† Electronic Supplementary Information (ESI)

Development of prediction model for cloud point of thermo-responsive polymers by experiment-oriented materials informatics

Mai Hayakawa,^a Kosuke Sakano,^a Rei Kumada,^a Haruka Tobita,^a Yasuhiko Igarashi,^b Daniel Citterio,^a Yuya Oaki,^a and Yuki Hiruta^{*a}

^a Department of Applied Chemistry, Faculty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

^b Faculty of Engineering, Information and Systems, University of Tsukuba 1-1-1 Tennodai, Tsukuba 305-8573, Japan.

*To whom correspondence should be addressed.

Email: hiruta@applc.keio.ac.jp

Table S1 Dataset with training data.¹⁻⁵

No.	x1 [g mol ⁻¹]] x ₂ [-]	x ₃ [mg mL ⁻¹]	x4 [-]	x ₅ [-]	x ₆ [-]	x ₇ [g mol ⁻¹]] x ₈ [K]	x ₉ [cm ³ mol ⁻¹]	x ₁₀ [-]	x ₁₁ [-]	x ₁₂ [-]	y [°C]	Ref.
1	6500	2.1	5	16.97	10.795	7.21	119.1655	470.283	35.6725	30.415	0.30676	3.57339	23.3	1
2	6400	2.1	5	17.04	10.69	7.22	125.171	482.536	37.215	31.73	0.35852	3.73158	14.8	1
3	5900	1.8	5	17.015	10.875	7.255	121.117	435.1285	36.2365	31.0165	0.30626	3.624765	21.7	1
4	20100	1.9	5	16.9	10.9	7.2	113.16	458.03	34.13	29.1	0.255	3.4152	32.1	2
5	17200	2.9	5	16.984	10.825	7.197	118.2651	468.8462	35.5706	29.889	0.321276	3.560754	25.8	2
6	6300	1.25	1	17.4	6.6	5.7	125.17	447.71	35.67	20.31	0.927	3.6256	64	3
7	29000	1.54	1	17.2	5.4	4.7	139.2	470.83	40.22	20.31	1.446	4.0894	41	3
8	6700	1.75	1	17.2	5.8	5.1	139.2	470.59	40.27	20.31	1.456	4.0894	25	3
9	15000	2.43	1	17.3	6.4	5.4	169.22	515.89	46.4	29.54	0.773	4.7063	64	3
10	6100	2.66	1	17.1	6	5	183.25	538.77	51.2	29.54	1.162	5.1701	36	3
11	11000	1.99	1	17.7	6.7	5.9	211.26	608.41	55.29	38.77	0.654	5.6096	47.5	3
12	11000	1.53	1	17.375	6.55	5.625	146.705	481.915	41.8025	22.6175	1.28525	4.243625	34.5	3
13	16000	1.69	1	17.35	6.5	5.55	154.21	493.24	43.335	24.925	1.1145	4.39785	41.3	3
14	13000	1.35	1	17.325	6.45	5.475	161.715	504.565	44.8675	27.2325	0.94375	4.552075	51	3
15	15000	1.9	1	17.415	6.605	5.71	142.803	477.481	41.021	21.233	1.4159	4.16541	27.7	3
16	16000	1.89	1	17.475	6.625	5.75	157.215	505.045	44.025	24.925	1.2555	4.46945	30.5	3
17	16000	2.07	1	17.55	6.65	5.8	175.23	539.5	47.78	29.54	1.055	4.8495	32.4	3
18	12000	1.7	1	17.45	6.69	5.73	142.001	476.247	40.684	21.563	1.344	4.13335	32	3
19	14000	1.77	1	17.525	6.825	5.775	146.2025	484.7325	41.305	23.4425	1.176	4.199275	39.7	3
20	15000	1.7	1	17.65	7.05	5.85	153.205	498.875	42.34	26.575	0.896	4.30915	60.6	3
21	7100	2.5	5	16.9	10.9	7.2	113.16	458.03	34.13	29.1	0.255	3.4152	32	4
22	17500	2.6	5	16.873	10.684	7.131	114.0312	457.4117	34.3274	29.016	0.32814	3.43656	26.9	4
23	8200	1.89	5	16.898	10.864	7.188	114.302	459.658	34.4742	29.1648	0.26	3.450402	37.3	4
24	5500	1.15	1	16.6	9.6	6.2	183.21	537.74	48.21	46.61	0.622	4.818	15	5
25	8300	1.25	1	16.625	9.64	6.27	179.006	529.7025	47.28	45.295	0.58255	4.72467	24.5	5
26	6800	1.22	1	16.65	9.68	6.34	174.802	521.665	46.35	43.98	0.5431	4.63134	30.5	5
27	6200	1.25	1	16.7	9.76	6.48	166.394	505.59	44.49	41.35	0.4642	4.44468	34.5	5
28	7000	1.28	1	16.75	9.84	6.62	157.986	489.515	42.63	38.72	0.3853	4.25802	43.5	5

