Supporting Information

The Influence of Monomer Ionization and Hydrolysis on the Radical Polymerization Kinetics of 2-(Dimethylamino)ethyl Methacrylate in Aqueous Solution

Opeyemi J. Ajogbeje,^a Igor Lacík^{b,c} and Robin A. Hutchinson^a*

^{*a*} Department of Chemical Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada

^b Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia

^c Centre for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11, Bratislava, Slovakia

Topics

Ionization	
Degree of Ionization of DMAEMA and MAA versus pH	S2
Hydrolysis	
¹ H-NMR Spectra and Peak Assignments of MAA and DMAE	
Monitoring of DMAEMA Hydrolysis with ¹ H-NMR Stacked Plot	
DMAEMA Hydrolysis Rate Coefficients	S5
Variation of pH with Ternary DMAEMA-MAA-DMAE Mixtures	
Best Fit Arrhenius Parameters of DMAEMA Hydrolysis	
Free Radical Polymerization	S8
Poly(DMAEMA) ¹ H-NMR Spectra in Acidic Water	
Calculations of DMAEMA Hydrolysis and Copolymerization Rates	S9
Plots of Polymerization Behaviour at Various pH, Temperature and Initiator Levels	S10
60 °C, 0.4 wt% V-50, pH 8.0 – 10.1	S10
50 °C, 0.1 wt% V-50, pH 8.0 – 10.1	S11
50 °C, 0.4 wt% V-50, pH 8.0 – 10.1	S12
Molar Mass Distributions of Poly(DMAEMA-co-MAA)	S13
References	S14

Corresponding author

*E-mail: robin.hutchinson@queensu.ca

Ionization

Degree of Ionization of DMAEMA and MAA versus pH

Figure S1. (a) D and DH⁺ mole fractions as a function of pH, calculated using a DMAEMA pK_a value of 8.4.¹ (b) Ionized (M⁻) and non-ionized (M) mole fractions for MAA as a function of pH, calculated using a pK_a of 4.65.²⁻⁴

Hydrolysis

¹H-NMR Spectra and Peak Assignments of MAA and DMAE

Figure S2. ¹H NMR (500 MHz) spectra of: (a) MAA in D₂O, with MAA signals at 5.71 ppm (s, 1H, CH=C (cis, a')), 5.38 ppm (s, 1H, CH=C (trans, b')) and 1.92 ppm (s, 3H, CH₃-C (c')). (b) DMAE in D₂O with DMAE signals at 3.89 ppm (t, 2H, CH₂-O (d')), 3.11 ppm (t, 2H, CH₂-N (e')) and 2.77 ppm (s, 6H, (CH₃)₂-N (f')).^{1,5}

Monitoring of DMAEMA Hydrolysis with ¹H-NMR Stacked Plot

Figure S3. ¹H NMR stacked plot (500 MHz) following DMAEMA hydrolysis in D₂O at 40 $^{\circ}$ C and pH of 10.1. Spectra were acquired every 80 s (1.33 min).

DMAEMA Hydrolysis Rate Coefficients

Table S1. Hydrolysis rate coefficients (k_{obs}) of DMAEMA estimated from various ¹ H NMR peak	S
a-f (see Figure 1) at pH 10.1.	

Temperature	Peak	$k_{ m obs} imes 10^{-4}$
(°C)		(s ⁻¹)
40	a	0.83
	b	-
	с	-
	d	0.83
	e	
	f	_
50	a	2.2
	b	2.1
	c	_
	d	2.1
	e	_
	f	2.1
60	a	4.9
	b	4.8
	c	4.8
	d	-
	e	-
	f	-
70	a	9.9
	b	9.7
	с	9.6
	d	-
	e	-
	f	10.0

Variation of pH with Ternary DMAEMA-MAA-DMAE Mixtures

To understand the influence of degradation products (MAA and DMAE) on solution pH, equimolar amounts of MAA and DMAE with DMAEMA in H₂O were prepared and analyzed in the absence of reaction at room temperature. The measurements were conducted using an Orion[™] ROSS Ultra[™] Refillable pH/ATC Triode[™] Combination Electrode, consisting of a glass electrode and reference electrode contained in a single probe and calibrated with buffer solutions of pH 1.68, 4.01, 7.00, 10.01 and 12.46. The electrode was dipped into the solutions and held until a stable pH measurement was achieved, with the probe rinsed with deionized water and soaked in the storage solution when not in use.

