Electronic Supplementary Information (ESI)

Cyclopolymerization: A versatile approach to multicyclic

polystyrene and polystyrene-containing multicyclic copolymer

Yamato Ebii, ^a Yoshinobu Mato, ^b Feng Li, ^b Kenji Tajima, ^b Takuya Yamamoto, ^b Takuya Isono *^b and Toshifumi Satoh *^b

^{*a*}Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan

^bDivision of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan

E-mail: isono.t@eng.hokudai.ac.jp satoh@eng.hokudai.ac.jp

Table of Contents

S1. Materials	3
S2. Instruments	4
S3. Synthetic details and additional dates	6
S4. References	48

S1. Materials

Grubbs' catalyst 3^{rd} generation (G3) was prepared according to previously reported method.¹ *N,N*-Dimethyl-4-aminopyridine (DMAP; Tokyo Chemical Industry Co., Ltd. (TCI), >99.0%), 1-ethyl-3-(3-(dimethylamino)-propyl)carbodiimide hydrochloride (EDC; TCI, >98.0%), ethyl vinyl ether (TCI, >98.0%), (±)-*exo*-5-norbornenecarboxylic acid (*exo*-NB-COOH; Aldrich, 97%), *rac*-lactide (LA; TCI, >98.0%), 1,8-diazabicyclo[5.4.0]-7-undecene (DBU; TCI, >98.0%), 1-butanol (Wako Pure Chemical Industry Co. Ltd., >99.0%), CH₂Cl₂ (Junsei Chemical Co., Ltd., >99.0%), methanol (Aldrich, >99.8, dry methanol (Kanto Chemical Co., Inc., >99.5%), *sec*-butyllithium (*sec*-BuLi; Kanto Chemical Co., Inc., 1.23 mol L⁻¹ in cyclohexane/*n*-hexane (v/v = 24/1)), and dry CH₂Cl₂ (Kanto Chemical Co., Inc., >99.5%, water content, <0.001%) were used as received. HO–PS–OH samples were obtained from Polymer Source and used as received. Styrene (TCI, >99%), propylene oxide (PO; TCI, >99.0%), and cyclohexane (Kanto Chemical Co., Inc., >99.5%) were purified by distillation over CaH₂ under reduced pressure. Linier polystyrenes synthesized by anionic polymerization with *sec*-BuLi as an initiator were obtained from Shodex and used as received.

S2. Instruments

The polymerization experiments were carried out in an MBRAUN stainless steel glovebox equipped with a gas purification system (molecular sieves and copper catalyst) in a dry argon atmosphere (H₂O, O₂<0.1 ppm). The moisture and oxygen contents in the glovebox were monitored by an MB-MO-SE 1 moisture sensor and an MB-OX-SE 1 oxygen sensor, respectively. The ¹H (400 MHz) spectra were recorded using a JEOL JNM-ECS400 instrument at room temperature in CDCl₃. The size exclusion chromatography (SEC) was performed at 40 °C in THF (flow rate, 1.0 mL min⁻¹) using a Shodex GPC-101 gel permeation chromatography system (Shodex DU-2130 dual pump, Shodex RI-71-S reflective index detector, and Shodex ERC-3125SN degasser) equipped with a Shodex KF-G guard column (4.6 mm × 10 mm; particle size, 8 µm) and two Shodex KF-804L columns (linear, 8 mm × 300 mm) or Jasco high-performance liquid chromatography system (PU-3 980 Intelligent HPLC Pump, CO-2065 Plus Intelligent Column Oven, RI-2031 Plus Intelligent RI Detector, and DG-2080-53 Degasser) equipped with a Shodex KF-G guard column (4.6 mm × 10 mm; particle size, 8 μm) and two Shodex KF-804L columns (linear; particle size 7 μm; 8.0 mm × 300 mm; exclusion limit, 4×10^4) or Jasco high-performance liquid chromatography system (PU-4180 HPLC pump, AS-4550) auto sampler, and CO-4060 column oven) equipped with a Shodex K-800D guard column (8.0 mm × 100 mm; particle size, 10 µm), two Shodex columns (K-806L and K-804L; linear, 8.0 mm × 100 mm; particle size, 10µm) (which was only used for the measurement of NB-PS_{52k}-NB and mc-PS_{52k}). The absolute number-averaged molecular weight ($M_{n,MALS}$) and polydispersity (D_{MALS}) of the samples were determined by SEC with multiangle light scattering detection (SEC-MALS-Visco) in CHCl3 (flow rate, 1.0 mL min⁻¹) at 40 °C using a Jasco high-performance liquid chromatography system (PU-4180 HPLC pump, AS-4550 auto sampler, and CO-4060 column oven) equipped with a Shodex K-800D guard column (8.0 mm \times 100 mm; particle size, 10 μ m), two Shodex columns (K-806L and K-804L; linear, 8.0 mm \times 100 mm; particle size, 10 μ m), a DAWN 8 multiangle laser light scattering detector (Wyatt Technology), a Viscostar viscosity detector (Wyatt Technology), and an RI-501

refractive index detector (Shodex). The preparative GPC was performed at room temperature in CHCl₃ (flow rate, 10.0 mL min⁻¹) using LaboACE LC-7080 liquid chromatography system (Japan Analytical Industry Co. Ltd.) equipped with a P-LA80 pump, a RI-700LA RI detector, JAIGEL-HR-P guard column (8 mm × 40 mm; Japan Analytical Industry Co. Ltd.), JAIGEL-2HR column (linear, 20.0 mm × 600 mm; exclusion limit, 5.0×10^3), JAIGEL-2.5HR column (linear, 20.0 mm × 600 mm; exclusion limit, 7.0×10^4).

