Supporting Information

A Scalable and Efficient Approach to High-Fidelity Amine Functionalized Poly(ethylene glycol) Derivatives

Xuemei Zhang,†a Xiaoli Chen,†b Xiaoqing Chen,b Shuai Wang,b Mengli Wang,b Chao Geng,a Guoxing Xu,ab Shixue Wang*ab

*State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. of China, E-mail: wangsx@ciac.ac.cn
bThe Center for Combinatorial Chemistry and Drug Discovery of Jilin University, The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P. R. of China
†These authors contributed equally (Xuemei Zhang and Xiaoli Chen)
1. **Materials**

Poly(ethylene glycol) derivatives, triethylamine (TEA), methanesulfonyl chloride (MsCl), bis(tert-butoxycarbonyl)amine ((Boc)$_2$NH), N,N-Dimethylformamide (DMF), tetrahydrofuran (THF), acetonitrile (CH$_3$CN), $1,4$-dioxane, Pd/C, tert-butanol (t-BuOH), potassium t-butoxide (t-BuOK), 3-bromopropyne, sodium hydride (NaH), ferric chloride (FeCl$_3$), acetic anhydride and sodium hydroxide (NaOH) are purchased from Energy Chemical and used as received unless otherwise stated.

2. **Characterization**

1H NMR spectra and 13C NMR were recorded on a Bruker AV-400 spectrometer. MALDI-TOF Mass was performed on a Bruker Autoflex III mass spectrometer in linear or reflected positive ion mode. The matrix was trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB), and the solvent was CH$_2$Cl$_2$. Number-average molecular weights (M_n) and polydispersity indexes (PDI) were determined by Size Exclusion Chromatography (SEC) on a Waters 1515 HPLC pump equipped with Waters 2414 Refractive index Detector (eluent: DMF; flow rate: 1.0 mL/min; temperature: 80 °C; injection volume: 100.0 μL standard: polystyrene in the molecular weight range from 660 to 1.97×105 Da).

3. **Typical procedures for the synthesis of PEG-NH$_2$s**

3.1 **Typical procedure for the synthesis of PEG-OMss**

PEG-OH (20g, 1.0 eq) was dissolved with anhydrous dichloromethane (150 mL) in a round-bottomed flask followed by the addition of triethylamine (2 eq). The solution was then stirred at 0°C for 15min. MsCl (1.2 eq) was dissolved in anhydrous dichloromethane (50 mL) and added dropwise to the solution. The resulting mixture was stirred at room temperature overnight. The solution was quenched by water, and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried in vacuum.
mPEG_{23}-OMs (1a), white solid, 18.8g, 87.2% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.50 (m, 89H), 3.38 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.86, 70.50, 69.28, 68.95, 58.94, 37.65.}

mPEG_{45}-OMs (1b), white solid, 19.2g, 92.4% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.50 (m, 180H), 3.38 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.92, 70.56, 69.31, 69.00, 59.00, 37.71.}

mPEG_{114}-OMs (1c), white solid, 19.5g, 96.0% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.50 (m, 453H), 3.38 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.89, 70.53, 69.27, 68.97, 58.97, 37.68.}

mPEG_{233}-OMs (1d), white solid, 19.6g, 97.2% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.50 (m, 928H), 3.37 (s, 3H), 3.07 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.90, 70.54, 69.29, 68.99, 59.98, 37.70.}

mPEG_{485}-OMs (1e), white solid, 19.5g, 97.1% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.55 (m, 1937H), 3.38 (s, 3H), 3.08 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 72.04, 70.68, 69.39, 69.12, 59.13, 37.84.}

mPEG_{909}-OMs (1f), white solid, 19.0g, 94.8% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.55 (m, 3634H), 3.38 (s, 3H), 3.08 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 72.04, 70.68, 69.39, 69.12, 59.13, 37.84.}

MsO-PEG_{23}-OMs (1h), white solid, 19.0g, 94.8% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.55 (m, 2725H), 3.38 (s, 3H), 3.07 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.53, 69.29, 68.97, 58.75, 37.45.}

