Supporting Information

Harnessing the photo-acidity of organic dyes for the development of ring-opening polymerization of lactones under visible light

Zhaogang Liu,^a Xun Zhang,^{a,b} Pan Sun,^a Junwei Han^a and Saihu Liao^{*a,c}

^a Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry Fuzhou University

^b Department State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, Lingling Lu, Shanghai, 200032, China

^c State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China, E-mail: shliao@xmu.edu.cn

Table of Contents

Photoreaction setup	.3
Typical procedure for star type block polymer synthesis	.4
Typical procedure for the light "ON"/ "OFF" experiments	.5
Polymerization in the dark or under blue LEDs	.6
Polymerization kinetics of the ring-opening polymerization of ϵ	-
caprolactone driven by dyes as Photoacid	.7
Acetalization reactions under blue Light by using Dye ${f 1}$ a	IS
photocatalyst	.7
The pH change of the solution of Dye ${f 1}$ before and after irradiation.	.8
UV-Vis spectrum of organic dyes	.8

Photoreaction setup

The ROP were conducted in blue or purple photo-reactors (purchased from http://www.geaochem.com/), equipped with a fan for keeping at room temperature and six 1W LEDs beads dispersed inside the photo-reactor. The average power output from the reactor was ~30 mW/cm² as recorded.

Fig. S1. Blue photo-reactors used in this work (λ 450-470 nm).

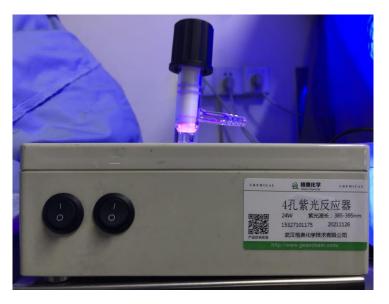
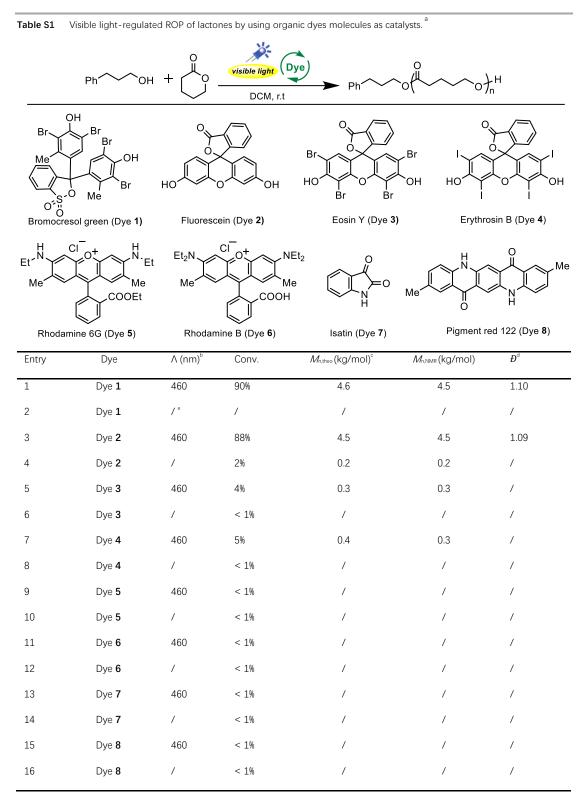
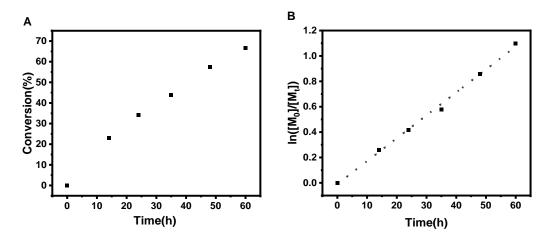


Fig. S2. Purple photo-reactors used in this work (λ 385-395 nm).

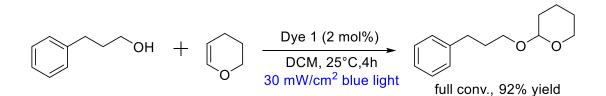

Fig. S3. Green photo-reactors used in this work (λ 490-530 nm).

Typical procedure for star type block polymer synthesis

In a glovebox, ε -caprolactone (ε -CL) (119.7 mg, 1.05 mmol, 35 equiv.) was added via a syringe in toluene ([δ -VL]₀ = 3.0 mol L⁻¹) in a Schlenk tube (after dried by flame for three times), trimethylol propane (4.0 mg, 30 µmol, 1 equiv.) was added in the system and bromocresol green (Dye **1**, 2.1 mg, 3.0 µmol, 0.1 equiv.) was weighed in a Schlenk tube. The solution was stirred and irradiated at 30 mW/cm² blue light reactor at room temperature. After 24 h, a little portion of the system was characterized by NMR and GPC (PCL, Conv. = 96%, M_{n,NMR} = 3.900 kg/mol, D = 1.08), 50 equivalents of δ -VL were added to the ROP system. After another 36 hours, a portion of the ROP mixtures was syringed out and quenched with a few drops of triethylamine for checking the monomer conversion by ¹H NMR. The final product (PCL-*b*-PVL, *M*_{n,NMR} = 8.9 kg/mol, D = 1.10) was obtained after precipitation using DCM as a good solvent and cold methanol as a poor solvent.