Differential scanning calorimetry (DSC) measurement

The DSC experiments were performed using a Hitachi DSC 7000X under a nitrogen atmosphere. The samples of *mc*-PS were heated to 150 °C, cooled to 30 °C, and heated again to 150 °C at the heating and cooling rate of 10 °C min⁻¹ and 20 °C min⁻¹, respectively. The samples of PS-containing multicyclic copolymers were heated to 150 °C, cooled to -10 °C, and heated again to 150 °C at the heating and cooling rate of 10 °C min⁻¹ and 20 °C min⁻¹, respectively.

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)

The MALDI-TOF MS measurement of the obtained products was performed using an Bruker Daltonics (Germany) Ultraflex MALDI-TOF/TOF mass spectrometer equipped with a 355-nm Nd:YAG laser. PS samples were prepared by depositing a mixture of the polymer, matrix, and cationic agent in THF onto a sample plate. A 10:10:1 (v/v) ratio of [PS (1 g L⁻¹ in THF)]/[*trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-propenylidene]malononitrile (DCTB; 20 g L⁻¹ in THF)]/[silver trifluoroacetate (2.0 g L⁻¹ in THF)] was used.

S3. Synthetic details and additional dates

Synthesis of mc-PS

Scheme S1. Synthesis of mc-PS

A typical procedure for the ring-opening metathesis polymerization (ROMP) is as follows (Method B): In a three-necked flask, a stock solution of Grubbs third-generation catalyst (G3; 2.54 mL, 20.3 µmol as a 8.0 mol L⁻¹ in dry CH₂Cl₂, 1.0 eq.) was quickly added to a stirred mixture of α,ω dinorbornenyl-functionalized linear polystyrene (NB–PS_{1k}–NB; $M_{n,NMR} = 1,640,100$ mg, 61.0 µmol, 3.0 eq.) in dry CH₂Cl₂ (122 mL) under an argon atmosphere. After 10 min, an excess amount of ethyl vinyl ether was added to the reacting mixture to terminate the ROMP. The crude product was purified by preparative GPC to remove the catalyst residue, affording *mc*-PS_{1k} as a brown solid. Yield: 82.0 mg (82.0%)

 $M_{n,SEC} = 3,870, D = 1.28, M_{n,MALS} = 5,300, D_{MALS} = 1.22$, average number of cyclic units = 3.2

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.23–6.12 (m, *aromatic*), 5.79–4.78 (br, alkenyl of poly(norbornene) backbone), 4.31–2.35 (br, alkenyl of poly(norbornene) backbone), 2.44–1.69 (m, – CH₂CHPh–), 1.69–0.99 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CH₂OCO–)

Figure S1. SEC traces of NB–PS_{1k}–NB and *mc*-PS_{1k} obtained from run 1 in Table 2 before and after purification by preparative GPC (refractive index (RI) detection; eluent, THF; flow rate, 1.0 mL min⁻¹).

Synthesis of α , ω -end norbornenyl-functionalized PS (NB–PS_{1k}–NB)

Scheme S2. Synthesis of NB-PS-NB

A typical procedure for the condensation reaction is as follows (Method A): In a round-bottom flask, HO–PS_{1k}–OH ($M_{n,NMR} = 1,100, 2.00$ g, 1.82 mmol), *exo*-NB–COOH (1.02 g, 7.38 mmol), EDC (2.11 g, 11.0 mmol) and DMAP (1.33 mg, 10.9 mmol) were dissolved in CH₂Cl₂ (25.0 mL), and the mixture was stirred at r.t. for 96 h. The polymer crude was purified by silica gel column chromatography (CH₂Cl₂/Methanol = 19/1 (v/v), $R_f = 0.29$) to give NB–PS_{1k}–NB as a white solid. Note that higher molecular weight NB–PS_x–PS (x = 6k, 12k, 13k, and 52k) were purified by the reprecipitation from the CH₂Cl₂ solution into methanol.

Yield: 1.58 g (79.0%)

 $M_{n,NMR} = 1,640, M_{n,SEC} = 1,220, D = 1.55$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.40–6.17 (m, *aromatic*), 6.18–6.00 (m, 4H, –CH=CH– in norbornene ring), 3.93–3.60 (m, 4H, –CH₂CH₂OCO–), 3.14–2.91 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring), 2.53–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.69–1.13 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₂OCO–, *endo*-CH– of –CH–CH₂– CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Figure S2. ¹H NMR spectra of HO–PS_{1k}–OH (upper) and NB–PS_{1k}–NB (lower) in CDCl₃.

