SUPPORTING INFORMATION

Synthesis of original polymeric hydroperoxides as innovative oxidizing agents self-cure dental materials[†]

Paul Morandi,¹ Yohann Catel,² Jörg Angermann,² Pascal Fässler,² Jean-Jacques Robin,¹ Sophie Monge,¹*

¹ ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

² Ivoclar Vivadent AG, Schaan FL-9494, Liechtenstein

AUTHOR INFORMATION

Corresponding Author

* Corresponding author: S. Monge (sophie.monge-darcos@umontpellier.fr)

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Synthetic procedures

Determination of the $[T]_{\theta}$ for oligomers synthesis by telomerisation

The amount of 2-mercaptoethanol (2-ME) used as telogen agent (T) was calculated following the equation:

$$[T]_0 = [M]_0 / (C_T \times DP)$$

where $[T]_0$ and $[M]_0$ are the telogen and the monomers concentration at t = 0, respectively, DP is the degree of polymerization calculated depending on the targeted molecular weight and C_T the chain transfer constant who depends on the monomer and the telogen.^{1, 2}

In our case, C_T had the same value for methyl methacrylate (MMA) and (4isopropylbenzoate) 2-ethyl methacrylate (IBEMA), *i.e.* 0.67, considering that C_T has more or less the same value for the polymerization of methacrylate monomers when aliphatic thiols are used as telogen.²⁻⁴

Chain transfer constant: $C_T = 0.67$

Synthesis of poly(methyl methacrylate-st-(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (P(MMA-st-HPPBEMA)) oligomers in three steps

Amounts of reagents needed for the synthesis of P(MMA-st-IBEMA) oligomers by telomerization.

P(MMA_x-st-IBEMA_y)_z

x: molar proportion (in %) of MMA monomer in the statistical oligomer

- y: molar proportion (in %) of IBEMA monomer in the statistical oligomer
- z: targeted molecular weight of the statistical copolymer

Oligomer	MMA (mL)	IBEMA (g)	2-ME (μL)	AIBN (mg)	Toluene (mL)
P(MMA ₅₀ -st-IBEMA ₅₀) ₅₀₀₀	1.43	3.72	106	44	10
P(MMA25-st-IBEMA75)5000	0.58	4.52	106	36	10
P(MMA50-st-IBEMA50)2500	1.43	3.72	213	44	10
P(MMA25-st-IBEMA75)2500	0.58	4.52	213	36	10

MMA: methyl methacrylate; IBEMA: (4-isopropylbenzoate) 2-ethyl methacrylate; 2-ME: 2-mercaptoethanol; AIBN: 2,2'-azobis(2-methylpropionitrile)

Amounts of reagents needed for the synthesis of oxidized P(MMA-st-IBEMA) oligomers by oxidation reaction.

Oligomer	Corresponding P(MMA-st-IBEMA) (g)	MMPP (mg)	DCM/EtOH (mL)
oxidized P(MMA ₅₀ -st-IBEMA ₅₀) ₅₀₀₀	3	325	30
oxidized P(MMA ₂₅ -st-IBEMA ₇₅) ₅₀₀₀	3	325	30
oxidized P(MMA ₅₀ -st-IBEMA ₅₀) ₂₅₀₀	3	649	30
oxidized P(MMA ₂₅ -st-IBEMA ₇₅) ₂₅₀₀	3	649	30

MMPP: magnesium monoperoxyphthalate; DCM/EtOH: dichloromethane/ethanol mixture (2/1, v/v)

Amounts of reagents needed for the synthesis of *P(MMA-st-HPPBEMA)* oligomers by hydroperoxidation reaction.

Oligomer	Corresponding oxidized P(MMA-st-IBEMA) (g)	NHPI (mg)	AIBN (mg)	Acetonitrile (mL)
P(MMA ₅₀ -st-HPPBEMA ₅₀) ₅₀₀₀	2.35	50	60	25
P(MMA25-st-HPPBEMA75)5000	2.35	60	73	25
P(MMA ₅₀ -st-HPPBEMA ₅₀) ₂₅₀₀	2.35	49	60	25
P(MMA25-st-HPPBEMA75)2500	2.35	60	72	25

NHPI: N-hydroxyphthalimide; AIBN: 2,2'-azobis(2-methylpropionitrile)

General procedure for MMA and IBEMA reactivity ratios determination using Jaacks method

Reactivity ratios corresponding to the copolymerization of methyl methacrylate (MMA, M_1) and (4-isopropylbenzoate) 2-ethyl methacrylate (IBEMA, M_2) were determined following Jaacks method.⁵ For such purpose, two free radical polymerization of MMA and IBEMA were carried out, each one with an excess of one monomer. The [Monomer]/[AIBN] molar ratio was equal to 100. The [MMA]/[IBEMA] molar ratio depended on the reactivity ratio determination. The [MMA]/[IBEMA] molar ratio was equal to 4 for r_{MMA} determination, and equal to 0.25 for r_{IBEMA} determination.