No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]
1	95 : 5	23.3	3	95 : 5	21.7	4	0:100	32.1	5	97:3	25.8
2	90 : 10	14.8								h	
		.0			~ ~ >						20)
No.	m : n	<i>Т</i> _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]
6	0:100	64	7	0:100	41	8	0:100	25	9	0:100	64
		.O							+ 1		
No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]	No.	m : n	Т _{СР} [°С]
10	0:100	36	11	0:100	47.5	12	75 : 25	34.5	15	95 : 5	27.7
						13	50 : 50	41.3	16	75 : 25	30.5
						14	25 : 75	51	17	50 : 50	32.4
4				HN O	()) () ()) () ()) ()) ()) ()) ()) ()) ())) ()) ()) ())) ())) ())) ())) ())) ())) ())))) ()))))))))))))	-		HN O	N N		
No.	m : n	<i>Т</i> _{СР} [°С]	- <u> </u>	m : n	Τ _{CP} [°C]	No.	 m : n	T _{CP} [°Cl	No.	m : n	T _{CP} [°Cl
18	90 : 10	32.0	21	100 : 0	32	23	98 : 2	37.3	24	0:100	15
19	75 : 25	39.7	22	97 : 3	26.9				25	5 : 95	24.5
20	50 : 50	60.6				_			26	10 : 90	30.5
			-						27	20 : 80	34.5
									28	30 : 70	43.5

Fig. S1 The chemical structures and cloud points of polymers included in dataset.^{1–5}

No.	No. Monomers (Compounds)		Composition ratio [mol %]	Ref.	
1	1	2	95 : 5	1	
2	1	2	90:10	1	
3	1	3	95 : 5	1	
4	1	-	100 : 0	2	
5	1	4	97:3	2	
6	5	-	100 : 0	3	
7	6	-	100 : 0	3	
8	7	-	100 : 0	3	
9	8	-	100 : 0	3	
10	9	-	100 : 0	3	
11	10	-	100 : 0	3	
12	7	8	75:25	3	
13	7	8	50:50	3	
14	7	8	25:75	3	
15	7	10	95 : 5	3	
16	7	10	75:25	3	
17	7	10	50:50	3	
18	7	11	90:10	3	
19	7	11	75:25	3	
20	7	11	50:50	3	
21	1	-	100 : 0	4	
22	1	12	97:3	4	
23	1	13	98:2	4	
24	14	15	0:100	5	
25	14	15	5:95	5	
26	14	15	10:90	5	
27	14	15	20:80	5	
28	14	15	30:70	5	

Table S2 The composition ratio of monomers from literature references used for training data. Monomers (compounds) are shown in Scheme 1.

¹H NMR spectrum of P(NIPAAm₇₀-co-DMAA₃₀) in CD₃OD

¹H NMR spectrum of P(NIPAAm₉₀-co-NNPAAm₁₀) in CDCl₃

¹H NMR spectrum of P(NIPAAm₅₀-co-NNPAAm₅₀) in CDCl₃

Fig. S2 GPC elution curves for (a) P(NIPAAm₉₀-co-DMAAm₁₀), (b) P(NIPAAm₇₀-co-DMAAm₃₀), (c) P(NIPAAm₅₀-co-DMAAm₅₀), (d) P(NIPAAm₉₀-co-NNPAAm₁₀), (e) P(NIPAAm₇₀-co-NNPAAm₃₀), (f) P(NIPAAm₅₀-co-NNPAAm₅₀)

No.	x ₃ [mg mL ⁻¹]	x5 [-]	x ₁₁ [-]	y [°C]	Ref.
29	5	10.828	0.27938	31	4
30	5	10.756	0.30376	30.2	4
31	5	10.882	0.2575	34.8	4
32	5	10.846	0.2625	41.4	4
33	5	10.828	0.265	43.8	4
34	5	9.6	0.622	20.7	6
35	5	10.25	0.4385	24	6

Table S3 Dataset with test data from literature references.^{4,6}

Table S4 The composition of test data from articles. Monomers (compounds) are shown in Scheme 1.