Synthesis of NB-PS_{6k}-NB

Method A was used for the reaction of HO–PS_{6k}–OH ($M_{n,NMR}$ = 6,000, 2.50 g, 417 µmol) with *exo*-NB-COOH (231 mg, 1.67 mmol), DMAP (485 mg, 2.53 mmol), and EDC (485 mg, 2.53 mmol) in CH₂Cl₂ (25.0 mL) for 91 h to give NB–PS_{6k}–NB as a white solid. Yield: 2.45 g (98.0%)

 $M_{n,NMR} = 6,000, M_{n,SEC} = 5,800, D = 1.09, M_{n,MALS} = 6,470, D_{MALS} = 1.04$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.38–6.17 (m, *aromatic*), 6.17–6.01 (m, 4H, –CH=CH– in norbornene ring), 3.93–3.62 (m, 4H, –CH₂CH₂OCO–), 2.95–2.78 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring), 2.44–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.69–1.13 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₂OCO–, *endo*-CH– of –CH–CH₂– CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Figure S3. ¹H NMR spectra of HO–PS_{6k}–OH (upper) and NB–PS_{6k}–NB (lower) in CDCl₃.

Synthesis of NB-PS_{12k}-NB

Method A was used for the reaction of HO–PS_{12k}–OH ($M_{n,NMR}$ = 12,000, 2.50 g, 208 µmol) with *exo*-NB-COOH (111 mg, 803 µmol), DMAP (148 mg, 1.21 mol), and EDC (232 mg, 1.21 mol) in CH₂Cl₂ (25.0 mL) for 72 h to give NB–PS_{12k}–NB as a white solid. Yield: 1.99 g (79.6%)

 $M_{n,NMR} = 11,600, M_{n,SEC} = 11,500, D = 1.07, M_{n,MALS} = 12,300, D_{MALS} = 1.05$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.38–6.19 (m, *aromatic*), 6.19–5.96 (m, 4H, –CH=CH– in norbornene ring), 3.93–3.62 (m, 4H, –CH₂CH₂OCO–), 2.97–2.72 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring), 2.44–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring), 2.44–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.69–1.13 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CH₂CH₂OCO–, *endo*-CH– of –CH–CH₂– CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Figure S4. ¹H NMR spectra of HO–PS_{12k}–OH (upper) and NB–PS_{12k}–NB (lower) in CDCl₃.

Synthesis of NB-PS_{13k}-NB

Method A was used for the reaction of HO–PS_{13k}–OH ($M_{n,NMR} = 11,600, 2.50$ g, 216 µmol) with *exo*-NB-COOH (136 mg, 984 µmol), DMAP (181 mg, 1.48 mol), and EDC (284 mg, 1.48 mol) in CH₂Cl₂ (25.0 mL) for 72 h to give NB–PS_{13k}–NB as a white solid. Yield: 2.24 g (89.6%)

 $M_{n,NMR} = 12,300, M_{n,SEC} = 12,500, D = 1.22, M_{n,MALS} = 13,400, D_{MALS} = 1.19$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.38–6.25 (m, *aromatic*), 6.20–5.98 (m, 4H, –CH=CH– in norbornene ring), 3.92–3.61 (m, 4H, –CH₂CH₂OCO–), 2.96–2.76 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring), 2.44–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, 2.44–1.69 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.69–1.16 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CH₂CH₂OCO–, *endo*-CH– of –CH–CH₂– CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Figure S5. ¹H NMR spectra of HO–PS_{13k}–OH (upper) and NB–PS_{13k}–NB (lower) in CDCl₃.

Synthesis of NB-PS_{52k}-NB

Method A was used for the reaction of HO–PS_{52k}–OH ($M_{n,NMR} = 55,600, 1.00 \text{ g}, 17.8 \mu \text{mol}$) with *exo*-NB-COOH (15.3 mg, 111 µmol), DMAP (20.3 mg, 166 µmol), and EDC (32.1 mg, 167 µmol) in CH₂Cl₂ (10.0 mL) for 168 h to give NB–PS_{52k}–NB as a white solid. Yield: 837 mg (83.7%)

 $M_{n,NMR} = 55,600, M_{n,SEC} = 54,400, D = 1.06, M_{n,MALS} = 52,100, D_{MALS} = 1.01$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.52–6.15 (m, *aromatic*), 6.15–6.00 (m, 4H, –CH=CH– in norbornene ring), 3.90–3.54 (m, 4H, –CH₂CH₂OCO–), 2.94–2.83 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring), 2.48–1.66 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.66–1.15 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₂OCO–, *endo*-CH– of –CH–CH₂– CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Figure S6. ¹H NMR spectra of HO–PS_{52k}–OH (upper) and NB–PS_{52k}–NB (lower) in CDCl₃.

Figure S7. SEC traces of NB–PS_{1k}–NB and *mc*-PS_{1k} obtained from cyclopolymerization (refractive

index (RI) detection; eluent, THF; flow rate, 1.0 mL min⁻¹).