Determination of r_{MMA} (excess of MMA):

MMA (1.26 mL, 11.80 mmol), IBEMA (817 mg, 2.96×10^{-3} mmol), and 2,2'-azobis(2-methylpropionitrile) (AIBN) (24 mg, 0.15×10^{-3} mmol) were dissolved in toluene (8 mL) in a Schlenk tube under nitrogen. The mixture was degassed by three freeze-pump-thaw cycles and then heated at 70 °C under nitrogen in a thermostated oil bath. In order to determine the evolution of the conversion of each monomer, samples were taken at specific different times: 5, 15, 30, 60, 90, 120, 180 and 240 minutes.

Determination of *r*_{IBEMA} (excess of IBEMA):

MMA (0.177 mL, 1.66×10^{-3} mmol), IBEMA (1.834 g, 6.64 mmol), and 2,2'-azobis(2-methylpropionitrile) (AIBN) (14 mg, 0.085×10^{-3} mmol) were dissolved in toluene (8 mL) in a Schlenk tube under nitrogen. The mixture was degassed by three freeze-pump-thaw cycles and then heated at 70 °C under nitrogen in a thermostated oil bath. In order to determine the evolution of the conversion of each monomer, samples were taken at specific different times: 5, 15, 30, 60, 90, 120, 180 and 240 minutes.

Using the rate of conversion of each monomer, the curves $f\left(ln\frac{[M2]}{[M2]0}\right) = ln\frac{[M1]}{[M1]0}$ (for r_{MMA} determination) and $f\left(ln\frac{[M1]}{[M1]0}\right) = ln\frac{[M2]}{[M2]0}$ (for r_{IBEMA} determination) were plotted, and the fitting of these curves finally gave the reactivity ratio of each monomer (where M₁ is MMA and M₂ is IBEMA). Indeed, by using an excess of one monomer over the other, the Lewis & Mayo equation $\left(\frac{d[M1]}{d[M2]} = \frac{[M1](r1[M1] + [M2])}{[M2](r2[M2] + [M1])}\right)$ can be simplified by neglecting the [M₁] or [M₂] concentration. The equation then becomes $\frac{d[M1]}{[M1]} = r1\frac{d[M2]}{[M2]}$ and $\frac{d[M2]}{[M2]} = r2\frac{d[M1]}{[M2]0}\frac{d[M2]}{[M2]}$ and $\int_{[M2]0}^{[M2]} \frac{d[M2]}{[M2]0} = r2\int_{[M1]0}^{[M1]} \frac{d[M1]}{[M1]}$ allowed us determining the reactivity ratios, as the equations can be simplified by $r1\left(ln\frac{[M2]}{[M2]0}\right) = ln\frac{[M1]}{[M1]0}$ (Fig. S1) and $r2\left(ln\frac{[M1]}{[M1]0}\right) = ln\frac{[M2]}{[M2]0}$ (Fig. S2).

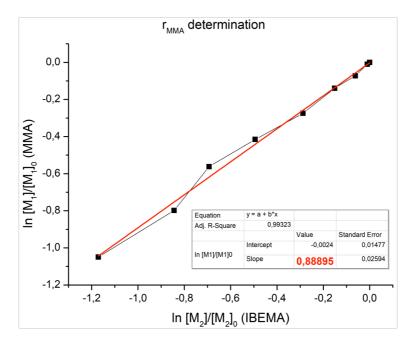


Fig. S1 MMA reactivity ratio determination using Jaacks method: $r_{MMA} x \ln([M_2]/[M_2]_0) = \ln([M_1]/[M_1]_0)$ (M₁ and M₂ are MMA and IBEMA, respectively).

