Novel Covalent Adaptable Networks (CANs) of Ethylene/1-Octene Copolymers (EOCs) Made by Free-Radical Processing:
 Comparison of Structure-Property Relationships of EOC CANs with EOC Thermosets

Supporting Information

Boran Chen, ${ }^{\text {a, }, \#}$ Logan M. Fenimore,,${ }^{\text {a,\# }}$ Yixuan Chen, ${ }^{\text {a }}$ Stephanie Barbon, ${ }^{\text {b }}$ Hayley Brown, ${ }^{\text {c }}$ Evelyn Auyeung, ${ }^{\text {c }}$ Colin Li Pi Shan, ${ }^{\text {c }}$ John M. Torkelson ${ }^{\text {a,d,* }}$
${ }^{\text {a}}$ Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
${ }^{\text {b }}$ The Dow Chemical Company, Midland, MI 48674 USA
${ }^{c}$ The Dow Chemical Company, Lake Jackson, TX 77566 USA
${ }^{\mathrm{d}}$ Department of Materials Science and Engineering, Northwestern University,
Evanston, IL 60208 USA
\#co-first authors *corresponding author: j-torkelson@ northwestern.edu

Synthesis of BiTEMPS Methacrylate (BTMA) Cross-Linker for Reprocessing Studies Via Extrusion.

For reprocessing studies via extrusion, BTMA was synthesized using a modified method. In a nitrogenfilled glove box, TMPM ($80.0 \mathrm{~g}, 355 \mathrm{mmol}$) was dissolved in 440 mL of pre-dried, degassed tetrahydrofuran (THF). Triethylamine ($247.4 \mathrm{~mL}, 1775 \mathrm{mmol}$) was added, and the stirring solution was cooled to $-35^{\circ} \mathrm{C}$ in an acetone/dry ice bath. $\mathrm{S}_{2} \mathrm{Cl}_{2}(14.2 \mathrm{~mL}, 178 \mathrm{mmol})$ was dissolved in 40 mL of THF and added dropwise to the cooled solution via syringe pump over 15 min . A yellow suspension formed; this suspension was warmed to room temperature and left to stir for 30 min . After, the suspension was poured into 3 L of DI water and stirred overnight. The resulting precipitate was dissolved in diethyl ether, and two liquid-liquid extractions were performed with brine. The organic layers were combined, dried over MgSO_{4}, and filtered. Solvent was removed under vacuum to give an oil which was mixed with 500 mL of methanol and cooled at $-20^{\circ} \mathrm{C}$ overnight. After, the recrystallized white solid was dried under vacuum overnight to give BTMA ($52.9 \mathrm{~g}, 55 \%$).

Figure S1. Possible chemistries during the preparation of EOC CANs, including single cross-links, crosslinks of a run of multiple BTMA units, dangling BTMA units or runs, intra-chain loops, and permanent crosslinks.

Figure S2. Normalized shear storage modulus (G^{\prime}) as a function of curing time at $180^{\circ} \mathrm{C}$ obtained by small-amplitude oscillatory shear experiment with 1.0 Hz frequency and 0.1% strain (normalization is done relative to final G^{\prime} value during curing).

Figure S3. FTIR spectra of neat EOC-38-1, $1^{\text {st }}$-molded EOCX-38-1, and $1^{\text {st }}$-molded EOC CAN-38-1 before and after washing in boiling xylene via Soxhlet extraction. The carbonyl stretch at $\sim 1720 \mathrm{~cm}^{-1}$ indicates that BTMA was grafted to EOC backbones during reactive processing.

Figure S4. (a) FTIR spectra of blends of EOC-30-1 with varying amounts of BTMA and washed EOC CAN-30-1. (b) FTIR calibration curve: intensity of BTMA C=O ($1720 \mathrm{~cm}^{-1}$) normalized by C-H (1470 cm^{-1}) as a function of BTMA wt \% in blends of EOC-30-1 with varying amounts of BTMA.