Figure S8. SEC traces of NB–PS_{6k}–NB and *mc*-PS_{6k} obtained from cyclopolymerization (refractive index (RI) detection; eluent, THF; flow rate, 1.0 mL min⁻¹).

Figure S9. SEC traces of NB–PS_{12k}–NB and *mc*-PS_{12k} obtained from cyclopolymerization (refractive index (RI) detection; eluent, THF; flow rate, 1.0 mL min⁻¹).

Figure S10. ¹H NMR spectra of NB–PS_{6k}–NB (upper) and *mc*-PS_{6k} (run 8 in Table 2, lower) in CDCl₃.

Figure S11. ¹H NMR spectra of NB–PS_{12k}–NB (upper) and *mc*-PS_{12k} (run 11 in Table 2, lower) in CDCl₃.

Figure S12. SEC traces of NB–PS_{52k}–NB and *mc*-PS_{52k} obtained from SEC with higher exclusion limit (refractive index (RI) detection; eluent, THF; flow rate, 1.0 mL min⁻¹).

Gram-Scale Synthesis of mc-PS

Method B was used for the ROMP of NB–PS_{13k}–NB ($M_{n,MALS}$ = 13,400, 1.50 g, 112 µmol) with G3 (4.66 mL, 37.3 µmol as a 8.0 mmol L⁻¹ solution in CH₂Cl₂) in dry CH₂Cl₂ (746 mL) for 1.5 h to give *mc*-PS_{13k} as a brown solid. Yield: 1.39 g (92.7%)

 $M_{n,SEC} = 29,900, D = 1.52, M_{n,MALS} = 51,100, D_{MALS} = 1.41$, average number of cyclic units = 3.8

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.24–6.11 (m, *aromatic*), 5.81–4.78 (br, alkenyl of poly(norbornene) backbone), 3.94–3.36 (br, alkenyl of poly(norbornene) backbone), 2.99–2.72 (br, alkenyl of poly(norbornene) backbone), 2.44–1.67 (m, –CH₂CHPh–), 1.67–0.99 (m, –CH₂CHPh–, – CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂(Ph)–, –CH₃(Ph)–, –CH₃(Ph)–,

Figure S13. SEC traces of NB–PS_{13k}–NB (black) and *mc*-PS_{13k} (red) (RI detection; eluent, THF).

Figure S14. ¹H NMR spectra of NB–PS_{13k}–NB (upper) and *mc*-PS_{13k} (lower) in CDCl₃.

Figure S15. DSC curves of *mc*-PS_{1k} during the second heating (heating rate: $10 \,^{\circ}\text{C min}^{-1}$).

Figure S16. DSC curves of linear PS during the second heating (heating rate: 10 °C min⁻¹).

Figure S17. DSC curves of mc-PS_{6k}, mc-PS_{12k}, and mc-PS_{52k} during the second heating (heating rate: 10 °C min⁻¹).

Synthesis of α, ω-end hydroxy-functionalized PLA-*block*-PS-*block*-PLA (HO–PLA-*b*-PS-*b*-PLA–OH)

Scheme S3. Synthesis of HO–PLA-*b*-PS-*b*-PLA–OH

Typical procedure for the ring-opening polymerization of LA is as follows (method C): In a glovebox, HO–PS_{6k}–OH ($M_{n,NMR} = 6,000, 579 \text{ mg}, 96.5 \mu \text{mol}$) and LA (1.20 g, 8.32 mmol) were dissolved in CH₂Cl₂(10.1 mL). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU; 8.0 μ L, 52 μ mol) was then added to the CH₂Cl₂ solution to initiate the polymerization. After 50 sec, the polymerization was quenched by the addition of excess amount of benzoic acid. The mixture was purified by reprecipitation from CH₂Cl₂ to cold methanol to give HO–PLA-*b*-PS-*b*-PLA–OH as a white solid. Yield: 1.56 g (86.7%)

 $M_{n,NMR} = 16,000, M_{n,SEC} = 21,100, D = 1.04$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.24–6.26 (m, *aromatic*), 5.28–5.08 (m, methine of PLA backbone), 3.88–3.63 (m, 4H, –CH₂CH₂OCO–), 2.77–2.60 (m, –OH), 2.23–1.72 (m, –CH₂CHPh–), 1.72–1.16 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CH₂OCO, CH₃CH₂)₂C(CH₂)O–, (CH₃CH₂)₂C(CH₂)O–).