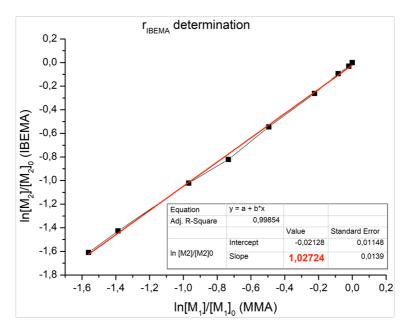


Fig. S2 IBEMA reactivity ratio determination using Jaacks method: $r_{IBEMA} \ge \ln([M_1]/[M_1]_0) = \ln([M_2]/[M_2]_0)$ (M₁ and M₂ are MMA and IBEMA, respectively).

Characterizations of synthesized monomer, model molecules and oligomers

Characterization of the (4-isopropylbenzoate) 2-ethyl methacrylate (IBEMA) monomer

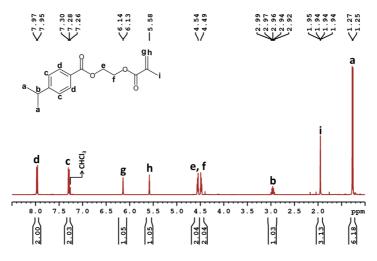


Fig. S3 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for the IBEMA monomer.

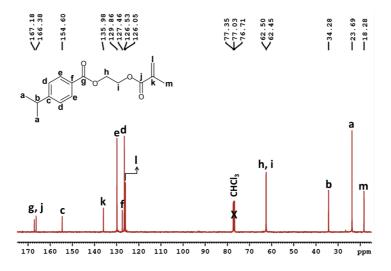


Fig. S4 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for the IBEMA monomer.

Characterization of the poly((4-isopropylbenzoate) 2-ethyl methacrylate) (PIBEMA₂₅₀₀) oligomer ($M_{n targ} = 2500 \text{ g.mol}^{-1}$)

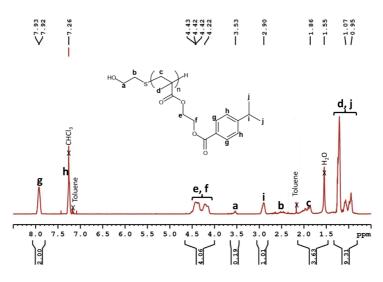


Fig. S5 ¹H NMR (600 MHz, CDCl₃) spectrum, and proton assignments for PIBEMA₂₅₀₀ oligomer.

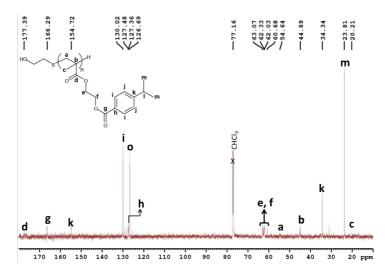


Fig. S6 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for PIBEMA₂₅₀₀ oligomers

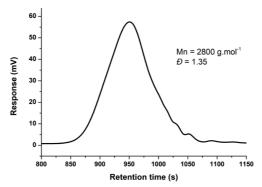


Fig. S7 Size exclusion chromatogram of PIBEMA₂₅₀₀ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) ($P(MMA_{50}$ -st-IBEMA₅₀)₅₀₀₀ oligomer

 $[MMA]/[IBEMA] = 50/50 \pmod{\%} \mod{\%}, M_n \text{ targ} = 5000 \text{ g.mol}^{-1}$

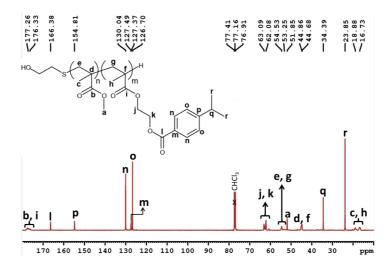


Fig. S8 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₅₀-st-IBEMA₅₀)₅₀₀₀ oligomer.

Characterization of the poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (P(MMA₂₅-st-IBEMA₇₅)₅₀₀₀ oligomer

 $[MMA]/[IBEMA] = 25/75 \pmod{\%} \mod{\%}, M_n \tan = 5000 \text{ g.mol}^{-1}$

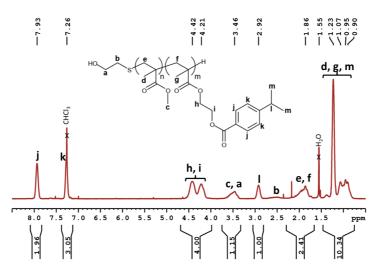


Fig. S9 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for P(MMA₂₅-st-IBEMA₇₅)₅₀₀₀ oligomer.

