.12	85

^{*a*}Condition: carried out at 298 K in toluene; [MMA] = 0.92 M. ^{*b*}Monomer conversions were calculated according to ¹H NMR data measured. ^{*c*} M_n and D determined by GPC relative to PMMA standards in THF. ^{*d*}Initiator efficiency (I^*) = M_n (calcd)/ M_n (exptl), where M_n (calcd) = [MW(MMA)]([MMA]_0/[I]_0) (conversion %) + MW of chain-end groups.

Fig. S10 The GPC trace of the PMMA sample obtained from random copolymerization by using the P-ylide-**2**/AlMe(BHT)₂ initiator system (run 10, Table 2).

V. Other collected MALDI-TOF MS spectra

Fig. S11 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-1/AlMe(BHT)₂ in toluene at 298 K.

Fig. S12 Plot of m/z values from Fig. 11 vs the number of MMA repeat units (n).

Fig. S13 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-3/AlMe(BHT)₂ in toluene at 298 K.

Fig. S14 Plot of m/z values from Fig. S13 vs the number of MMA repeat units (n).

Fig. S15 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-4/AlMe(BHT)₂ in toluene at 298 K.

Fig. S16 Plot of m/z values from Fig. S15 vs the number of MMA repeat units (n).

Fig. S17 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-1/Al*i*Bu₂(BHT) in toluene at 298 K.

Fig. S18 MALDI-TOF MS spectrum of the low-MW PMMA sample produced by P-ylide-**2**/Al*i*Bu₂(BHT) in toluene at 298 K.

VI. Collected NMR (¹H and ³¹P) spectra

---32.00

Fig. S20 31 P NMR spectrum of LP-1 in C₆D₆ at 298 K

 $\begin{array}{c} 7.45\\ 7.45\\ 7.42\\ 6.92\\ 6.92\\ 6.93\\$

72.95 4 4 9 8 8 9 7 9 8

-37.01

-0.5

0.0

0.5

8.0

7.5

7.0

-35.11

Fig. S26 1 H NMR spectrum of LPM-2 in C₆D₆ at 298 K

Fig. S28 ¹H NMR spectrum of LPM-3 in C₆D₆ at 298K (Note: the data were labeled for *trans*-LPM-3)

3.5 f1 (ppm)

. 4.0

7.0

. 6.5 . 6.0 . 5.5 . 5.0 . 4.5 CHEt

. 3.0 2.5

2.0

CH₂CH₃

1.5

1.0

0.5

0.0

-27.51

P (trans-LPM-2)

Fig. S30 ¹H NMR spectrum of LPM-4 in C₆D₆ at 298 K (Note: the data were labeled for *trans*-LPM-4)

---5.49

---20.90

-24.01

Fig. S32 1 H NMR spectrum of LPM-5 in C₆D₆ at 298 K

---5.34

Fig. S33 ³¹P NMR spectrum of LPM-**5** in C_6D_6 at 298 K

VI. References

1 G. M. Sheldrick, Acta. Cryst. Sect. C, 2015, 71, 3-8.

- 2 G. M. Sheldrick, Acta. Cryst. Sect. A, 2008, 64, 112-122.
- 3 M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Commun.*, 2000, 3, 530–533.
- 4 Z. M. Heiden and A. P. Lathem, Organometallics, 2015, 34, 1818–1827.
- 5 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 6 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
- 7 M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265-3269.
- 8 A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066–4073.
- 9 A. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys., 1985, 83, 735-746.
- 10 A. E. Reed, Weinhold, F. J. Chem. Phys., 1985, 83, 1736-1740.
- 11 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899-926.
- 12 J. E. Carpenter and F. Weinhold, J. Mol. Struct. (Theochem), 1988, 46, 41-62.
- 13 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211-7218.
- 14 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.

Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

END