Synthesis of α, ω-end norbornenyl-functionalized PLA-*block*-PS-*block*-PLA (NB–PLA-*b*-PS-*b*-PLA–NB)

Scheme S4. Synthesis of NB–PLA-*b*-PS-*b*-PLA–NB

Method A was used for the reaction of HO–PLA-*b*-PS-*b*-PLA–OH ($M_{n,NMR} = 16,000, 1.00$ g, 62.5 µmol) with *exo*-NB-COOH (34.5 mg, 249 µmol), DMAP (45.8 mg, 375 µmol), and EDC (485 mg, 375 µmol) in CH₂Cl₂ (10.0 mL) for 81 h to give NB–PLA-*b*-PS-*b*-PLA–NB as a white solid. Yield: 831 mg (83.1%)

 $M_{n,NMR} = 15,900, M_{n,SEC} = 22,700, D = 1.03, M_{n,MALS} = 12,700, D_{MALS} = 1.01$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.24–6.26 (m, *aromatic*), 6.16–6.07 (m, 4H, –CH=CH– in norbornene ring), 5.28–5.08 (m, methine of PLA backbone), 3.88–3.63 (m, 4H, –CH₂CH₂OCO–), 2.96–2.77 (m, 4H, –CH–CH₂–CH–CO– in norbornene ring, –CH–CH–CO– in norbornene ring), 2.23–1.72 (m, –CH₂C*H*Ph–, *endo*-CH– of –CH–CH₂–CH–CHCO– in norbornene ring, *exo*-CH– of –CH– CH₂–CH–CO– in norbornene ring), 1.72–1.16 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₂OCO, CH₃CH₂)₂C(CH₂)O–, (CH₃CH₂)₂C(CH₂)O–, –CH₂CH₂OCO–, *endo*-CH– of –CH– CH₂–CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring).

Scheme S5. Synthesis of *mc*-(PLA-*b*-PS)

Method B was used for the ROMP of NB–PLA-*b*-PS-*b*-PLA–NB ($M_{n,NMR}$ = 15,900, 50.0 mg, 3.14 µmol) with G3 (131 µL, 1.04 µmol as a 8.0 mmol L⁻¹ solution in CH₂Cl₂) in dry CH₂Cl₂ (21.0 mL) for 1.5 h to give *mc*-(PLA-*b*-PS) as a brown solid. Yield: 49.8 mg (99.6%)

 $M_{n,SEC} = 55,200, D = 1.82, M_{n,MALS} = 66,400, D_{MALS} = 1.44, average number of cyclic units = 5.2$ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.24–6.26 (m, *aromatic*), 5.28–5.08 (m, methine of PLA backbone), 4.05–2.52 (br, alkenyl of poly(norbornene), 3.88–3.63 (m, 4H, –CH₂CH₂OCO–), 2.23–1.72 (m, –CH₂CHPh–), 1.72–1.16 (m, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₃(Ph)–, –CH₃(Ph)

run	$[MM]_0/[G3]_0$	[MM] ₀ (mM)	time (min)	$M_{ m n,MALS}{}^b$	Đ ^c	number of cyclc unit ^d	yield (%)
15	3/1	0.150	90	66,400	1.82	5.2	99.6
16	6/1	0.150	300	80,400	1.61	6.3	97.2
17	9/1	0.150	300	112,100	1.59	8.8	94.4

Table S1. Molecular characterization of mc-(PLA-b-PS)^a

^{*a*} Polymerization conditions: temperature, r.t.; atmosphere, Ar; solvent, CH₂Cl₂. ^{*b*} Determined by SEC-MALS-Visco in chloroform. ^{*c*} Determined by SEC in tetrahydrofuran (THF) using PS as the standard. ^{*d*} The average number of cyclic units in the obtained *mc*-(PLA-*b*-PS) was estimated as (M_n of *mc*-(PLA-*b*-PS))/(M_n of NB–PLA-*b*-PS-*b*-PLA–NB).

Figure S18. ¹H NMR spectra of HO–PLA-*b*-PS-*b*-PLA–OH (upper), NB–PLA-*b*-PS-*b*-PLA–NB (middle), and *mc*-(PLA-*b*-PS) (lower) in CDCl₃.

Figure S19. DSC curves during second heating process of NB–PLA-*b*-PS-*b*-PLA–NB (black) and *mc*-(PS-*b*-PLA) (run 15 in **Table S1**, red).

Synthesis of α , ω -end hydroxy-functionalized PLA (HO–PLA_{6k}–OH)

Scheme S6. Synthesis of HO–PLA–OH

Typical procedure for the ring-opeming polymerization of LA is as follows (method C): In a glovebox, 2,2-diethyl-1,3-propanediol (29.8 mg, 226 μ mol) and LA (1.50 g, 10.4 mmol) were dissolved in CH₂Cl₂ (10.4 mL). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU; 15.9 μ L, 104 μ mol) was then added to the CH₂Cl₂ solution to initiate the polymerization. After 4 min, the polymerization was quenched by the addition of excess amount of benzoic acid. The mixture was purified by a preparative GPC give HO–PLA_{6k}–OH as a white solid. Yield: 1.46 g (97.3%)

 $M_{n,NMR} = 6,400, M_{n,SEC} = 12,000, D = 1.07$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 5.29–5.04 (m, methine of PLA backbone), 4.42–4.28 (m, methine of α , ω -chain end lactyl unit), 4.04–3.86 (m, (CH₃CH₂)₂C(CH₂)O–) 2.73–2.63 (m, –OH), 1.79–1.44 (methyl of PLA backbone), 1.35–1.17 (m, (CH₃CH₂)₂C(CH₂)O–), and 0.92–0.75 (m, (CH₃CH₂)₂C(CH₂)O–).