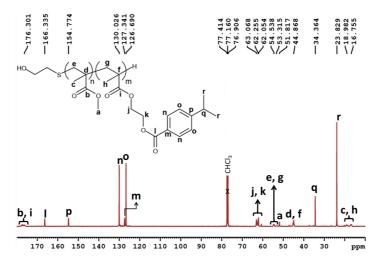


Fig. S10¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₂₅-st-IBEMA₇₅)₅₀₀₀ oligomer.

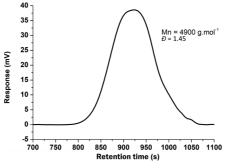
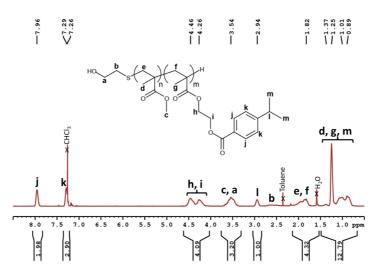



Fig. S11 Size exclusion chromatogram of $P(MMA_{25}-st-IBEMA_{75})_{5000}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) ($P(MMA_{50}$ -st-IBEMA₅₀)₂₅₀₀ oligomer

 $[MMA]/[IBEMA] = 50/50 \pmod{\%} \mod{\%}, M_n \tan 2500 \text{ g.mol}^{-1}$

Fig. S12 ¹H NMR (600 MHz, CDCl₃) spectrum, and proton assignments for P(MMA₅₀-*st*-IBEMA₅₀)₂₅₀₀ oligomer.

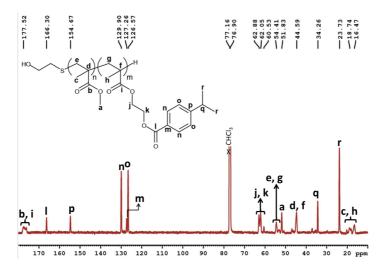


Fig. S13 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₅₀-st-IBEMA₅₀)₂₅₀₀ oligomer.

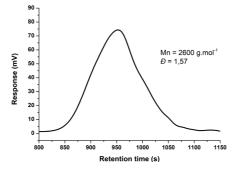


Fig. S14 Size exclusion chromatogram of $P(MMA_{50}-st-IBEMA_{50})_{2500}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (P(MMA₂₅-st-IBEMA₇₅)₂₅₀₀ oligomer

 $[MMA]/[IBEMA] = 25/75 \pmod{\%} \mod{\%}, M_n \tan 2500 \text{ g.mol}^{-1}$



Fig. S15 ¹H NMR (600 MHz, CDCl₃) spectrum, and proton assignments for P(MMA₂₅-st-IBEMA₇₅)₂₅₀₀ oligomer.

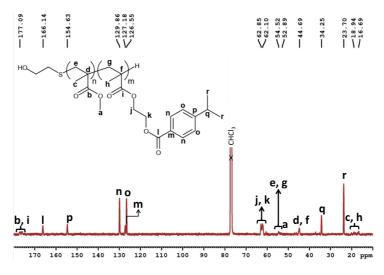


Fig. S16 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₂₅-st-IBEMA₇₅)₂₅₀₀ oligomer.

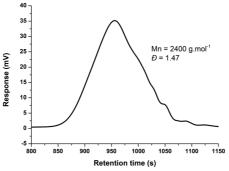


Fig. S17 Size exclusion chromatogram of $P(MMA_{25}-st-IBEMA_{75})_{2500}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of oxidized poly((4-isopropylbenzoate) 2-ethyl methacrylate) (oxidized PIBEMA₂₅₀₀) oligomer (M_n targ = 2500 g.mol⁻¹)