Figure S5. (a) FTIR spectra of blends of EOC-38-1 with varying amounts of BTMA and washed EOC CAN-38-1. (b) FTIR calibration curve: intensity of BTMA C=O $\left(1720 \mathrm{~cm}^{-1}\right)$ normalized by C-H (1470 cm^{-1}) as a function of BTMA wt $\%$ in blends of EOC-38-1 with varying amounts of BTMA.

Figure S6. (a) FTIR spectra of blends of EOC-45-1 with varying amounts of BTMA and washed EOC CAN-45-1. (b) FTIR calibration curve: intensity of BTMA $\mathrm{C}=\mathrm{O}\left(1720 \mathrm{~cm}^{-1}\right)$ normalized by $\mathrm{C}-\mathrm{H}(1470$ cm^{-1}) as a function of BTMA wt\% in blends of EOC-45-1 with varying amounts of BTMA.

Figure S7. (a) FTIR spectra of blends of EOC-38-5 with varying amounts of BTMA and washed EOC CAN-38-5. (b) FTIR calibration curve: intensity of BTMA C=O $\left(1720 \mathrm{~cm}^{-1}\right)$ normalized by C-H (1470 cm^{-1}) as a function of BTMA wt\% in blends of EOC-38-5 with varying amounts of BTMA.

Figure S8. Tensile storage modulus (E^{\prime}) as a function of temperature and molding of (a) EOC CAN-31-30 with $5 \mathrm{wt} \%$ BTMA and $1 \mathrm{wt} \%$ DCP and (b) EOC CAN-31-30 with $10 \mathrm{wt} \%$ BTMA and $2 \mathrm{wt} \%$ DCP alongside neat EOC-31-30.

Figure S9. Storage modulus (E^{\prime}) at $100^{\circ} \mathrm{C}$ as a function of frequency for EOCXs (filled symbols) and EOC CANs (open symbols) made from (a) EOC-30-1, (b) EOC-38-1, (c) EOC-45-1, and (d) EOC-38-5.

Figure S10. Tensile storage modulus (E^{\prime}) as a function of temperature for neat PEC as well as its failed cross-linking attempt (PEC CAN $1^{\text {st }}$ Mold).

Figure S11. Room-temperature stress-elongation curves of EOCXs and EOC CANs made from (a) EOC-30-1, (b) EOC-38-1, (c) EOC-45-1, and (d) EOC-38-5 with their corresponding neat counterparts.

Figure S12. Strain as a function of time for EOC CAN-45-1 at $50^{\circ} \mathrm{C}$ under a tensile load of 0.33 MPa .

Figure S13. Strain as a function of time for EOC-45-1 and EOC CAN-45-1 at $90^{\circ} \mathrm{C}$ under a shear load of 3.0 kPa .

EOC CAN-30-1 EOC CAN-38-1 EOC CAN-45-1 EOC CAN-38-5

Figure S14. Reprocessing of $1^{\text {st }}$-molded EOC CANs (top) by cutting and compression-molding ($180^{\circ} \mathrm{C}$, 8 MPa, 5 min) pieces into healed films as the $2^{\text {nd }}$-mold samples (bottom). Another reprocessing step to prepare the $3^{\text {rd }}$-molded samples was performed in a similar manner.

Figure S15. Tan δ as a function of temperature and molding of EOC CANs made from (a) EOC-30-1, (b) EOC-38-1, (c) EOC-45-1, and (d) EOC-38-5 with their corresponding EOCXs and neat counterparts.

Figure S16. Extrusion of EOC CAN-38-1 at $200^{\circ} \mathrm{C}$. Note the surface defects from melt fracture.

Table S1. Thermal properties by DSC of neat EOCs, EOCXs, EOC CANs, and PEC as a function of molding step.