Method C was used for the polymerization of LA (1.50 g, 10.4 mmol) with 2,2-diethyl-1,3propanediol (11.0 mg, 83.1 μ mol) and DBU (15.9 μ L, 104 μ mol) in CH₂Cl₂ (10.4 mL) for 4 min to give HO–PLA_{13k}–OH as a white solid.Yield: 1.25 g (83.3%)

 $M_{n,NMR} = 12,700, M_{n,SEC} = 19,300, D = 1.04$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 5.27–5.04 (m, methine of PLA backbone), 4.41–4.29 (m, methine of α , ω -chain end lactyl unit), 4.01–3.88 (m, (CH₃CH₂)₂C(CH₂)O–) 2.74–2.62 (m, –OH), 1.79–1.44 (methyl of PLA backbone), 1.35–1.17 (m, (CH₃CH₂)₂C(CH₂)O–), and 0.97–0.75 (m, (CH₃CH₂)₂C(CH₂)O–).

Synthesis of α , ω -end norbornenyl-functionalized PLA (NB–PLA_{6k}–NB)

Scheme S7. Synthesis of NB–PLA–NB

Method A was used for the reaction of HO–PLA_{6k}–OH ($M_{n,NMR} = 6,700, 1.00$ g, 149 µmol) with *exo*-NB–COOH (44.3 mg, 321 µmol), DMAP (58.6 mg, 493 µmol), and EDC (94.6 mg, 480 µmol) in CH₂Cl₂ (10.0 mL) for 2 days to give NB–PLA_{6k}–NB as a white solid. Yield: 930 mg (93.0%) $M_{n,NMR} = 6,700, M_{n,SEC} = 12,100, D = 1.08$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 6.15–6.00 (m, 4H, –C*H*=C*H*– in norbornene ring), 5.02-4.49 (m, methine of PLLA backbone), 3.90–3.54 (m, 4H, –CH₂C*H*₂OCO–), 2.94–2.83 (m, 4H, –C*H*–CH₂– CH–CO– in norbornene ring, –C*H*–CH–CO– in norbornene ring), 2.48–1.66 (*endo*-C*H*– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring), 1.66–1.15 (m, –C*H*₂CH₂OCO–, *endo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring, bridge head –C*H*₂– in norbornene ring, methyl of PLA backbone), and 0.92–0.75 (m, (C*H*₃CH₂)₂C(CH₂)O–).

Method A was used for the reaction of HO–PLA_{13k}–OH ($M_{n,NMR}$ = 12,700, 1.00 g, 78.7 µmol) with *exo*-NB–COOH (48.5 mg, 351 µmol), DMAP (59.0 mg, 483 µmol), and EDC (95.1 mg, 496 µmol) in CH₂Cl₂ (10.0 mL) for 2 days to give NB–PLA_{13k}–NB as a white solid. Yield: 911 mg (91.1%)

 $M_{n,NMR} = 13,200, M_{n,SEC} = 19,800, D = 1.03$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 6.15–6.00 (m, 4H, –C*H*=C*H*– in norbornene ring), 5.02-4.49 (m, methine of PLLA backbone), 3.90–3.54 (m, 4H, –CH₂C*H*₂OCO–), 2.94–2.83 (m, 4H, –C*H*–CH₂– CH–CO– in norbornene ring, –C*H*–CH–CO– in norbornene ring), 2.48–1.66 (*endo*-C*H*– of –CH– CH₂–CH–CH–CO– in norbornene ring, *exo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring), 1.66–1.15 (m, –C*H*₂CH₂OCO–, *endo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring, bridge head –C*H*₂– in norbornene ring, methyl of PLA backbone), and 0.92–0.75 (m, (C*H*₃CH₂)₂C(CH₂)O–).

Figure S20. ¹H NMR spectra of HO–PLA_{6k}–OH (upper) and NB–PLA_{6k}–NB (lower) in CDCl₃.

Figure S21. ¹H NMR spectra of HO–PLA_{13k}–OH (upper) and NB–PLA_{13k}–NB (lower) in CDCl₃.

Statistical cyclocopolymerization of NB-PS-NB and NB-PLA-NB

Scheme S8. Synthesis of poly(*c*PS-*st*-*c*PLA)

Method B was used for the ROMP of NB-PS_{6k}-NB ($M_{n.NMR} = 5,700, 50.0 \text{ mg}, 8.77 \mu \text{mol}$) and NB-PLA_{6k}-NB ($M_{n,NMR} = 6,700, 50.0 \text{ mg}, 7.46 \mu \text{mol}$) with G3 (1.01 mL, 8.06 µmol as a 8.0 mmol L⁻¹ solution in CH₂Cl₂) in dry CH₂Cl₂ (129 mL) for 3h to give poly(*c*PS-*st*-*c*PLA) as a brown solid. Yield: 81.7 mg (81.7%)

