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Materials

Grubbs' 2" generation catalyst, 2,3-Dihydrofuran, cis-5-Norbornene-exo-2,3-dicarboxylic anhydride,
a-Bromoisobutyryl bromide (BIBB), ethylene glycol vinyl ether, 4-(vinyloxy)butan-1-ol , ethyl vinyl
ether , methylamine solution , aniline and stannous octoate were purchased from Sigma Aldrich. All
other reagents and solvents were purchased from Acros organics or Sigma Aldrich and used without
further purification. Monomers M1, M2 and 2-(vinyloxy)ethyl 2-bromo-2-methylpropanoate were
synthesized according to the previously reported procedure.’? Deuterated solvents (CDCls) was
purchased from Cambridge Isotope Laboratories Inc.

Characterization

All NMR spectra (*H, *3C, DOSY) were recorded on a Bruker Avance Ill 400 MHz NMR spectrometer (*H
NMR 400 MHz, *C-NMR 101 MHz). Relative molecular weights and molecular weight distributions
were measured by size exclusion chromatography (SEC) with DMF and CHCls as eluents. The DMF GPC
is an automated Agilent 1260 Infinity Il HPLC system equipped with one Agilent PolarGel M guard
column (particle size = 8 um) and two Agilent PolarGel M columns (ID = 7.5 mm, L = 300 mm, particle
size = 8 um). Signals were recorded an interferometric refractometer (Agilent 1260 series). Samples
were run using DMF + 0.05M LiBr as the eluent at 60 °C and a flow rate of 1.0 mL/min. Molecular
weights were determined based on narrow molecular weight poly(ethylene oxide) calibration
standards. The CHCI; GPC is an automated Agilent Technologies 1260 Infinity Il GPC system (pump,
autosample, Rl detector) with two MZ-Gel SDplus Linear columns (5 um, 300x8.0mm), a MZ-Gel
SDplus Linear precolumn (5 um, 50x8.0mm) at a flow rate of 1mL/min for samples measured in CHCls.
The samples were run at 40 °C and the chloroform GPC was calibrated with PSS-polymer polystyrene
standards.



Monomers and Macro-Chain Transfer Agents (m-CTAs) Used
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Synthesis of Macro-Chain Transfer Agents (m-CTAs)

Synthesis of Polystyrene (PS) Vinyl Ether Macro-Chain Transfer Agent (m-CTA1)
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A mixture of 2-(vinyloxy)ethyl 2-bromo-2-methylpropanoate (initiator) (1 equiv. , 91.05 mg ) and
styrene ( 50 equiv., 2.0 g ) were taken in Schlenk flask and degassed carefully for three times . CuBr (1
equiv., 55.09 mg) was weighed inside the glove box in another Schlenk flask and taken out from the
glove box. A stock solution of N,N,N’,N”,N”-pentamethyldiethylenetriamine (PMDETA) (199.68 mg )
in toluene (0.3 mL) was also prepared and degassed as before. Then the mixture of the initiator P14
and styrene were transferred into the Schlenk flask containing CuBr followed by the addition of 0.1
mL of PMDTA (1 equiv., 66.56 mg) stock solution in toluene. The resulting solution was stirred at 90
OC for 24 h. The reaction mixture was then cooled at room temperature, diluted with DCM, and passed
through basic alumina to remove the copper salt. Then the solvent was removed under reduced
pressure and the concentrated solution obtained was precipitated from cold methanol to give the m-
CTA1 as white solid. (Mn (sec, ches) =3.12kDa, D = 1.16)

Synthesis of Polycaprolactone (PCL) Vinyl Ether Macro-Chain Transfer Agent (m-CTA2)
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Synthesized according to the reported procedure.? 4-(vinyloxy)butan-1-ol (1 equiv. , 593.66 mg ),
Sn(oct); (0.1 equiv. , 207.04 mg) , and caprolactone monomer (12 equiv., 7 g ) were taken in a
Schlenk flask and dissolved in 30 mL of anhydrous toluene. Then the whole reaction mixture was
stirred at 110 °C for 24 h under argon atmosphere. Upon completion of the reaction, the solvent was
removed under vacuum and the concentrated solution obtained was precipitated from cold hexane
to give the m-CTA2 as white solid. (Mn (sec, chcis) =2.21 kDa, B = 1.22)