Material	Sample	Mold	$\boldsymbol{T}_{\text {m,peak }}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{T}_{\text {m,endpoint }}\left({ }^{\circ} \mathbf{C}\right)$	Crystallinity (\%)
EOC-30-1	Neat	--	81	98	23
	EOCX-30-1	--	78	95	20
	EOC CAN-30-1	$1{ }^{\text {st }}$	78	95	21
		$2^{\text {nd }}$	78	94	21
		$3{ }^{\text {rd }}$	78	94	20
EOC-38-1	Neat	--	63	85	18
	EOCX-38-1	--	64	80	14
	EOC CAN-38-1	$1^{\text {st }}$	63	83	17
		$2^{\text {nd }}$	62	82	16
		$3{ }^{\text {rd }}$	64	82	17
EOC-45-1	Neat	--	50	67	11
	EOCX-45-1	--	41	64	7
	EOC CAN-45-1	$1{ }^{\text {st }}$	39	62	7
		$2^{\text {nd }}$	40	63	8
		$3{ }^{\text {rd }}$	40	62	8
EOC-38-5	Neat	--	63	85	19
	EOCX-38-5	--	60	81	17
	EOC CAN-38-5	$1^{\text {st }}$	60	85	17
		$2^{\text {nd }}$	61	82	18
		$3{ }^{\text {rd }}$	61	81	17
EOC-31-30	Neat	--	84	96	15
PEC	Neat	--	142	154	14

Table S2. Times in which $G^{\prime}(t) / G^{\prime}{ }_{0}=0.95\left(t_{95}\right)$ during SAOS curing tests for EOC CANs and EOCXs.

Sample	$\boldsymbol{t}_{\mathbf{9 5}}(\mathbf{m i n})$
EOCX-30-1	23
EOCX-38-1	23
EOCX-45-1	27
EOCX-38-5	24
EOC CAN-30-1	27
EOC CAN-38-1	29
EOC CAN-45-1	30
EOC CAN-38-5	24

Table S3. E^{\prime} as a function of temperature and molding step for neat EOCs, EOCXs, and EOC CANs.

Material	Sample	Mold	$E^{\prime}(\mathbf{M P a})^{\mathbf{a}}$			
			$100{ }^{\circ} \mathrm{C}$	$120{ }^{\circ} \mathrm{C}$	$140{ }^{\circ} \mathrm{C}$	$160{ }^{\circ} \mathrm{C}$
EOC-30-1	Neat	--	0.13	0.0033	0.0011	0.0009
	EOCX-30-1	--	1.4 ± 0.3	1.4 ± 0.2	1.3 ± 0.2	1.54 ± 0.01
	EOC CAN-30-1	$1^{\text {st }}$	1.10 ± 0.09	0.99 ± 0.07	0.90 ± 0.04	0.79 ± 0.04
		$2^{\text {nd }}$	1.14 ± 0.06	1.05 ± 0.03	1.01 ± 0.02	0.95 ± 0.01
		$3{ }^{\text {rd }}$	1.14 ± 0.04	1.03 ± 0.03	0.96 ± 0.05	0.86 ± 0.09
EOC-38-1	Neat	--	0.0092	0.0015	0.0016	0.0014
	EOCX-38-1	--	1.3 ± 0.2	1.3 ± 0.2	1.2 ± 0.1	1.2 ± 0.1
	EOC CAN-38-1	$1^{\text {st }}$	0.76 ± 0.08	0.65 ± 0.04	0.56 ± 0.02	0.48 ± 0.03
		$2^{\text {nd }}$	0.91 ± 0.04	0.76 ± 0.01	0.66 ± 0.02	0.58 ± 0.06
		$3{ }^{\text {rd }}$	0.84 ± 0.04	0.74 ± 0.02	0.65 ± 0.05	0.59 ± 0.05
EOC-45-1	Neat	--	0.0013	0.0013	0.0010	0.0010
	EOCX-45-1	--	0.90	0.81	0.80	0.80
	EOC CAN-45-1	$1^{\text {st }}$	0.69 ± 0.03	0.58 ± 0.03	0.52 ± 0.04	0.44 ± 0.05
		$2^{\text {nd }}$	0.75 ± 0.01	0.63 ± 0.02	0.56 ± 0.02	0.52 ± 0.01
		$3{ }^{\text {rd }}$	0.72 ± 0.07	0.62 ± 0.09	0.57 ± 0.05	0.56 ± 0.01
EOC-38-5	Neat	--	0.0011	0.0011	0.0010	0.0007
	EOCX-38-5	--	0.42 ± 0.03	0.39 ± 0.01	0.37 ± 0.02	0.36 ± 0.04
	EOC CAN-38-5	$1^{\text {st }}$	0.37 ± 0.04	0.29 ± 0.03	0.23 ± 0.03	0.15 ± 0.04
		$2^{\text {nd }}$	0.42 ± 0.04	0.32 ± 0.02	0.23 ± 0.02	0.17 ± 0.03
		$3{ }^{\text {rd }}$	0.45 ± 0.03	0.34 ± 0.03	0.25 ± 0.03	0.18 ± 0.05