MsO-PEG_{45}-OMs (1i), white solid, 18.7g, 86.7% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.55 (m, 178H), 3.38 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.54, 69.09, 68.77, 58.75, 37.45.}

MsO-PEG_{77}-OMs (1j), white solid, 19.0g, 90.8% yield. {1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 2H), 3.85-3.55 (m, 305H), 3.38 (s, 3H), 3.09 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.52, 69.28, 68.97, 37.68.
MsO-PEG\textsubscript{150}-OMs (1k), white solid, 19.0g, 92.8% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 4H), 3.85-3.50 (m, 596H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.54, 69.29, 68.99, 37.70.

MsO-PEG\textsubscript{182}-OMs (1l), white solid, 19.3g, 94.6% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 4H), 3.85-3.50 (m, 723H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.53, 69.28, 68.98, 37.69.

MsO-PEG\textsubscript{227}-OMs (1m), white solid, 19.5g, 96.0% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 4H), 3.85-3.50 (m, 905H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.55, 69.29, 69.00, 37.71.

MsO-PEG\textsubscript{455}-OMs (1n), white solid, 19.5g, 96.7% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 4H), 3.85-3.55 (m, 3178H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.54, 69.29, 68.99, 37.69.

MsO-PEG\textsubscript{795}-OMs (1o), white solid, 19.5g, 97.1% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 4H), 3.80-3.55 (m, 3178H), 3.08 (s, 6H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.54, 69.29, 68.99, 37.69.

4-ARM-PEG\textsubscript{227}-OMs (1p), white solid, 19.3g, 93.5% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 8H), 3.85-3.49 (m, 901H), 3.09 (s, 12H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.96, 70.56, 70.01, 69.31, 69.01, 37.72.

4-ARM-PEG\textsubscript{455}-OMs (1q), white solid, 19.5g, 96% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 8H), 3.85-3.50 (m, 1810H), 3.08 (s, 12H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 70.98, 70.59, 70.04, 69.32, 69.04, 37.74.

8-ARM-PEG\textsubscript{227}-OMs (1r), white solid, 19.2g, 90.2% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 16H), 4.10-3.40 (m, 893H), 3.09 (s, 24H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.41, 70.54, 69.78, 69.31, 68.99, 37.70.

8-ARM-PEG\textsubscript{455}-OMs (1s), white solid, 19.5g, 94.5% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 16H), 3.85-3.50 (m, 1802H), 3.08 (s, 24H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.40, 70.54, 69.78, 69.29, 68.99, 37.70.

8-ARM-PEG\textsubscript{795}-OMs (1t), white solid, 19.5g, 96% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\): 4.38 (t, \(J = 4.0\) Hz, 16H), 3.85-3.50 (m, 3620H), 3.08 (s, 24H); 13C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\): 71.36, 70.59, 69.82, 69.33, 69.03, 37.74.
3.2 Typical procedure for the synthesis of PEG-N(Boc)$_2$S

PEG-OMs (I) (10g, 1.0 eq) was dissolved with anhydrous acetonitrile (100 mL) in a round-bottomed flask. Then, t-BuOK (3.0 eq) and (Boc)$_2$NH (3.0 eq) were added to the solution. The mixture was stirred at 60°C for 18 h. The insoluble solid was filtered out and the solution was concentrated. The residue was dissolved in deionized water and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried in vacuum.

mPEG$_{23}$-N(Boc)$_2$ (2a), white waxy solid, 9.8g, 87.4% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 91H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.52, 82.12, 71.88, 70.52, 70.15, 69.21, 58.95, 45.15, 28.00.

mPEG$_{45}$-N(Boc)$_2$ (2b), white waxy solid, 9.4g, 88.6% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 182H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.57, 82.17, 71.92, 70.56, 70.19, 69.26, 59.00, 45.19, 28.04.

mPEG$_{114}$-N(Boc)$_2$ (2c), white solid, 9.5g, 92.7% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 455H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.51, 82.12, 71.87, 70.51, 70.14, 69.21, 58.96, 45.14, 28.00.