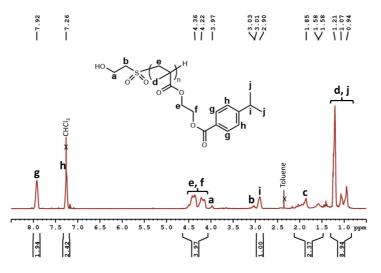
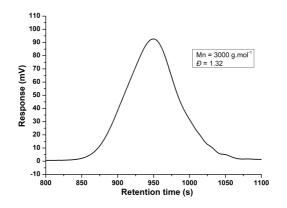
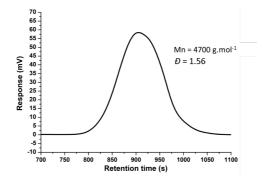
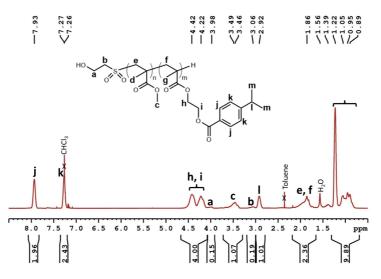


Fig. S18 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for oxidized PIBEMA₂₅₀₀ oligomer.


Fig. S19 Size exclusion chromatogram of oxidized PIBEMA $_{2500}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the oxidized poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (oxidized P(MMA₅₀-st-IBEMA₅₀)₅₀₀₀ oligomer

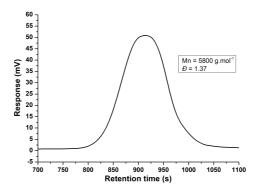


Fig. S20 Size exclusion chromatogram of oxidized $P(MMA_{50}- st-IBEMA_{50})_{5000}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the oxidized poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (oxidized P(MMA₂₅-st-IBEMA₇₅)₅₀₀₀ oligomer

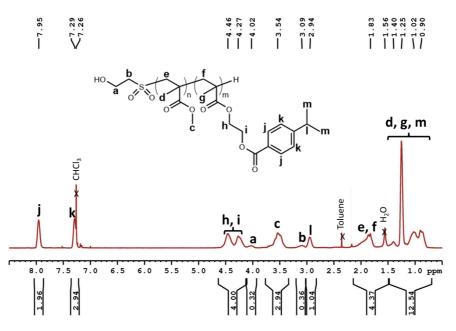


Fig. S21 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for oxidized P(MMA₂₅-*st*-IBEMA₇₅)₅₀₀₀ oligomer.

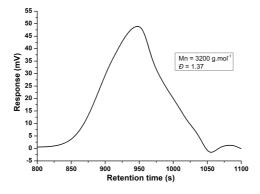


Fig. S22 Size exclusion chromatogram of oxidized $P(MMA_{25}- st-IBEMA_{75})_{5000}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the oxidized poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (oxidized P(MMA₅₀-st-IBEMA₅₀)₂₅₀₀ oligomer

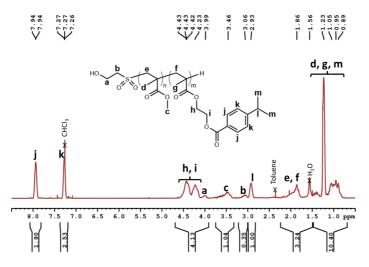


Fig. S23 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for oxidized P(MMA₅₀-*st*-IBEMA₅₀)₂₅₀₀ oligomer.

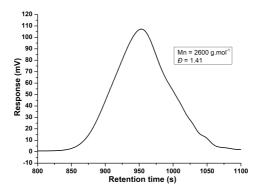


Fig. S24. Size exclusion chromatogram of oxidized $P(MMA_{50}- st-IBEMA_{50})_{2500}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of the oxidized poly(methyl methacrylate-st-(4-isopropylbenzoate) 2-ethyl methacrylate) (oxidized P(MMA₂₅-st-IBEMA₇₅)₂₅₀₀ oligomer

Fig. S25 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for oxidized P(MMA₂₅-*st*-IBEMA₇₅)₂₅₀₀ oligomer.

Fig. S26 Size exclusion chromatogram of oxidized $P(MMA_{25}- st-IBEMA_{75})_{2500}$ oligomer (eluent: THF + 0.05 wt % toluene, PMMA standards).

Characterization of poly(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (*PHPPBEMA*₂₅₀₀) *oligomer*

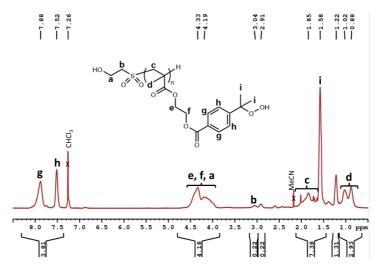


Fig. S27 ¹H NMR (600 MHz, CDCl₃) spectrum, and proton assignments for PHPPBEMA₂₅₀₀ oligomer.