No.	Mor (Coi	nomers npounds	Composition ratio s) [mol %]	Ref.
29	1	12	99:1	4
30	1	12	98:2	4
31	1	13	99:1	4
32	1	13	97:3	4
33	1	13	96 : 4	4
34	15	-	100 : 0	6
35	1	15	50 : 50	6

Table S5 Test dataset of synthesized polymers

mg mL ⁻¹] x_5 [-]	x ₁₁ [-]	y [°C]	
10.85	0.2128	35.4	•
10.75	0.1284	44.7	
10.65	0.044	64.0	
10.91	0.277	31.7	
10.93	0.321	29.2	
10.95	0.365	27.1	
	$\begin{array}{c c} mg \ mL^{-1} & x_5 \ [-] \\ \hline 10.85 \\ 10.75 \\ 10.65 \\ 10.91 \\ 10.93 \\ 10.95 \end{array}$	mg mL-1 x_5 [-] x_{11} [-]10.850.212810.750.128410.650.04410.910.27710.930.32110.950.365	mg mL-1 x_5 [-] x_{11} [-] y [°C]10.850.212835.410.750.128444.710.650.04464.010.910.27731.710.930.32129.210.950.36527.1

Fig. S3 The structure of monomers from literature references for correcting coefficients of the prediction model.⁷

No.	x ₃ [mg mL ⁻¹]	X5 [-]	x ₁₁ [-]	y [°C]	Ref.
1	5	10.795	0.30676	23.3	1
2	5	10.69	0.35852	14.8	1
3	5	10.875	0.30626	21.7	1
4	5	10.9	0.255	32.1	2
5	5	10.825	0.321276	25.8	2
6	1	6.6	0.927	64	3
7	1	5.4	1.446	41	3
8	1	5.8	1.456	25	3
9	1	6.4	0.773	64	3
10	1	6	1.162	36	3
11	1	6.7	0.654	47.5	3
12	1	6.55	1.28525	34.5	3
13	1	6.5	1.1145	41.3	3
14	1	6.45	0.94375	51	3
15	1	6.605	1.4159	32	3
16	1	6.625	1.2555	39.7	3
17	1	6.65	1.055	60.6	3
18	1	6.69	1.344	32	3
19	1	6.825	1.176	39.7	3
20	1	7.05	0.896	60.6	3
21	5	10.9	0.255	32	4
22	5	10.684	0.32814	26.9	4
23	5	10.864	0.26	37.3	4
24	1	9.6	0.622	15	5
25	1	9.64	0.58255	24.5	5
26	1	9.68	0.5431	30.5	5
27	1	9.76	0.4642	34.5	5
28	1	9.84	0.3853	43.5	5
36	5	10.9	0.255	31.6	7
37	5	11.15	0.1577	36.7	7
38	5	11.65	-0.0369	41.8	7
39	5	12.15	-0.2315	55	7
40	5	12.9	-0.5234	80	7

Table S6 Dataset for correcting coefficients of the prediction model, containing additional data from references (No. 36-40).

Table S7 The composition of additional test data from literature references. Monomers (compounds) are shown in Fig. S2.

No.	Mo (Co	nomers mpoun	Composition ratio ds) [mol %]	Ref.
36	1	16	100:0	7
37	1	16	90:10	7
38	1	16	70:30	7
39	1	16	50 : 50	7
40	1	16	20:80	7

References

- 1 Y. Hiruta, R. Kanazashi, E. Ayano, T. Okano and H. Kanazawa, The Analyst, 2016, 141, 910-917.
- 2 T. Nishio, R. Kanazashi, A. Nojima, H. Kanazawa and T. Okano, J. Chromatogr. A., 2012, 1228, 148–154.
- 3 G.-T. Chen, C.-H. Wang, J.-G. Zhang, Y. Wang, R. Zhang, F.-S. Du, N. Yan, Y. Kou and Z.-C. Li, *Macromolecules*, 2010, **43**, 9972–9981.
- 4 Y. Hiruta, M. Shimamura, M. Matsuura, Y. Maekawa, T. Funatsu, Y. Suzuki, E. Ayano, T. Okano and H. Kanazawa, ACS Macro Lett., 2014, 3, 281–285.
- 5 H. Mori, H. Iwaya, A. Nagai and T. Endo, Chem. Commun., 2005, 4872.
- 6 H. Kanazawa, E. Ayano, C. Sakamoto, R. Yoda, A. Kikuchi and T. Okano, J. Chromatogr. A, 2006, 1106, 152–158.
- 7 T. Maeda, K. Yamamoto and T. Aoyagi, J. Colloid Interface Sci., 2006, 302, 467-474.