mPEG$_{233}$-N(Boc)$_2$ (2d), white solid, 9.6g, 94.9% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 930H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.54, 82.16, 71.89, 70.53, 70.17, 69.23, 58.99, 45.16, 28.03.

mPEG$_{485}$-N(Boc)$_2$ (2e), white solid, 9.2g, 91.5% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1939H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.65, 82.24, 71.99, 70.62, 69.32, 59.08, 45.25, 28.11.

mPEG$_{682}$-N(Boc)$_2$ (2f), white solid, 9.0g, 90% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.55 (m, 2727H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.21, 81.77, 71.59, 70.23, 68.93, 58.65, 44.89, 27.73.

mPEG$_{909}$-N(Boc)$_2$ (2g), white solid, 9.0g, 90% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.55 (m, 3636H), 3.38 (s, 3H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.60, 82.07, 71.70, 70.34, 68.73, 59.10, 45.22, 27.85.
(Boc)$_2$N-PEG$_{227}$-N(Boc)$_2$ (2h), white solid, 10.6g, 85.3% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.80-3.50 (m, 91H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.73, 82.34, 70.70, 70.33, 69.40, 45.32, 28.18.

(Boc)$_2$N-PEG$_{455}$-N(Boc)$_2$ (2i), white solid, 9.8g, 87.4% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 182H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.64, 82.25, 70.62, 70.25, 69.32, 45.25, 28.10.

(Boc)$_2$N-PEG$_{777}$-N(Boc)$_2$ (2j), white solid, 9.7g, 90.7% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 309H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.56, 82.17, 70.55, 70.19, 69.25, 45.18, 28.04.

(Boc)$_2$N-PEG$_{150}$-N(Boc)$_2$ (2k), white solid, 9.5g, 91.7% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 600H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.52, 82.13, 70.51, 70.15, 69.21, 45.14, 28.01.

(Boc)$_2$N-PEG$_{182}$-N(Boc)$_2$ (2l), white solid, 9.5g, 92.2% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 727H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.30, 81.87, 70.31, 69.96, 69.01, 44.96, 27.81.

(Boc)$_2$N-PEG$_{227}$-N(Boc)$_2$ (2m), white solid, 9.5g, 92.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.49 (m, 909H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.39, 81.98, 70.39, 70.04, 69.09, 45.04, 27.89.

(Boc)$_2$N-PEG$_{455}$-N(Boc)$_2$ (2n), white solid, 9.5g, 93.9% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1818H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.44, 82.03, 72.74, 70.45, 69.15, 45.09, 27.95.

(Boc)$_2$N-PEG$_{795}$-N(Boc)$_2$ (2o), white solid, 9.5g, 94.3% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.80-3.55 (m, 3182H), 1.50 (s, 36H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.42, 82.02, 70.41, 70.06, 69.11, 45.05, 27.91.

4-ARM-PEG$_{227}$-N(Boc)$_2$ (2p), white solid, 9.3g, 88.7% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.49 (m, 909H), 1.50 (s, 72H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.47, 82.06, 70.87, 70.46, 70.10, 69.90, 69.16, 45.10, 27.95.

4-ARM-PEG$_{455}$-N(Boc)$_2$ (2q), white solid, 9.5g, 92.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1818H), 1.50 (s, 72H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.58, 82.19, 70.96, 70.56, 70.20, 70.02, 69.26, 45.19, 28.05.
8-ARM-PEG$_{227}$-N(Boc)$_2$ (2r), white solid, 9.8g, 89.4% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.10-3.40 (m, 909H), 1.50 (s, 144H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.50, 82.10, 71.34, 70.49, 70.13, 69.72, 69.19, 45.13, 27.99.

8-ARM-PEG$_{455}$-N(Boc)$_2$ (2s), white solid, 9.5g, 90.6% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1818H), 1.50 (s, 144H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.58, 82.19, 70.56, 70.20, 69.27, 45.19, 28.06.

8-ARM-PEG$_{795}$-N(Boc)$_2$ (2t), white solid, 9.6g, 93.7% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 3636H), 1.50 (s, 144H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.54, 82.14, 71.15, 70.52, 70.15, 69.88, 69.22, 45.15, 28.01.

