Supporting Information

Linear not Cyclic – Unravelling an Anionic Initiation Pathway for Lewis Pair Polymerization of Lactones

Vincent Nieboer,¹ Noé Fanjul-Mosteirín,² Peter Olsén,^{2*} and Karin Odelius^{2*}

¹Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100

44, Stockholm, Sweden

²Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology,

KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden

*Corresponding authors: Peter Olsén, polsen@kth.se and Karin Odelius, hoem@kth.se

Table of Contents

Methods	3
Materials and reagents	3
Instrumentation and characterization	3
Synthesis of PPDL by ZnEt ₂ -DBU	4
Polymerization kinetics	5
Preparation of the ZnEt ₂ treated PDL FT-IR samples	5
Supporting data	6
Table S1. Control polymerization reactions.	. 6
Figure S1. ¹ H and ¹³ C NMR analysis of high molecular weight PPDL	6
Figure S2. MALDI-TOF MS analysis of low molecular weight PCL	7
Figure S3. NMR tube preparation method to record <i>in-situ</i> NMR spectra	7
Figure S4. In-situ ¹ H NMR of δ VL treated with ZnEt ₂ -DBU Lewis Pair	7
Figure S5. In-situ ¹ H NMR of γBL treated with ZnEt ₂ -DBU Lewis Pair	8
Figure S6. In-situ ¹ H NMR of ECL treated with ZnEt ₂ -DBU Lewis Pair	8
Figure S7. FT-IR analysis of ZnEt ₂ treated PDL	9
Figure S8. In-situ ¹ H NMR of ZnEt ₂ -DBU adduct	.10
Figure S9. Hypothesised reaction mechanism for ZnEt ₂ -DBU initiated polymerization of PDL	.10
Figure S10. ¹ H NMR of PPDL synthesized by ZnEt ₂ -DBU in toluene at 120 °C	.11
Figure S11. HSQC NMR spectroscopy of PPDL synthesized at 120 °C.	.12
Figure S12. HMBC NMR spectroscopy of PPDL synthesized at 120 °C.	.13
Figure S13. COSY NMR spectroscopy of PPDL synthesized at 120 °C.	.14
Figure S14. ¹ H NMR of PCL synthesized by ZnEt ₂ in the absence of DBU	.15
Table S2. Specifications for polymers used for viscometry.	15
Figure S15. Viscosity of PPDL with number avergae molecular weight	16
Figure S16. In-situ ¹³ C NMR of δVL treated with ZnEt ₂ -DBU Lewis Pair	.17
Figure S17. In-situ ¹³ C NMR of yBL treated with ZnEt ₂ -DBU Lewis Pair	.17
Figure S18. ¹³ C NMR of $P(\delta VL)$ synthesized with ZnEt ₂ -DBU Lewis Pair	
Figure S19. SEC analysis of P(δVL) synthesized with ZnEt ₂ -DBU Lewis Pair18	8
Figure S20. ¹ H NMR of P(δ VL) synthesized with ZnEt ₂ -DBU Lewis Pair	ure
S21. SEC analysis of PPDL synthesized using various ratios of ZnEt2 to DBU	.19
Figure S22. End group analysis of PPDL synthesized with γ BL-ZnEt ₂ -DBU initiation system	.20
Figure S23. SEC analysis of P(ECL) synthesized using ZnEt ₂ -DBU Lewis Pair	.20

Methods

Materials and reagents

The manipulation of all air or moisture sensitive reagents was performed inside a N₂-filled glovebox. All glassware and stirring bars were oven dried prior to use, unless otherwise mentioned. Purification of δ -valerolactone (δ VL), γ -butyrolactone (γ BL), and ϵ -caprolactone (ϵ CL) (99%, Sigma-Aldrich) was performed by drying over CaH₂ (93%, Thermo Scientific) for 18 hours, followed by vacuum distillation. The distillate was stored inside a glovebox over activated molecular sieves (4 Å). Pentadecalactone (PDL) (98%, Sigma-Aldrich) was dried over P₂O₅ for at least 7 days prior to use. 1,8diazabicyclo[5.4.0]undec-7-ene (DBU) (>99%, Sigma-Aldrich), diethyl zinc 15 wt.% in toluene (Sigma-Aldrich), and anhydrous toluene (99%, Sigma-Aldrich) were stored under nitrogen atmosphere and used without further purification. HCl 2 M in anhydrous Et₂O (99%, Sigma-Aldrich) was stored at 11 °C, trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile (>99%, Sigma-Aldrich) was stored in a desiccator over activated alumina, and NaOTf (98%, Sigma-Aldrich) and tetrahydrofuran (THF) (inhibitor free, >99%, Sigma Aldrich) were stored under ambient conditions and used without further purification.