 $M_{n,SEC} = 15,300, D = 1.34, M_{n,MALS} = 23,800, D_{MALS} = 1.07, average number of cyclic units = 3.8$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.38–6.25 (m, *aromatic*), 5.02-4.49 (m, methine of PLLA backbone), 4.31–2.48 (br, alkenyl of poly(norbornene), 2.44–0.75 (m, –CH₂CHPh–, –CH₂CHPh–, –CH₂CCH₃(Ph)–, –CH₂CCH₃(Ph)–, –CH₂CCH₂OCO–, –CH₂CH₂OCO–, methyl of PLA backbone, (CH₃CH₂)₂C(CH₂)O–).

run	ММ	[PS] ₀ /[PLA] ₀ / [G3] ₀	[PS+PLA] ₀ (mM)	time (min)	$M_{\mathrm{n,MALS}}_{b}$	Đ ^c	number of cyclc unit ^d	yield (%)
18	$NB-PS_{6k}-NB$ $(M_{n,MALS} =$	1/1/1	0.125	120	23,800	1.34	3.8	81.7
19	6,470) and NB–PLA _{6k} – NB	2/2/1	0.125	210	27,000	1.19	4.4	50.4
20	$(M_{n,MALS} = 6,700)$	3/3/1	0.150	120	40,300	1.29	6.5	92.2
21	$NB-PS_{13k}-NB$	1/1/1	0.125	180	45,000	1.54	3.5	61.1
22	(M _{h,MALS} 13,400) and NB–PLA _{13k} – NB	2/2/1	0.150	120	62,700	1.47	4.9	88.2
23	$(M_{n,MALS} = 13,200)$	3/3/1	0.200	300	117,600	1.47	9.2	52.8

Table S2. Molecular characterization of poly(cPS-st-cPLA)^a

^{*a*} Polymerization conditions: temperature, r.t.; atmosphere, Ar; solvent, CH₂Cl₂. ^{*b*} Determined by SEC-MALS-Visco in chloroform. ^{*c*} Determined by SEC in tetrahydrofuran (THF) using PS as the standard. ^{*d*} The average number of cyclic units in the obtained poly(*c*PS-*st*-*c*PLA) was estimated as (M_n of poly(*c*PS-*st*-*c*PLA))/(M_n of NB–PS–NB + NB–PLA–NB).

Figure S22. ¹H NMR spectra of NB–PS_{6k}–NB (upper), NB–PLA_{6k}–NB (middle), and poly(*c*PS-*st*-*c*PLA) (lower) in CDCl₃.

Synthesis of ω -end hydroxy-functionalized PS (PS_{3k}–OH)

Scheme S9. Synthesis of PS-OH

Under Ar atmosphere, cyclohexane (24.0 mL) was placed in a round-bottom flask equipped with a greaseless valve and then heated to 40 °C in an oil bath. *sec*-BuLi (953 μ L, 857 μ mol) was added to the solution. Styrene (2.76 mL, 24.0 mmol) was added to the solution, and the mixture was stirred for 2 h. Propylene oxide (600 μ L, 8.57 mmol) was then added to the solution at 40 °C, and the mixture was stirred for 2 h. Excess dry methanol was added to terminate the polymerization. The product was purified by reprecipitation in methanol to give PS_{3k}–OH as a white solid. Yield: 2.49 g (99.6%)

 $M_{n,NMR} = 2,900, M_{n,SEC} = 3,200, D = 1.10$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.22–6.22 (m, *aromatic*), 3.61–3.16 (s, 1H, –CH₂C*H*(CH₃)OH), 2.44–1.66 (m, –CH₂C*H*Ph–), 1.66–1.21 (m, –CH₂CHPh–, –CH₂CH(CH₃)OH, –CH₂CH(CH₃)OH), 1.14–0.51 (m, –*sec*-butyl).

Scheme S10. Synthesis of PS-NB

Method A was used for the reaction of PS–OH ($M_{n,NMR} = 2,900, 2.30$ g, 793 µmol) with *exo*-NB–COOH (268 mg, 1.94 mmol), DMAP (351 mg, 2.87 mmol), and EDC (559 mg, 2.92 mmol) in CH₂Cl₂ (24 mL) for 4 days to give PS_{3k}–NB as a white solid. Yield: 1.73 g (75.2%)

 $M_{n,NMR} = 3,300, M_{n,SEC} = 3,300, D = 1.04, M_{n,MALS} = 5,100, D_{MALS} = 1.01$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.22–6.19 (m, *aromatic*), 6.19–5.96 (m, 2H, –CH=CH– in norbornene ring), 4.78–4.34 (s, 1H, –CH₂CH(CH₃)O–), 2.97–2.72 (m, 2H, –CH–CH₂–CH–CO– in norbornene ring), 2.44–1.68 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CO– in norbornene ring), 2.44–1.68 (m, –CH₂CHPh–, *endo*-CH– of –CH– CH₂–CH–CO– in norbornene ring, *exo*-CH– of –CH–CH₂–CH–CO– in norbornene ring, bridge head –CH₂– in norbornene ring), 1.68–1.09 (m, –CH₂CHPh–, –CH₂CH(CH₃), –CH₂CH(CH₃), *endo*-CH– of –CH– of –CH–CH₂–CH–CO– in norbornene ring), 1.08–0.51 (m, –*sec*-butyl).