Figure S4. The variation of solution pH with composition of ternary DMAEMA-MAA-DMAE mixtures in H₂O at room temperature, adding MAA and DMAE in equimolar quantities while keeping total content at 10 wt%, where mole fraction of DMAEMA (f_{DMAEMA}) is given by $f_{\text{mol DM} \neq \text{EM} \neq \text{M}}$

 $f_{\text{DMAEMA}} = \frac{1}{\text{mol DM} \neq \text{mol DM} = \text{mol D$

Best Fit Arrhenius Parameters of DMAEMA Hydrolysis

Figure S5. Best fit Arrhenius parameters (a) ln A and (b) E_A values (points, see Table 2) determined for DMAEMA hydrolysis, plotted as a function of (10.1 - pH). Lines show quadratic fits summarized by Eq. 7-9.

Free Radical Polymerization

Poly(DMAEMA) ¹H-NMR Spectra in Acidic Water

Figure S6. ¹H NMR (700 MHz) spectra of poly(DMAEMA) after aqueous polymerization of 5

wt% DMAEMA with 0.4 wt% V-50 to full conversion in D₂O at 60 °C for 1 h at: (a) pH = 1.0 and (b) pH = 4.0

Calculations of DMAEMA Hydrolysis and Copolymerization Rates

The copolymerization calculation procedures for polymerizations conducted under conditions at which hydrolysis also occurs are given below (A.I. = integration area):

 $C_{\text{DMAEMA}_{\text{initial}}} = C_{\text{DMAEMA}}|_{t} + C_{\text{DMAE}}|_{t} + C_{\text{P-D}}|_{t}$ $C_{\text{DMAEMA}_{\text{initial}}} = (A.I.)_{\text{DMAEMA}}|_{t=0} + \frac{(A.I.)_{\text{DMAE}}|_{t=0}}{2} + C_{\text{P-D}}|_{t=0}$ $C_{\text{DMAE}}|_{t} = C_{\text{MAA}}|_{t} + C_{\text{P-MAA}}|_{t}$ $C_{\text{DMAE}}|_{t} = \frac{(A.I.)_{\text{DMAE}}|_{t}}{2}$ Mole fraction of MAA in copolymer = $\frac{C_{\text{P-MAA}}|_{t}}{C_{\text{P-MAA}}|_{t} + C_{\text{P-D}}|_{t}}$ Mole fraction of DMAEMA in copolymer = $\frac{C_{\text{P-D}}|_{t}}{C_{\text{P-MAA}}|_{t} + C_{\text{P-D}}|_{t}}$ Fraction of DMAEMA lost to hydrolysis = $\frac{C_{\text{DMAE}}|_{t}}{C_{\text{DMAE}}|_{t} + C_{\text{P-D}}|_{t}}$ Fraction of DMAEMA converted to copolymer = $\frac{C_{\text{P-D}}|_{t}}{C_{\text{DMAE}}|_{t} + C_{\text{P-D}}|_{t}}$ Fraction of DMAEMA converted to copolymer = $\frac{C_{\text{P-D}}|_{t}}{C_{\text{DMAE}}|_{t} + C_{\text{P-D}}|_{t}}$ Fraction of DMAEMA converted to copolymer = $\frac{C_{\text{P-D}}|_{t}}{C_{\text{DMAE}}|_{t} + C_{\text{P-D}}|_{t}}$