Instrumentation and characterization

Nuclear magnetic resonance (NMR)

¹H, ¹³C, ¹H-¹H correlation, and ¹H-¹³C correlation NMR spectra were recorded in CDCl₃ on a 400 MHz Bruker Avance III HD instrument at room temperature. Chemical shifts are reported in parts per million (ppm) and referenced to the residual solvent signal (CHCl₃: ¹H, δ = 7.26 ppm, ¹³C, δ = 77.2 ppm). ¹H NMR spectra recorded in toluene were referenced to the methyl group of toluene (CH₃ toluene: 2.36 ppm).

Size exclusion chromatography (SEC)

SEC elugrams were obtained on a Malvern GPCMAX instrument containing a PLgel 5 μ m guard column (7.5 x 50 mm) and two PLgel 5 μ m MIXED-D (300 x 7.5 mm) columns. HPLC grade CHCl₃ containing 2% (v/v) toluene was used as eluent at 35 °C. Polystyrene standards with a narrow dispersity

(162-364,000 g mol⁻¹) were used as calibration. Samples were prepared at \sim 3 mg mL⁻¹ for a 100 μ L injection volume.

Matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI TOF MS)

MALDI TOF MS spectra were recorded on an ultrafleXtreme MALDI TOF/TOF with a smartbeam-II laser operating at a wavelength of 355 nm (Bruker Daltonik), controlled by FlexControl software (Bruker Daltonik). Sample preparation was performed as follows: low molecular weight polymer was dissolved in chloroform (5 mg mL⁻¹), trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile matrix was dissolved in THF (100 mg mL⁻¹), and NaOTf was dissolved in THF (10 mg mL⁻¹). These 3 solutions were then mixed as: 40 µL polymer, 10 µL NaOTf, and 60 µL matrix. The resulting solution was spotted on stainless steel MALDI target plate and left to dry.

Fourier-transform infrared spectroscopy (FT-IR)

FT-IR spectra were recorded in the 600–4000 cm⁻¹ region for 16 scans on a Perkin-Elmer spotlight 400 FT-IR system equipped with a MKII heated Diamond 45° ATR Top Plate crystal.

Viscometry

Viscometry was performed on a Lauda iVisc Viscosimeter (Version 1.01) equipped with an Ubbelohde type viscometer at a capillary constant of 0.009582 mm² s⁻². Polymer samples were dissolved at a concentration of 0.1 g mL⁻¹ in CHCl₃ and loaded using a glass pipette. The Hagenbach kinetic energy correction was employed for the analysis of a statistical significance samples (p<0.005) consisting of 5 repetitions.

Synthesis of PPDL by ZnEt₂-DBU

A typical polymerization procedure was as follows: an oven-dried glass vial was charged with PDL (1 g, 4.16 mmol, 50 equiv.), dissolved in anhydrous toluene (2.08 mL, 1.80 g), and treated with ZnEt₂ 15 wt.% in toluene (68.5 mg, 0.083 mmol, 1 equiv.) and DBU (25.3 mg, 0.166 mmol, 2 equiv.). The vial was equipped with a septum and quickly transferred out of the glovebox onto a preheated sand bath at 90 °C for polymerization and determination of kinetics. After a determined time, HCl (2 M) in

anhydrous Et₂O (208 µL, 0.416 mmol, 5 equiv.) was added to the reaction vial to stop the reaction, the polymers were isolated by precipitation from cold MeOH and dried for 24 hours *in vacuo* to yield a white fluffy solid. Typical yield = 0.96 g (96%). ¹H NMR (400 MHz, CDCl₃) δ 4.05 (t, *J* = 6.7 Hz, 2H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.61 (m, 4H), 1.37 – 1.23 (m, 20H). ¹³C NMR (101 MHz, CDCl₃) δ 174.1, 77.3, 64.5, 34.5, 29.8, 29.7, 29.7, 29.7, 29.6, 29.4, 29.4, 29.3, 28.8, 26.1, 25.2.