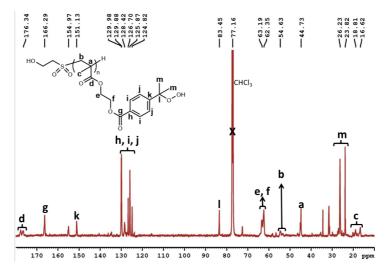


Fig. S28¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for PHPPBEMA₂₅₀₀ oligomer.

*Characterization of poly(methyl methacrylate-st-(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (P(MMA*₅₀-st-HPPBEMA₅₀)₅₀₀₀) oligomer

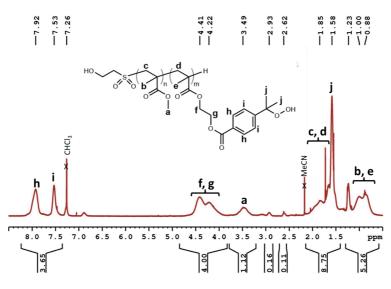



Fig. S29¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₅₀-st-HPPBEMA₅₀)₅₀₀₀ oligomer.

Characterization of poly(methyl methacrylate-st-(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (P(MMA₂₅-st-HPPBEMA₇₅)₅₀₀₀) oligomer

Fig. S30 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for P(MMA₂₅-*st*-HPPBEMA₇₅)₅₀₀₀ oligomer.

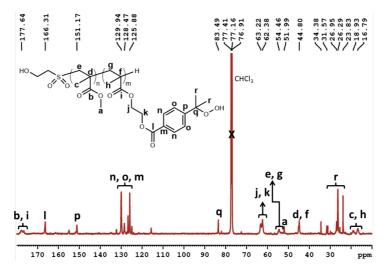
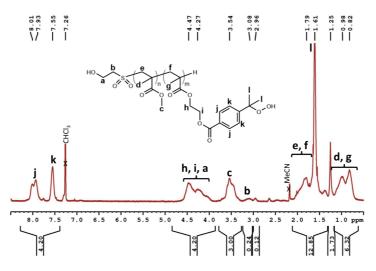
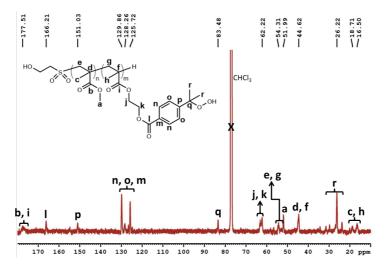




Fig. S31 ¹³C NMR (600 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₂₅-st-HPPBEMA₇₅)₅₀₀₀ oligomer.

Characterization of poly(methyl methacrylate-st-(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (P(MMA₅₀-st-HPPBEMA₅₀)₂₅₀₀) oligomer

Fig. S32 ¹H NMR (500 MHz, CDCl₃) spectrum, and proton assignments for P(MMA₅₀-*st*-HPPBEMA₅₀)₂₅₀₀ oligomer.

Fig. S33 ¹³C NMR (500 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₅₀-*st*-HPPBEMA₅₀)₂₅₀₀ oligomer.

*Characterization of poly(methyl methacrylate-st-(4-(2-hydroxyperoxipropyl)benzoate) 2-ethyl methacrylate) (P(MMA*₂₅-st-HPPBEMA₇₅)₂₅₀₀) oligomer

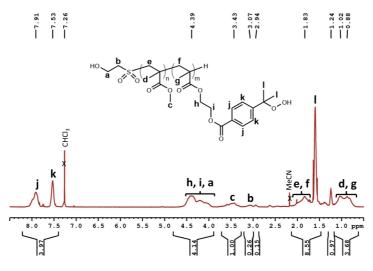


Fig. S34 ¹H NMR (500 MHz, CDCl₃) spectrum, and proton assignment for P(MMA₂₅-st-HPPBEMA₇₅)₂₅₀₀ oligomer.

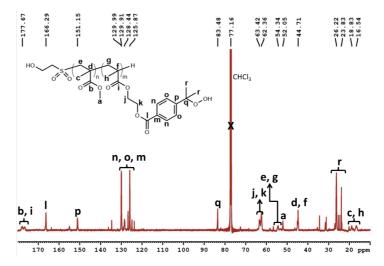


Fig. S35 ¹³C NMR (500 MHz, CDCl₃) spectrum, and carbon assignments for P(MMA₂₅-st-HPPBEMA₇₅)₂₅₀₀ oligomer.