3.3 Typical procedure for the synthesis of PEG-NH$_2$s

To a solution of PEG-N(Boc)$_2$ (2) (0.5 g) in CH$_2$Cl$_2$ (2 mL) at 0℃, TFA (5 mL) dissolved in CH$_2$Cl$_2$ (2 mL) was added dropwise. The solution was stirred under ice bath overnight. The TFA and CH$_2$Cl$_2$ was removed by a rotary evaporator in vacuum. The residue was diluted with deionized water (10 mL) and stirred at 0℃. Ammonium hydroxide (30 mL) was added dropwise until the pH of the solution was 10–11. The solution was stirred for another 15 min and then extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried in vacuum.

mPEG$_{23}$-NH$_2$ (3a), white solid, 0.33g, 82.5% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 89H), 3.38 (s, 3H), 2.87 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.19, 71.79, 70.43, 70.15, 58.87, 41.63.

mPEG$_{45}$-NH$_2$ (3b), white solid, 0.40g, 88.9% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.80-3.50 (m, 180H), 3.38 (s, 3H), 2.87 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.96, 71.62, 70.26, 69.97, 58.68, 41.45.

mPEG$_{114}$-NH$_2$ (3c), white solid, 0.45g, 93.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 453H), 3.38 (s, 3H), 2.87 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.93, 71.90, 70.54, 70.23, 59.00, 41.71.
mPEG$_{233}$-NH$_2$ (3d), white solid, 0.45g, 91.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 928H), 3.38 (s, 3H), 2.90 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 71.92, 70.55, 59.01, 41.66.

mPEG$_{485}$-NH$_2$ (3e), white solid, 0.46g, 92.9% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1937H), 3.38 (s, 3H), 3.00 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.98, 71.41, 70.05, 67.14, 58.46, 40.57.

mPEG$_{682}$-NH$_2$ (3f), white solid, 0.45g, 90.5% yield. 1H NMR (500 MHz, CDCl$_3$) δ: 3.85-3.55 (m, 2725H), 3.38 (s, 3H), 2.88 (t, $J = 5.0$Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.92, 71.55, 70.19, 67.27, 58.62, 41.42.

mPEG$_{909}$-NH$_2$ (3g), white solid, 0.45g, 90.4% yield. 1H NMR (500 MHz, CDCl$_3$) δ: 3.85-3.55 (m, 3634H), 3.38 (s, 3H), 2.89 (t, $J = 5.0$Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.32, 70.30, 61.32, 42.07.

H$_2$N-PEG$_{23}$-NH$_2$ (3h), white solid, 0.24g, 80.5% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.80-3.50 (m, 87H), 2.90 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.44, 70.52, 70.20, 41.50.

H$_2$N-PEG$_{45}$-NH$_2$ (3i), white solid, 0.34g, 85.2% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.49 (m, 178H), 2.87 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.18, 71.20, 70.49, 70.20, 69.85, 41.65.

H$_2$N-PEG$_{77}$-NH$_2$ (3j), white solid, 0.39g, 88.6% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 305H), 2.87(t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.35, 71.14, 70.51, 70.23, 41.75.

H$_2$N-PEG$_{150}$-NH$_2$ (3k), white solid, 0.43g, 91.5% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 596H), 2.87 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.06, 70.43, 70.13, 41.64.

H$_2$N-PEG$_{182}$-NH$_2$ (3l), white solid, 0.44g, 92.6% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 723H), 2.88 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.12, 70.57, 70.28, 41.76.

H$_2$N-PEG$_{227}$-NH$_2$ (3m), white solid, 0.45g, 93.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.49 (m, 905H), 2.87 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 73.19, 70.52, 70.23, 41.73.

H$_2$N-PEG$_{455}$-NH$_2$ (3n), white solid, 0.45g, 91.8% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 1814H), 2.89 (t, $J = 4.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.45, 70.64, 70.31, 41.68.