Polymerization kinetics

To monitor the polymerization rate of PDL, samples were withdrawn from the crude mixture during polymerization for ¹H NMR spectroscopy and SEC analysis. Initially, samples were obtained through the septum using clean needles and syringes. As the solution turned too viscous, the reaction vials were decapped under a flow of nitrogen, where oven dried glass pipettes were used to draw samples. The drawn samples were quenched by dissolution in cold undried CHCl₃ or CDCl₃. ¹H NMR analysis was performed immediately after sample preparation in the deuterated solvent and conversion was determined by comparative integration of the methylene peaks of the monomer (PDL δ = 4.14 ppm, ϵ CL δ =4.26, δ VL δ =3.63) and polymer (PPDL δ = 4.06 ppm, P(ϵ CL) δ = 4.06, P(δ VL) δ = 3.88).

For δVL , γBL , and ϵCL , kinetics were monitored by in-situ ¹H NMR analysis at room temperature.

Preparation of the ZnEt₂ treated PDL FT-IR samples

An oven dried glass vial was charged with PDL (94 mg, 0.391 mmol, 1 equiv.), DBU (53 mg, 0.391 mmol, 1 equiv.), and $ZnEt_2$ 15 wt% in toluene (288 mg, 0.391 mmol, 1 equiv.). The vial was capped and the solution transferred outside the glovebox onto a preheated sand bath at 120 °C, where the solution was left for 2 hours. During this time, the solution solidified to form a yellow/orange clear solid. FT-IR analysis was performed directly on this solid.

In the case where the FT-IR product were quenched, HCl (2 M) in Et_2O (200 µL) was added and the solution was stirred mechanically with a glass pipette until a white dispersion was obtained. The solvent was then removed *in vacuo* to yield a white powder. FT-IR analysis were performed directly on the white powder.

Supporting data

Entry	Solution	Reaction time (h)	Reaction temperature (°C)	Conversion (%) ^{<i>a</i>}
1	$ZnEt_2 + CL$	6	120	99
2	$ZnEt_2 + CL$	9	90	98
3	$ZnEt_2 + PDL$	4	120	0
4	DBU + CL	6	120	0
5	DBU + PDL	6	120	0
6	$ZnEt_2 + 2 DBU + PDL$	6	22	0

Table S1. Polymerization reactions of $ZnEt_2$ or DBU with CL or PDL at different temperatures. Monomer concentration = 2 M with [monomer]/[ZnEt_2 or DBU] = 50/1.

^{*a*} determined by ¹H NMR of the crude sample.

Figure S1. Analysis of PPDL synthesized by $ZnEt_2$ -DBU Lewis pair at 90 °C in toluene. a) ¹H NMR (400 MHz, 298 K, CDCl₃). b) ¹³C NMR (101 MHz, 298 K, CDCl₃). End-groups of high molecular weight polymers are not visible, which may be interpreted as cyclic polymer.

Figure S2. MALDI-TOF MS analysis of low molecular weight PCL synthesized at 90 °C in toluene using $[CL]_0 = 1.5$ M and $[CL]/[ZnEt_2] = 25/1$. Reaction was terminated using HCl in anhydrous Et_2O .

Figure S3. NMR tube preparation method to record ¹H NMR spectra in toluene.

Figure S4. In-situ ¹H NMR (298 K, 400 MHz, toluene) of a solution of $[\delta VL]/[ZnEt2]/[DBU] = 1/1/2$ in toluene at room temperature with spectra recorded over time.

Figure S5. In-situ ¹H NMR (298 K, 400 MHz, toluene) of a solution of $[\gamma BL]/[ZnEt_2]/[DBU] = 1/1/2$ in toluene at room temperature with spectra recorded over time.

Figure S6. In-situ ¹H NMR (298 K, 400 MHz, toluene) of a solution of [CL]/[ZnEt2]/[DBU] = 1/1/2 in toluene at room temperature with spectra recorded over time.

Figure S7. FT-IR spectra of DBU, PDL, and reaction product of $[PDL]/[ZnEt_2]/[DBU] = 1/1/1$ heated to 120 °C in bulk for 2 h. a) compared to DBU and PDL and b) compared to acid treated reaction product.

