Supporting Information

Insight into the melt processed Polylimonene oxide/Polylactic acid blends

Miguel Palenzuela,^a Juan F. Vega,^{b,c} Virginia Souza-Egipsy,^b Javier Ramos,^{b,c} Christian Rentero,^a Sessini Valentina^a* and Marta E. G. Mosquera^a*

^a.Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río". Campus Universitario, E-28871 Alcalá de Henares, Spain.

^{b.}BIOPHYM, Departamento de Física Macromolecular, Instituto de Estructura de la Materia, IEM-CSIC, c/Serrano 113 bis, 28006 Madrid, Spain.

^{c.}Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, SUSPLAST-CSIC, 28006 Madrid, Spain.

Corresponding Author e-mail: <u>valentina.sessini@uah.es</u>, <u>martaeg.mosquera@uah.es</u>

CONTENTS

- 1. Characterization of LO rearrangement products by GC-MS
- 2. NMR spectra
- 3. Isothermal TGA

1. Characterization of LO rearrangement products by GC-MS

Figure S1.a) LO secondary reactions. b) ¹H-NMR spectrum of the filtrate of the ROP reaction of LO with catalysts **1** where LO side products cannot be identified.

Figure S2. GC-MS of LO alcohol derivatives present in the filtrate of the ROP reaction of LO with catalysts **1**.

Figure S3. GC-MS of LO alcohol derivatives present in the filtrate of the ROP reaction of LO with catalysts **1**.

Figure S4. GC-MS of LO ketone derivatives present in the filtrate of the ROP reaction of LO with catalysts **1**.

2. NMR spectra

Figure S5. ¹H-NMR spectrum of an aliquot of the reaction of 250 equivalents of LO in bulk at RT.

Figure S6. ¹H-NMR spectra in CDCl₃ of the reaction carried out with a [A1]:TPhN:LO ratio of 1:2:250 in bulk at 130 °C. (Top: before addition of catalyst; bottom: t=30 min)

Figure S7. HSQCed ¹H-¹³C-NMR spectrum of PLO (CD₂Cl₂, 400 MHz, RT).

Figure S9. COSY ¹H-¹H-NMR spectrum of PLO (CD₂Cl₂, 400 MHz, RT).

Figure S10. DOSY 2D NMR spectrum of PLO (CD₂Cl₂, 400 MHz, RT).

Ent.	[Al]	[Al]:[LO]	T (°C)	%Conv.	% Yield PLO
				cis/trans-LO ^a	
1	1	1:100	130	>99 / 70	28
2	1	1:100	25	94 / 83	54
3	1	1:250	130	>99 / 70	28
4	1	1:250	25	80 / 67	60
5	2	1:100	130	>99 / 70	28
6	2	1:100	25	91 / 78	60
7	2	1:250	130	>99 / 70	28
8	2	1:250	25	77 / 62	58

Table S1. Experiments of ROP of LO with catalysts 1 and 2.

^{*a*} Determined by ¹H-NMR spectroscopy.

3. GPC traces of polymers

Figure S11. GPC traces of PLO obtained with 1 at RT

Figure S12. GPC traces of PLO obtained with 2 at RT

4. Isothermal analysis under air atmosphere

Figure S13. Isothermal TGA scan at 180°C under air flow.