Figure S23. ¹H NMR spectra of PS_{3k}–OH (upper) and PS_{3k}–NB (lower) in CDCl₃.

Synthesis of ω-end norbornenyl-functionalized PLA (PLA_{3k}–OH)

Scheme S11. Synthesis of PLA–OH

Method A was used for the polymerization of LA (1.50 g, 10.4 mmol) with 1-butanol (29.6 mg, 399 μ mol) and DBU (15.9 μ L, 104 μ mol) in CH₂Cl₂(10.4 mL) for 1 min to give PLA_{3k}-OH as a white solid. Yield: 859 mg (69.3%)

 $M_{n,NMR} = 2,700, M_{n,SEC} = 4,700, D = 1.10$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 5.27–5.04 (m, methine of PLA backbone), 4.41–4.29 (m, methine of ω -chain end lactyl unit), 2.74–2.62 (m, –OH), 1.79–1.44 (methyl of PLA backbone), 1.35–1.17 (m, CH₃CH₂CH₂CH₂CH₂O–), 1.35–1.17 (m, CH₃CH₂CH₂CH₂O–), 1.35–1.17 (m, CH₃CH₂CH₂CH₂O–), 1.35–1.17 (m, CH₃CH₂CH₂CH₂O–), and 0.97–0.75 (m, CH₃CH₂CH₂CH₂O–).

Synthesis of ω-end norbornenyl-functionalized PLA (PLA_{3k}–NB)

Scheme S12. Synthesis of PLA–NB

Method A was used for the reaction of PLA_{3k}-OH ($M_{n,NMR}$ = 2,700, 500 mg, 185 µmol) with *exo*-NB-COOH (53.4 mg, 387 µmol), DMAP (68.7 mg, 562 µmol), and EDC (112 mg, 583 µmol) in CH₂Cl₂ (5.0 mL) for 2 days to give PLA_{3k}-NB as a white solid. Yield: 491 mg (98.2%)

 $M_{n,NMR} = 3,000, M_{n,SEC} = 5,300, D = 1.08$

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 6.19–6.08 (m, 2H, –C*H*=C*H*– in norbornene ring), 5.27–5.04 (m, methine of PLA backbone), 4.41–4.29 (m, methine of ω -chain end lactyl unit), 3.19–2.89 (m, 2H, –C*H*–CH₂–CH–CO– in norbornene ring, –C*H*–CH–CO– in norbornene ring), 2.38–1.90 (*endo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring, *exo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring), 1.79–1.44 (–C*H*₂CH₂CH₂OCO–, *endo*-C*H*– of –CH–CH₂–CH–CO– in norbornene ring, bridge head – C*H*₂– in norbornene ring, methyl of PLA backbone), 1.35–1.17 (m, CH₃CH₂CH₂CH₂O–), 1.35–1.17 (m, CH₃CH₂CH₂CH₂O–), and 0.97–0.75 (m, CH₃CH₂CH₂CH₂O–).

Figure S24. ¹H NMR spectra of PLA_{3k}–OH (upper) and PLA_{3k}–NB (lower) in CDCl₃.

Statistical cyclocopolymerization of PS-NB and PLA-NB

Scheme S13. Synthesis of poly(PS-*st*-PLA)

Method B was used for the ROMP of PS_{3k} -NB (50.0 mg, 13.9 µmol) and PLA_{3k} -NB (50.0 mg, 16.7 µmol) with G3 (316 µL, 2.53 µmol as a 8.0 mmol L⁻¹ solution in CH₂Cl₂) in dry CH₂Cl₂ (1.52 mL) for 2.0 h to give poly(PS-*st*-PLA) as a brown solid. Yield: 76.7 mg (76.7%)

 $M_{n,SEC} = 28,200, D = 1.07, M_{n,MALS} = 33,800, D_{MALS} = 1.02$, average number of cyclic units = 10.7

¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.22–6.19 (m, *aromatic*), 5.27–5.04 (m, methine of PLA backbone), 4.78–4.34 (s, 1H, –CH₂CH(CH₃)O–), 4.41–4.29 (m, methine of ω-chain end lactyl unit), 4.32–2.52 (br, alkenyl of poly(norbornene), 2.44–0.51 (m, –CH₂CHPh–, methyl of PLA backbone, – CH₂CHPh–, –CH₂CH(CH₃), –CH₂CH(CH₃), CH₃CH₂CH₂CH₂O–, CH₃CH₂CH₂CH₂O–, *–sec*-butyl, CH₃CH₂CH₂CH₂O–).

Figure S25. ¹H NMR spectra of PS_{3k}–NB (upper), PLA_{3k}–NB (middle), and poly(PS-*st*-PLA) (lower) in CDCl₃.

S4. Reference

1 T. L. Choi and R. H. Grubbs, Angew. Chem. Int. Ed., 2003, 42, 1743–1746.