Figure S8. ¹H NMR (400 MHz, 298 K, CDCl₃) recorded in toluene containing a sealed capillary tube containing CDCl₃ present in the NMR tube as schematically drawn in Figure S3. Recorded spectra: a) DBU, b) $ZnEt_2$, c) DBU-ZnEt_2 adduct, and d) 2 DBU-ZnEt_2 adduct. Ingredients were mixed and no additional heating was required. The large peak at 2.36 ppm is from the toluene.

Figure S9. Hypothesised reaction mechanisms for ZnEt₂-DBU polymerization of PDL.

Figure S10. Typical ¹H NMR of PPDL polymer synthesized by $[PDL]/[ZnEt_2]/[DBU] = 25/1/2$ in toluene at 120 °C and $[PDL]_0 = 2$ M. Isolated from precipitation in methanol and recorded in CDCl₃ (400 MHz, 298 K, CDCl₃).

Figure S11. ¹H-¹³C heteronuclear single quantum coherence (HSQC) NMR spectroscopy graph (400 MHz, 298 K, CDCl₃) of low molecular PPDL synthesized by [PDL]/[ZnEt₂]/[DBU] = 15/1/2 at 120 °C in toluene.

Figure S12. ¹H-¹³C heteronuclear multiple-bond correlation (HMBC) NMR spectroscopy (400 MHz, 298 K, CDCl₃) of PPDL synthesized by $[PDL]/[ZnEt_2]/[DBU] = 15/1/2$ at 120 °C in toluene.

Figure S13. ¹H-¹H homonuclear correlation (COSY) NMR spectroscopy (400 MHz, 298 K, CDCl₃) of PPDL synthesized by $[PDL]/[ZnEt_2]/[DBU] = 15/1/2$ at 120 °C in toluene.

Figure S14. ¹H NMR (400 MHz, 298 K, CDCl₃) of PCL polymer synthesized by $[CL]/[ZnEt_2] = 50/1$ at 120 °C in the absence of DBU.

Catalyst	T (°C)	M _{n,theory} (kg mol ⁻¹)	DP ^a	$M_{ m n}~(m kg~mol^{-1})^a$	$M_{\rm n}~({\rm kg~mol^{-1}})^b$	\mathcal{P}^b
ZnEt ₂ -DBU	120	8.7	32	7.7	24.5	1.86
ZnEt ₂ -DBU	120	11.4	43	9.4	37.1	1.89
ZnEt ₂ -DBU	120	22.4	73	17.5	72.5	1.60
ZnEt ₂ -DBU	120	33.5	114	27.4	102.5	1.75
^t BuOLi ^c	120	12.0	50	12.0	42.5	1.79
^t BuOLi ^c	120	18.0	78	18.7	70.5	1.78
^t BuOLi ^c	120	29.1	120	28.8	97.6	1.70
^t BuOLi ^c	120	33.6	140	33.7	117.1	1.67
	Catalyst ZnEt ₂ -DBU ZnEt ₂ -DBU ZnEt ₂ -DBU ZnEt ₂ -DBU 'BuOLi ^c 'BuOLi ^c 'BuOLi ^c 'BuOLi ^c	Catalyst T (°C) ZnEt ₂ -DBU 120 'BuOLi ^c 120	Catalyst T (°C) $M_{n,theory}$ (kg mol ⁻¹) ZnEt ₂ -DBU 120 8.7 ZnEt ₂ -DBU 120 11.4 ZnEt ₂ -DBU 120 22.4 ZnEt ₂ -DBU 120 33.5 'BuOLic 120 12.0 'BuOLic 120 18.0 'BuOLic 120 33.6	CatalystT (°C) $M_{n,theory}$ (kg mol ⁻¹)DPaZnEt_2-DBU1208.732ZnEt_2-DBU12011.443ZnEt_2-DBU12022.473ZnEt_2-DBU12033.5114'BuOLic12012.050'BuOLic12018.078'BuOLic12033.6140	CatalystT (°C) $M_{n,theory}$ (kg mol ⁻¹)DP" M_n (kg mol ⁻¹)"ZnEt_2-DBU1208.7327.7ZnEt_2-DBU12011.4439.4ZnEt_2-DBU12022.47317.5ZnEt_2-DBU12033.511427.4'BuOLic12012.05012.0'BuOLic12018.07818.7'BuOLic12029.112028.8'BuOLic12033.614033.7	CatalystT (°C) $M_{n,theory}$ (kg mol ⁻¹)DP" M_n (kg mol ⁻¹)" M_n (kg mol ⁻¹)bZnEt_2-DBU1208.7327.724.5ZnEt_2-DBU12011.4439.437.1ZnEt_2-DBU12022.47317.572.5ZnEt_2-DBU12033.511427.4102.5BuOLic12012.05012.042.5BuOLic12018.07818.770.5BuOLic12029.112028.897.6BuOLic12033.614033.7117.1