- Fraction of DMAEMA converted to copolymer

 $Effective \ DMAEMA \ conversion = \frac{Fraction \ of \ DMAEMA \ converted \ to \ copolymer}{1 - Fraction \ of \ DMAEMA \ lost \ to \ hydrolysis}$

$$MAA \ conversion = \frac{C_{P-MAA}|_{t}}{C_{DMAE}|_{t}}$$

$$Degree \ of \ hydrolysis = \frac{C_{DMAE}|_{t}}{C_{DMAE}|_{t}} \times 100$$

where C = concentration, P - D = DMAEMA units in copolymer, P - MAA = MAA units in copolymer

Plots of Polymerization Behaviour at Various pH, Temperature, and Initiator Levels 60 °C, 0.4 wt% V-50, pH 8.0 – 10.1

Figure S7. Polymerization of DMAEMA in water at 60 °C with initial $w_{DMAEMA,0} = 0.05$ and $w_{V-50} = 0.004$ to form poly(DMAEMA-co-MAA) at pH 10.1 (orange squares), pH 9.0 (gray triangles) and pH 8.0 (blue circles): (a) Fractional conversion profiles of DMAEMA incorporated into polymer; (b) Degree of DMAEMA hydrolysis during polymerization; (c) Fractional MAA conversion profiles; (d) Mole fraction of MAA in the copolymer.

Figure S8. Polymerization of DMAEMA in water at 50 °C with initial $w_{DMAEMA,0} = 0.05$ and $w_{V-50} = 0.001$ to form poly(DMAEMA-co-MAA) at pH 10.1 (orange squares), pH 9.0 (gray triangles) and pH 8.0 (blue circles): (a) Fractional conversion profiles of DMAEMA incorporated into polymer; (b) Degree of DMAEMA hydrolysis during polymerization; (c) Fractional MAA conversion profiles; (d) Mole fraction of MAA in the copolymer.

Figure S9. Polymerization of DMAEMA in water at 50 °C with initial $w_{\text{DMAEMA},0} = 0.05$ and $w_{V-50} = 0.004$ to form poly(DMAEMA-co-MAA) at pH 10.1 (orange squares), pH 9.0 (gray triangles) and pH 8.0 (blue circles): (a) Fractional conversion profiles of DMAEMA incorporated into polymer; (b) Degree of DMAEMA hydrolysis during polymerization; (c) Fractional MAA conversion profiles; (d) Mole fraction of MAA in the copolymer.

Figure S10. Molar mass distributions of poly(DMAEMA-co-MAA) formed from DMAEMA by radical polymerization in aqueous solutions: $w_{\text{DMAEMA,0}} = 0.05$ (60 °C, $w_{V-50} = 0.004$ (gray); 60 °C, $w_{V-50} = 0.001$ (red dashes); 50 °C, $w_{V-50} = 0.004$ (black); 50 °C, $w_{V-50} = 0.001$ (orange)) at (**a**) pH = 8.0 (**b**) pH = 10.1

References

P. van de Wetering, N. J. Zuidam, M. J. Van Steenbergen, O. A. G. J. Van Der Houwen, W. J.
 M. Underberg and W. E. Hennink, *Macromolecules*, 1998, **31**, 8063–8068.

2. S. Beuermann, M. Buback, P. Hesse and I. Lacík, *Macromolecules* 2006, **39**, 184–193.

3. I. Lacík, L. Učňová, S. Kukučková, M. Buback, P. Hesse and S. Beuermann, *Macromolecules*, 2009, **42**, 7753–7761.

4. H. Kattner, P. Drawe and M. Buback, *Macromolecules*, 2017, 50, 1386–1393.

5. P. Zheng, X. Su, C. Fei, X. Shi, H. Yin and Y. Feng, *J. Polym. Sci. B: Polym. Phys.*, 2018, **56**, 914–923.