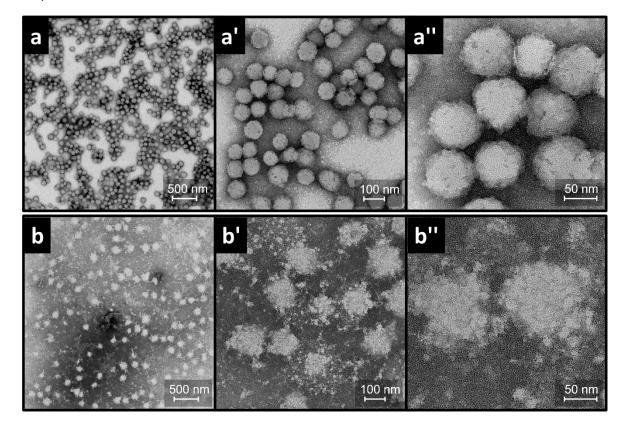
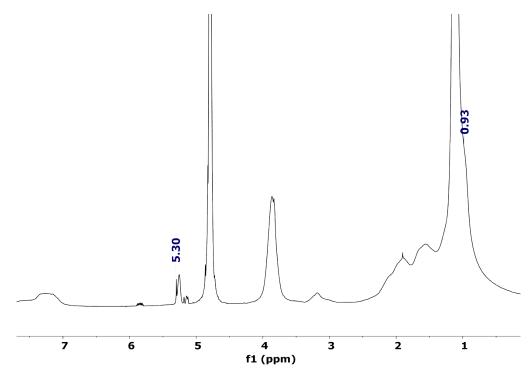
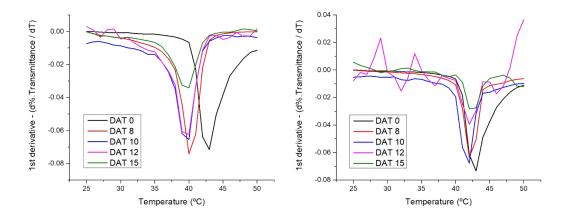

Supplementary Information

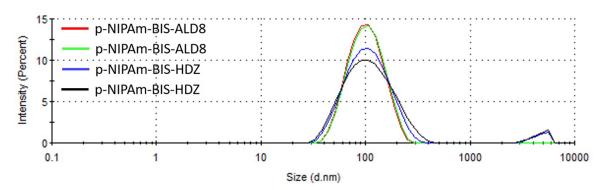
Structural control and functionalization of thermoresponsive nanogels: turning cross-linking points into anchoring groups


Alexis Wolfel*, Huiyi Wang, Ernesto Osorio-Blanco, Julian Bergueiro, Marcelo Ricardo Romero, Cecilia Ines Álvarez Igarzabal, Marcelo Calderón*

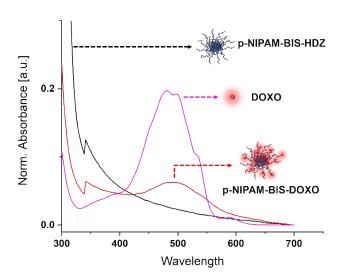

S1 - TEM micrographs of p-NIPAm-BIS-DAT10_{APS} before (a) and after periodate treatment (b).


 $\bf S2$ - TEM micrographs of p-NIPMAm-BIS-DAT10_{APS} before (top) and after (bottom) the modification with periodate.

S3 – TEM micrographs of p-NIPAm-BIS-DAT(10) $_{APS/TEMED}$ before (top, a, a' and a'') and after (bottom, b, b' and b'') periodate treatment.



S4 – 1 H-NMR spectrum of p-NIPAm-co-NIPMAm NGs after periodate treatment. The signal at 5.30 ppm indicates the presence of α -oxoaldehydes in hydrated state (C(O)-CH(OH)₂). Other peaks: 7.2 ppm (C(O)-NH-; p-NIPAm, p-NIPMAm and BIS); 3.8 ppm (-NH-CH(CH₃)₂; p-NIPAm and p-NIPMAm); 1.9 ppm (-CH-; backbone p-NIPAm); 1.5 ppm (-CH₂-; backbone p-NIPAm and p-NIPMAm); 1.1 ppm - NH-CH(CH₃)₂; p-NIPAm and p-NIPMAm); 0.9 ppm (-CH₃; backbone p-NIPMAm).



S5 – Temperature clouding point: 1rst derivative of the %Transmittance vs Temperature of p-NIPAm-co-NIPMAm-BIS-DAT_{APS} NGs before (left) and after (right) periodate treatment.

Size Distribution by Intensity

S6– DLS measurements for p-NIPAm-BIS-ALD (NGs after treatment with periodate) and p-NIPAm-BIS-HDZ NGs (after modification with AADH).

S7 – Modification of the p-NIPAm-BIS-HDZ NGs with DOXO. UV-Vis spectrum for DOXO (pink), p-NIPAm-BIS-HDZ (black) and p-NIPAm-BIS-DOXO (red).

Sample	NBD (Control)	NBD-HDZ
μg DOXO/mg NGs	11.27	3.25

S8 – Loading capacity of DOXO in NGs.