Synthesis of Polylactide (PLA) Vinyl Ether Macro-Chain Transfer Agent (m-CTA3)
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2-(vinyloxy)ethan-1-ol (1 equiv., 183.40 mg ), Sn(oct), (0.1 equiv. , 84.32 mg) , and L-lactide
monomer (10 equiv., 3 g ) were taken in a Schlenk flask containing 15 mL of anhydrous toluene.
Then the whole solution was stirred at 110 °C for 3 h under argon atmosphere. After that reaction
the mixture was cooled down and the solvent was removed under vacuum. The concentrated
solution obtained was then precipitated from cold methanol to give the m-CTA3 as white powder.
(Mn(SEC, DMF) =1.93 kDa, b= 118)

Synthesis of Polyethylene glycol-Polycaprolactone (PEG-PCL) Vinyl Ether Macro-Chain
Transfer Agent (m-CTA4)
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PEGak-monomethyl ether (1 equiv., 2.0 g), Sn(oct)2 (0.1 equiv. , 40.51 mg) , and caprolactone
monomer (14 equiv., 1.6 g ) were taken in a Schlenk flask containing 10 mL of anhydrous toluene.
Then the whole solution was stirred at 110 °C for 24 h under argon atmosphere. After that reaction
the mixture was cooled down and the solvent was removed under vacuum. The concentrated
solution obtained was then precipitated from cold diethyl ether to give the X1 as white powder.
(Mn(SEC, DMF) =4.11 kDa, b= 123)
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NaH (60% dispersion in mineral oil, 36 mg, and 3 equiv.) was dissolved in dry THF (4 mL) taken in a
25 mL round bottom flask and was cooled to 0°C. Then, polymer X1 (600 mg, 1 equiv.) in dry THF
(5mL) was added slowly to it, and the reaction mixture was stirred at room temperature for 2h. Then
2-(vinyloxy)ethyl 4-methylbenzenesulfonate ( (364 mg, 10 equiv.) was dissolved in 3 mL of dry THF
and added to the flask and stirred for overnight at room temperature. Upon completion of the
reaction, the solution was concentrated in vacuum and precipitated in cold diethyl ether (10-fold
excess) for three times. Then the precipitate was filtered and dried in vacuum to give the macro-
chain transfer agent m-CTA4 as white solid. (Mn (sec, omr) =4.16 kDa, D = 1.23)



Procedure for one-pot synthesis of Polystyrene (PS)-ROMP di-block
copolymers using Polystyrene (PS) Vinyl Ether Macro-Chain Transfer

Agent (m-CTA1)
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A Schlenk flask containing m-CTA1 (10-80 equiv.) was closed, evacuated, and backfilled with argon
three times, then dry degassed DCM (0.5 mL) was added to it. G2 catalyst (1.0 mg,1 equiv.) was also
dissolved in dry degassed DCM (0.5 mL) and was quickly added to the polystyrene vinyl ether macro-
chain transfer agent solution ensuring efficient mixing. To this solution, a mixture of monomer (M1
or M2) and 2,3 DHF (1:2 ratio) which were also dissolved in dry degassed DCM (0.2 M with respect
to DHF) was added quickly and the combined solution was stirred at room temperature until the
desired monomer conversion was reached. The polymerization was then quenched by adding ethyl
vinyl ether and solvent was removed under reduced pressure. The concentrated solution obtained
was precipitated from cold methanol to give the ROMP-Polystyrene di-block copolymers P1 - P6.

Table S1: One-pot Catalytic Living Copolymerization Data of Monomers M1 and M2
with 2,3-DHF using macro-chain transfer agents m-CTA1

Entry | Polymer | Monomer G2:CTA:M:DHF | Mono M, M, M, b
(M) mer (Non | (catalytic, | (obs.)
(M) | catalyti | monomer | (CHCls;
conve | c)(kDa) | /m-CTA) kDa)
rsion (theo;
(%)? kDa)
1 P1 M1 1:10:600:1200 >90 151.32 16.43 16.89 1.33
2 P2 M1 1:15:600:1200 >91 | 151.32 12.09 12.78 | 1.34
3 P3 M1 1:30:600:1200 >92 | 151.32 7.64 8.46 1.33
4b P4 M1 1:40:600:1200 >90 | 151.32 6.43 6.87 1.27
5 P5 M1 1:80:6000:12000 | >94 | 1482.1 20.51 21.48 | 1.35
6 P6 M2 1:40:800:16000 >92 | 200.81 8.82 9.31 1.31

3 conversion of monomer (M1-M2) determined by *H NMR spectroscopy

®Polymer P4 was not quenched with vinyl ether.