${ }^{\text {a }}$ Determined by DMA. Error bars represent \pm one standard deviation of three or four measurements.

Table S4. Characteristic relaxation times, stretching exponents, average relaxation times, and KWW decay function fits as a function of temperature for EOC CANs.

EOC CAN	$\boldsymbol{T}\left({ }^{\circ} \mathbf{C}\right)$	$\boldsymbol{\tau}^{*}(\mathbf{s})$	$\boldsymbol{\beta}$	$\langle\boldsymbol{\tau}\rangle(\mathbf{s})$	$\mathbf{R}^{\mathbf{2}}$
EOC CAN-30-1	100	208	0.26	3820	0.98
	120	123	0.32	869	0.98
	140	59	0.42	170	0.98
	160	26	0.49	55	0.99
	100	234	0.28	2960	0.97
	120	132	0.34	716	0.98
	140	63	0.45	160	0.98
	160	27	0.52	49	0.99
EOC CAN-45-1	100	33	0.23	1330	0.98
	120	29	0.30	280	0.98
	140	17	0.39	61	0.98
	160	8	0.54	14	0.99
	80	34	0.25	730	0.98
	100	30	0.34	160	0.97
	120	14	0.40	48	0.98
	140	7.6	0.55	13	0.98
	160	<1	--	--	

Table S5. Room-temperature tensile properties of $1^{\text {st }}$, , $2^{\text {nd }}-$, and $3^{\text {rd }}$-molded EOC CANs.

Sample	Mold	Young's modulus $(\mathbf{M P a})^{\mathbf{a}}$	Tensile strength $(\mathbf{M P a})^{\mathbf{a}}$	Elongation at break $(\%)^{\mathbf{a}}$
EOC CAN-30-1	$1^{\text {st }}$	21.7 ± 1.1	13.4 ± 2.1	650 ± 70
	$2^{\text {nd }}$	18.6 ± 3.5	14.4 ± 0.7	660 ± 30
	$3^{\text {rd }}$	18.7 ± 3.3	16.7 ± 3.1	670 ± 30
	$1^{\text {st }}$	7.6 ± 3.5	14.9 ± 1.9	700 ± 110
	$2^{\text {nd }}$	8.5 ± 0.8	12.1 ± 4.0	670 ± 60
	$3^{\text {rd }}$	8.3 ± 0.3	13.0 ± 0.6	710 ± 50
EOC CAN-45-1	$1^{\text {st }}$	3.0 ± 0.1	5.1 ± 1.2	830 ± 120
	$2^{\text {nd }}$	3.0 ± 0.6	5.0 ± 1.3	790 ± 80
	$3^{\text {rd }}$	2.6 ± 0.3	5.4 ± 1.2	850 ± 130
EOC CAN-38-5	$1^{\text {st }}$	7.8 ± 0.9	8.7 ± 1.2	760 ± 80
	$2^{\text {nd }}$	8.4 ± 0.8	7.9 ± 2.4	800 ± 190
	$3^{\text {rd }}$	8.2 ± 1.0	10.8 ± 2.2	910 ± 220

${ }^{\text {a }}$ Determined by tensile testing. Error bars represent \pm one standard deviation of three measurements.