Typical procedure for the light "ON"/ "OFF" experiments

In a glovebox, δ -valerolactone (δ -VL) (150.0 mg, 1.5 mmol, 50 equiv.) was added via a syringe in DCM ([δ -VL]₀ = 0.5 mol L⁻¹) in a Schlenk tube (after dried by flame for three times), 3-phenyl-1-propanol (PPA, 4.1 mg, 30 µmol, 1 equiv.) was added in the system and bromocresol green (Dye **1**, 2.1 mg, 3 µmol, 0.1 equiv.) was weighed in a Schlenk tube. The solution was stirred and irradiated with the 30 mW/cm² blue LED reactor at room temperature for 9h. Upon removing the blue light, a little portion of the system was characterized by ¹H NMR for checking the monomer conversion. During the dark period of 14 hours, the monomer conversion was followed by ¹H NMR. Then, the ROP system was placed under the irradiation of blue light again for another 10 hours and the end up monomer conversion was also determined by ¹H NMR.


Polymerization in the dark or under blue LEDs

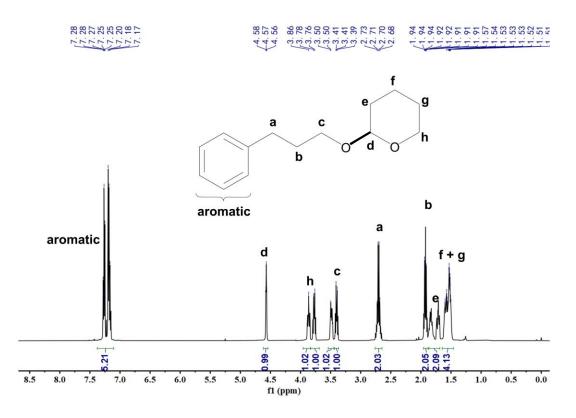
^a $[M]_{o}/[I]_{o}/[Dye]_{o}=[\delta-VL]_{o}/[PPA]_{o}/[Dye]_{o}=50:1:0.1$, light irradiation for 24 hours, $[M]_{o}=3 \text{ mol } L^{-1}$, Conv. and M_{NMR} were determined by ¹H NMR; ^b The wavelength of visible light from LEDs reactor (6 W). ^c $M_{\text{Autreo}} = [M]_{o}/[I]_{o} \times MW_{\text{M}} \times \text{Conv.} + MW_{\text{II}}$, where MW_{M} and MW_{II} represent the molar mass of monomer and the molar mass of initiator, respectively; ^d Determined by GPC using polystyrene standards; ^e In the dark. Polymerization kinetics of the ring-opening polymerization of ϵ -caprolactone driven by dyes as Photoacid.

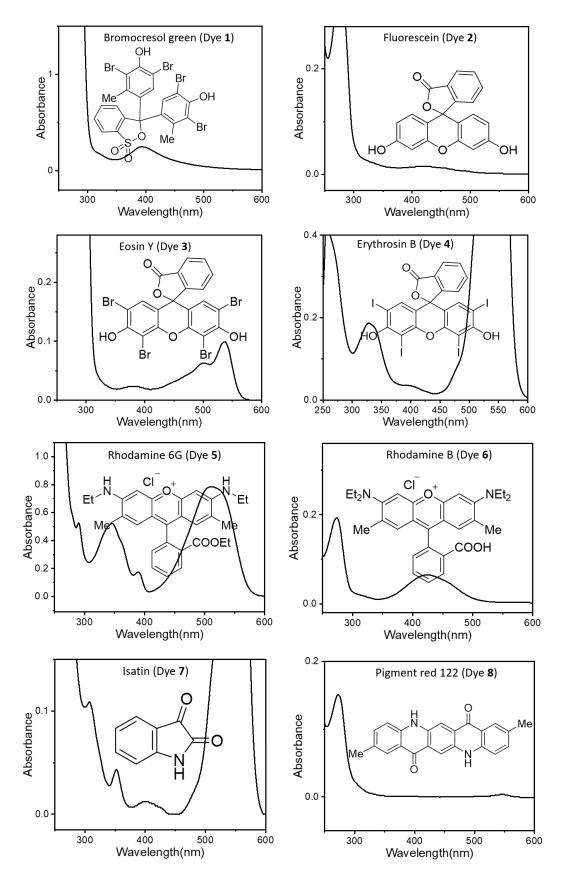
Fig. S4. Kinetic plots for the polymerization of ε -caprolactone with $[\varepsilon$ -CL]₀ / [PPA]₀ / [Dye **1**]₀ at the ratio of 50/1/0.1 at room temperature. (A) Monomer conversion at different times. (B) $ln([M]_0/[M]_t)$ versus time.

Acetalization reactions under blue Light by using Dye 1 as photocatalyst

Furthermore, we tried a small molecule synthesis reaction by using Dye **1** (2 mol%) as the photoacid catalyst under blue light irradiation. The reaction between 3-phenyl-1-propanol and 3,4-dihydropyran reached a full conversion after irradiation for 4 h. The target product, 3-phenylpropyl tetrahydropyranyl ether, was isolated in 92% yield by column and characterized by ¹H NMR (Figure S4). This reaction is a classic acetalization reaction which is a typical type of reaction catalyzed by acid, suggesting acid species

was generated with Dye 1 under irradiation of blue light.





Fig. S5. ¹H NMR analysis for acetalization product.

The pH change of the solution of Dye 1 before and after irradiation

Fig. S6. The pH change of Dye **1** in DCM ([Dye **1**] = 6 mmol L^{-1}) before (left) and after (right) blue light irradiation for 3 hours.

UV-Vis spectrum of organic dyes

Fig. S7. The UV-Vis spectra of organic dyes in DCM (Dye **4** was measured in DMSO, in some cases, ring-opened forms could also contribute to the observed absorption)