Characterization of (2-methylthioethyl) 4-isopropylbenzoate (MTEPB)

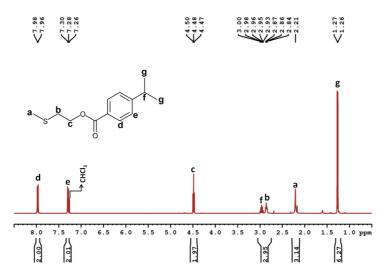


Fig. S36 ¹H NMR (400 MHz, CDCl₃) spectrum and proton assignments for MTEPB.

Characterization of (2-methylsulfonylethyl) 4-isopropylbenzoate (MSEPB)

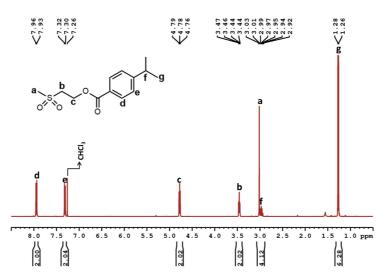


Fig. S37 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for MSEPB.

Characterization of (2-methylsulfonylethyl) 4-hydroxyperoxipropylbenzoate (MSEHPB)

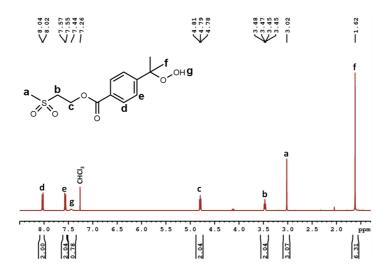


Fig. S38 ¹H NMR (400 MHz, CDCl₃) spectrum, and proton assignments for MSEHPB.

Mechanical properties of the different cements

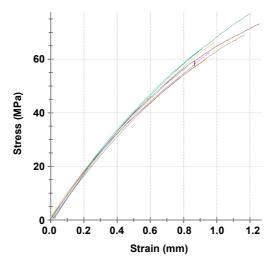
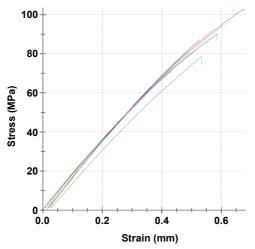



Fig. S39 Flexural curves for the SCC1 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

Fig. S40 Flexural curves for the SCC2 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

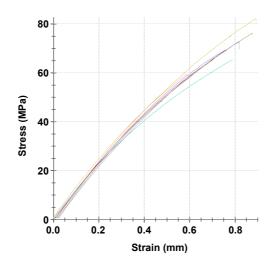


Fig. S41 Flexural curves for the SCC3 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

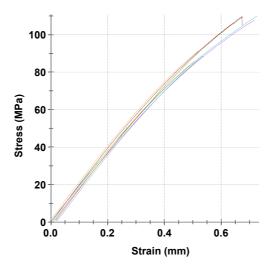


Fig. S42 Flexural curves for the SCC4 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

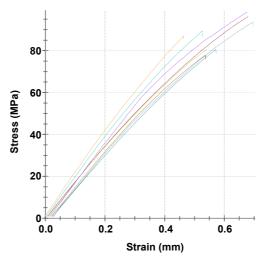
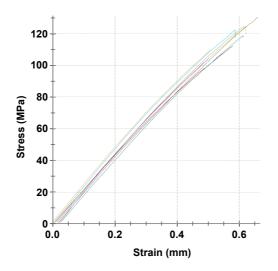



Fig. S43 Flexural curves for the SCC5 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

Fig. S44 Flexural curves for the SCC6 cement (flexural strength and flexural modulus correspond to the average value of eight measurements).

References

- 1. B. Boutevin, Y. Pietrasanta and G. Bauduin, *Die Makromolekulare Chemie*, 1985, **186**, 283-295.
- J. L. De La Fuente and E. L. Madruga, *Journal of Polymer Science Part A: Polymer Chemistry*, 2000, 38, 170-178.
- 3. J. L. O'Brien and F. Gornick, *Journal of the American Chemical Society*, 1955, 77, 4757-4763.
- 4. C. Loubat and B. Boutevin, *Macromolecular Chemistry and Physics*, 2000, **201**, 2853-2860.
- 5. V. Jaacks, *Die Makromolekulare Chemie*, 1972, **161**, 161-172.