Supporting information

Exploiting the network architecture of thiol-ene photo-crosslinked poly(εcaprolactone) towards tailorable materials for light-based 3D-printing

Astrid Quaak, Quinten Thijssen and Sandra Van Vlierberghe

Chemical characterization via ¹H-NMR spectroscopy

1. Determination of the molar mass for E-PCL precursors, via ¹H-NMR spectroscopy

Table S1. The molar mass (M_n) is represented for each E-PCL precursor, obtained through ¹H-NMR spectroscopy. The molar mass was calculated based on the H_e (next to the urethane bonds) to PCL (repeating unit) ratio, as listed

	Integration H _e next to urethane (3.78 ppm)	Integration PCL (4.1 ppm)	Number of repeating units	Molar mass (g.mol ^{.1})
E-PCL(2)	4	139.09	67	8000
E-PCL(3)	6	136.04	68	7900
E-PCL(4)	8	132.57	66	7700

in the table.

2. <u>Determination of the alkene content and degree of substitution for E-PCL precursors, via ¹H-NMR</u> <u>spectroscopy with dimethyl terephthalate (DMT) as internal standard</u>

	Molar mass	E-PCL mass	DMT mass	Integration	Integration	Alkene content	Degree of
	(g.mol⁻¹)	(mg)	(mg)	at 5.8 ppm	at 5.2 ppm	(mol.g ⁻¹)	substitution (%)
E-PCL(2)	8000	10.4	9.8	11.95	22.93	2.26*10-4	91
E-PCL(3)	7900	10.4	10.1	19.65	36.98	3.78*10-4	99
E-PCL(4)	7700	10.92	10.11	26.82	50.11	4.89*10-4	94

Table S2. The alkene content and degree of substitution values are represented, for each E-PCL precursor, obtained through ¹H-NMR spectroscopy with DMT as an internal standard.

3. Demonstrating successful synthesis of the E-PCL precursors

Figure S1. ¹H-NMR spectrum displaying the conversion of the H_e protons from ε -caprolactone monomers (4.21 ppm) into those of the synthesized PCL polymer (4.06 ppm).

Figure S2. ¹H-NMR spectrum displaying the conversion of H_e protons next to a hydroxyl group (3.64 ppm) into those next to a urethane bond (3.78 ppm).

Optimization of photo-crosslinkable E-PCL resins for DLP printing

Figure S3. Viscosity measurements in function of temperature for E-PCL(2)-4SH, E-PCL(3)-4SH and E-PCL(4)-4SH photo-crosslinkable resins in NMP, with a concentration of 40, 50 and 50 w/w%, respectively.

Stability tests on photo-crosslinkable E-PCL resins to determine shelf life

Table S3. Stability tests performed on E-PCL(2)-4SH, E-PCL(3)-4SH and E-PCL(4)-4SH photo-crosslinkable resins in NMP, with a concentration of 40, 50 and 50 w/w%, respectively. The resins were stored under argon, in the dark and at different temperatures (i.e., 4° C, 20° C and 40° C) in parallel. During 7 days, the alkene content was determined for each resin, through ¹H-NMR spectroscopy with DMT as internal standard.

	Day	Stored at 4°C (mol.g ⁻¹)	Stored at 20°C (mol.g ⁻¹)	Stored at 40°C (mol.g ⁻¹)
	Start	2.26*10-4	2.26*10-4	2.26*10-4
	1	2.28*10-4	2.27*10 ⁻⁴	2.26*10 ⁻⁴
E-PCL(2)-4SH	3	2.27*10-4	2.25*10-4	2.26*10-4
	5	2.24*10-4	2.25*10-4	2.24*10-4
	7	2.21*10-4	2.21*10-4	2.20*10-4
E-PCL(3)-4SH	Start	3.78*10-4	3.78*10-4	3.78*10-4
	1	3.80*10-4	3.77*10-4	3.75*10-4
	3	3.81*10-4	3.74*10-4	3.75*10-4
	5	3.73*10-4	3.72*10-4	3.71*10-4
	7	3.71*10-4	3.72*10-4	3.70*10-4
E-PCL(4)-4SH	Start	4.89*10-4	4.89*10-4	4.89*10-4
	1	4.80*10-4	4.79*10-4	4.77*10-4
	3	4.49*10-4	4.39*10-4	4.31*10-4
	5	4.37*10-4	4.29*10-4	4.25*10-4
	7	4.25*10-4	4.08*10-4	3.98*10-4