Procedure for one-pot synthesis of Polystyrene (PS)-ROMP-ROMP tri-
block terpolymer
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G2 (1 equiv., 0.5 mg) and polymer P4 (20 equiv., 76.0 mg) were dissolved in dry degassed DCM (1
mL) in a Schlenk flask under argon. To this solution, a mixture of monomer M2 (800 equiv., 112.71
mg) and 2,3 DHF (1600 equiv., 66.01 mg) which were also dissolved in dry degassed DCM (4.71 mL,
0.20 M with respect to the 2,3-DHF) was transferred quickly and the combined solution was stirred
at room temperature for overnight. The polymerization was then quenched by adding ethyl vinyl
ether (after > 93 % conversion of M2) and solvent was removed under reduced pressure. The
concentrated solution obtained was precipitated from cold methanol to give the tri-block copolymer
P7. (Mn (s, chaiz) =33.47 kDa, D = 1.39)



Procedure for one-pot synthesis of Polycaprolactone (PCL)-ROMP di-
block copolymers using Polycaprolactone (PCL) Vinyl Ether Macro-
Chain Transfer Agent (m-CTA2)
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A Schlenk flask containing m-CTA2 (10 or 80 equiv.) was closed, evacuated and backfilled with argon
three times, then dry degassed DCM (0.5 mL) was added to it. G2 catalyst (1.0 mg,1 equiv.) was also
dissolved in dry degassed DCM (0.5 mL) and was quickly added to the polycaprolactone vinyl ether

macro- chain transfer agent solution ensuring efficient mixing. To this solution, a mixture of
monomer (M1 or M2) and 2,3 DHF (1:2 ratio) which were also dissolved in dry degassed DCM (0.2 M
with respect to DHF) was added quickly and the combined solution was stirred at room temperature

until the desired monomer conversion was reached. The polymerization was then quenched by
adding ethyl vinyl ether and solvent was removed under reduced pressure. The concentrated

solution obtained was precipitated from cold methanol to give the ROMP-Polycaprolactone di-block
copolymers P8 and P9.

Table S2: One-pot Catalytic Living Copolymerization Data of Monomers M1 and M2
with 2,3-DHF using macro-chain transfer agents m-CTA1

Entry | Polymer | Monomer G2:CTA:M:DHF Mono M, M, M, b
(M) mer (Non | (catalytic, | (obs.)
(M) | catalyti | monomer | (CHCls;
conve | c)(kDa) | /m-CTA) kDa)
rsion (theo;
(%)? kDa)
1 P8 M1 1:10:500:1000 >95 13.93 1481 | 1.34
2 P9 M1 1:80:3000:6000 >93 10.81 11.36 | 1.30




Procedure for one-pot synthesis of Polylactide (PLA)-ROMP di-block
copolymer using Polylactide (PLA) Vinyl Ether Macro-Chain Transfer
Agent (m-CTA3)
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A Schlenk flask containing m-CTA3 (50 equiv.) was closed, evacuated, and backfilled with argon three
times, then dry degassed DCM (0.5 mL) was added to it. G2 catalyst (1.0 mg,1 equiv.) was also
dissolved in dry degassed DCM (0.5 mL) and was quickly added to the polylactide vinyl ether macro-
chain transfer agent solution ensuring efficient mixing. To this solution, a mixture of monomer M1
(2000 equiv.) and 2,3 DHF (4000 equiv.) which were also dissolved in dry degassed DCM (0.2 M with
respect to DHF) was added quickly and the combined solution was stirred at room temperature for
overnight. The polymerization (> 95 % monomer conversion) was then quenched by adding ethyl
vinyl ether and solvent was removed under reduced pressure. The concentrated solution obtained
was precipitated from cold methanol to give the ROMP-Polylactide di-block copolymers P10. (M (sec,
DMF) =21.86 kDa, b= 132)

%



Procedure for one-pot synthesis of Polyethylene glycol (PEG)-
Polycaprolactone (PCL)-ROMP tri-block terpolymer using Polyethylene
glycol (PEG)-Polycaprolactone (PCL) Vinyl Ether Macro-Chain Transfer
Agent (m-CTA4)
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A Schlenk flask containing m-CTA4 (50 equiv.) was closed, evacuated and backfilled with argon three
times, then dry degassed DCM (0.5 mL) was added to it. G2 catalyst (1.0 mg,1 equiv.) was also
dissolved in dry degassed DCM (0.5 mL) and was quickly added to the polyethylene glycol-
polycaprolactone vinyl ether macro-chain transfer agent solution ensuring efficient mixing. To this
solution, a mixture of monomer M1 (5000 equiv.) and 2,3 DHF (10000 equiv.) which were also
dissolved in dry degassed DCM (0.2 M with respect to DHF) was added quickly and the combined
solution was stirred at room temperature for overnight. The polymerization (> 94 % monomer
conversion) was then quenched by adding ethyl vinyl ether and solvent was removed under reduced
pressure. The concentrated solution obtained was precipitated from cold methanol to give the
Polyethylene glycol-Polycaprolactone-ROMP tri-block terpolymer P11. (Mn (sec, omr) =27.68 kDa, D =
1.35)