Table S2. Polymer samples used for viscosity analysis.

^aDetermined by ¹H NMR (400 MHz, 298 K, CDCl₃).

^bDetermined by SEC analysis versus polystyrene standards (0.5 mL min⁻¹, 3 mg mL⁻¹, CHCl₃).

^cUsed to generate PPDL of known linear topology. [PDL] = 2 M in toluene treated with desired quantity ^tBuOLi and heated for 2 hours at 120 °C.

Figure S15. Viscometry (Ubbelohde, 0.009582 mm² s⁻², 0.1 g mL⁻¹ CHCl₃) analysis of PPDL synthesized by ZnEt₂-DBU at 120 °C compared to a linear PPDL sample synthesized by 'BuOLi anionic initiator at 120 °C. M_n was derived a) by ¹H NMR integration of the alcohol end group and ester repeating unit and b) from SEC versus polystyrene standards.

Figure S16. In-situ ¹³C NMR (101 MHz, 298 K, toluene) analysis of the reaction of $[\delta VL]/[ZnEt_2]/[DBU] = 1/1/2$ in toluene at room temperature over time.

Figure S17. In-situ ¹³C NMR (101 MHz, 298 K, toluene) analysis of the reaction of $[\gamma BL]/[ZnEt_2]/[DBU] = 1/1/2$ in toluene at room temperature over time.

Figure S18. ¹³C NMR (101 MHz, 298 K, CDCl₃) analysis of $P(\delta VL)$ synthesized by $[\delta VL]/[ZnEt_2]/[DBU] = 50/1/2$ in toluene $[\delta VL]_0 = 2$ M at room temperature after 18 hours and obtained by precipitation in heptane.

Figure S19. SEC elugram (CHCl₃) of $P(\delta VL)$ synthesized by $[\delta VL]/[ZnEt_2]/[DBU]=50/1/2$ in toluene $[\delta VL]_0 = 2$ M at room temperature after 18 hours and obtained by precipitation in heptane.

Figure S20. ¹H NMR (400 MHz, 298 K, CDCl₃) analysis of $P(\delta VL)$ synthesized by $[\delta VL]/[ZnEt_2]/[DBU] = 50/1/2$ in toluene $[\delta VL]_0 = 2$ M at room temperature after 18 hours and obtained by precipitation in heptane.

Figure S21. Number average molecular weight and dispersity to conversion of PPDL synthesized using ratios of $ZnEt_2$ to DBU ranging from 2 to 10. Conditions: [PDL] = 2 M in toluene at 90 °C. Reported values were obtained by SEC in CHCl₃ at a flow rate of 0.5 mL min⁻¹ versus narrow disperse polystyrene standards.

Figure S22. Low molecular weight PPDL synthesized by $[PDL]/[ZnEt_2]/[DBU]/[\gamma BL] = 10/1/2/3$ with $[PDL]_0 = 1.9$ M in toluene after heating to 90 °C for 1 hour. Polymer was obtained by dissolution in CHCl₃ and precipitation in MeOH (2x). a) chemical structure of polymers synthesized in the absence (Polymer A) of γ BL and presence (Polymer B) of γ BL. b) SEC elugram (CHCl₃) of the synthesized PPDL. c) ¹H NMR (298K, 400 MHz, CDCl₃) of polymers A and B shown in 4a.

Figure 23. SEC elugram (CHCl₃) of $P(\varepsilon CL)$ synthesized by $[\varepsilon CL]/[ZnEt_2]/[DBU] = 50/1/2$ in toluene $[\varepsilon CL]_0 = 2$ M at room temperature after 18 hours and obtained by precipitation in heptane