10
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Fig S1: Refractive index (CHCIs) traces of m-CTA1 and di-block copolymer P1

—m-CTA1, M =3.12kDa, B =1.16
—P2,M =12.78 kDa, b = 1.34
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Fig S2: Refractive index (CHCIs) traces of m-CTA1 and PS-ROMP di-block copolymer
P2
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Fig S3: Refractive index (CHCIs) traces of m-CTA1 and PS-ROMP di-block copolymer
P3
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—P4,M=6.87kDa, b =1.27
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Fig S4: Refractive index (CHCIs) traces of m-CTA1 and PS-ROMP di-block copolymer
P4

——m-CTA1,M =3.12kDa, b = 1.16
—P5,M =21.48 kDa, b =1.35
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Fig S5: Refractive index (CHCIs) traces of m-CTA1 and PS-ROMP di-block copolymer
P5



——m-CTA1, M =3.12kDa, b = 1.16
—P6,M =9.31kDa, b =1.31
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Fig S6: Refractive index (CHCIs) traces of m-CTA1 and PS-ROMP di-block copolymer
P6

——m-CTA1, M =3.12kDa, b = 1.16
——P4,M=6.87kDa,b =1.27
——P7,M =33.47 kDa, b = 1.39
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Fig S7: Refractive index (CHCIs) traces of m-CTA1, PS-ROMP di-block copolymer P4
and PS-ROMP-ROMP tri-block terpolymer P7
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—P8,M =14.81kDa, b = 1.34
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Fig S8: Refractive index (CHCIs) traces of m-CTA2 and PCL-ROMP di-block copolymer
P8

—m-CTA2, M =2.21kDa, b =1.22
—P9,M =11.36 kDa, b = 1.30

16 18 20 22
Retention Time (min)

Fig S9: Refractive index (CHCIs) traces of m-CTA2 and PCL-ROMP di-block copolymer
P9
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—P10,M =21.86 kDa, b = 1.32
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Fig S10: Refractive index (DMF) traces of m-CTA3 and PLA-ROMP di-block copolymer

P10

——m-CTA4, M =4.16 kDa, b = 1.23
—P11,M =2768 kDa, b = 1.35
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Fig S11: Refractive index (DMF) traces of m-CTA4 and PEG-PLA-ROMP tri-block

terpolymer P11

15



Degradation Studies

Procedure
One drop of 1M HCl was added to a 6 mg/mL solution of diblock copolymer P5 in dichloromethane ,

and the resulting mixture was stirred at room temperature. SEC (CHCIs) analysis of the crude mixture
shows the complete degradation of the ROMP block within 30 min whereas the polystyrene block

did not degrade under these conditions.

m-CTA1
P5
P5 + HCI, 30 min

I
18

Retention Time (min)

Fig S12: Refractive index (CHCIs) trace of degradation of PS-ROMP di-block copolymer
P5
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Fig S13: DOSY NMR spectrum (400 MHz, CDCls) of PS-ROMP di-block copolymer P1

17



%10
1%x10°

(00 /3w0) 1y -
(=]

L1%1
1%x10
L1x10®

MO gow
25 15 05 -05

3.5

45
Chemical Shift (ppm)

" 758--88--55"

8.5

95

10.5

Fig S14: DOSY NMR spectrum (400 MHz, CDCls) of PS-ROMP di-block copolymer P2
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Fig S15: DOSY NMR spectrum (400 MHz, CDCls) of PS-ROMP di-block copolymer P3
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Fig $33: 13C NMR spectrum (CDCls, 101 MHz) of polymer P1
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Fig S41: 'H NMR spectrum (400 MHz, CDCls) of polymer P7
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Fig S42: 3C NMR spectrum (CDCls, 101 MHz) of polymer P7
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Fig S48: 'H NMR spectrum (400 MHz, CDCls) of polymer P11
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Fig S49: 13C NMR spectrum (CDCls, 101 MHz) of polymer P11
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