H$_2$N-PEG$_{795}$-NH$_2$ (3o), white solid, 0.46g, 92.9% yield. 1H NMR (500 MHz, CDCl$_3$) δ: 3.80-3.55 (m, 3178H), 2.88 (t, $J = 5.0$ Hz, 4H); 13C NMR (100 MHz, CDCl$_3$) δ: 71.33, 70.65, 70.38, 41.87.
4-ARM-PEG\textsubscript{227}-NH\textsubscript{2} (3p), white solid, 0.40g, 87% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 3.85-3.49 (m, 901H), 2.87 (t, $J = 4.0$ Hz, 8H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 73.36, 70.92, 70.51, 70.29, 70.24, 69.96, 41.76.

4-ARM-PEG\textsubscript{455}-NH\textsubscript{2} (3q), white solid, 0.45g, 93.8% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 3.85-3.50 (m, 1810H), 2.91 (t, $J = 4.0$ Hz, 8H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 72.52, 71.08, 70.69, 70.31, 70.17, 41.80.

8-ARM-PEG\textsubscript{227}-NH\textsubscript{2} (3r), white solid, 0.36g, 85.7% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 3.85-3.50 (m, 893H), 2.87 (t, $J = 4.0$ Hz, 16H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 73.29, 70.52, 70.24, 69.75, 41.73.

8-ARM-PEG\textsubscript{455}-NH\textsubscript{2} (3s), white solid, 0.41g, 89.1% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 3.85-3.50 (m, 1802H), 2.87 (t, $J = 4.0$ Hz, 16H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 73.40, 71.17, 70.54, 70.26, 69.82, 41.79.

8-ARM-PEG\textsubscript{909}-NH\textsubscript{2} (3t), white solid, 0.44g, 91.7% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 3.85-3.50 (m, 3620H), 2.88 (t, $J = 4.0$ Hz, 16H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 73.06, 70.57, 70.26, 41.78.

4. Typical procedure for the synthesis of heterodox functional group amino(polyethylene glycol)

4.1 Synthesis of N\textsubscript{3}-PEG\textsubscript{227}-NH\textsubscript{2}

Step 1 Synthesis of Bn-PEG\textsubscript{227}-OAc (4)

Bn-PEG\textsubscript{227}-OH (50g, 1.0 eq) was dissolved with anhydrous dichloromethane (450 mL) in a round-bottomed flask follow by the addition of triethylamine (3 eq). The solution was then stirred at 0°C for 15min. Acetic anhydride (2 eq) was dissolved in anhydrous dichloromethane (50 mL) and added dropwise to the solution. The resulting mixture was stirred at room temperature overnight. The solution was quenched by water, and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na\textsubscript{2}SO\textsubscript{4}, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give Bn-PEG\textsubscript{227}-OAc as a white solid, 51.6g, 99% yield. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ: 7.38-7.24 (m, 5H), 4.57 (s, 2H), 4.22 (t, $J = 4.0$ Hz, 2H), 3.85-3.50 (m, 89H), 2.08 (s, 3H); 13C NMR (100 MHz, CDCl\textsubscript{3}) δ: 170.90, 138.25, 128.29, 127.65, 127.51, 73.15, 70.53, 69.40, 69.06, 63.54, 20.91.
Step 2 Synthesis of AcO-PEG$_{27}$-OH (5)
BnO-PEG$_{27}$-OAc (4) (48g, 1.0 eq) was dissolved in CH$_3$OH (200 mL), then 10% Pd/C (0.03%) was added carefully. The solution was vacuumed for argon and then hydrogen was introduced slowly. The resulting mixture was stirred overnight at 40°C with the protection of hydrogen. After the reaction was completed, Pd/C was filtered and CH$_3$OH was removed. The residue was precipitated with diethyl ether and dried under vacuum, to give AcO-PEG$_{27}$-OH as a white solid, 40.4g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.22 (t, J = 4.0 Hz, 2H), 3.85-3.50 (m, 89H), 2.08 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 170.95, 72.50, 70.53, 70.32, 69.07, 63.55, 61.64, 20.91.

Step 3 Synthesis of AcO-PEG$_{27}$-OMs (6)
AcO-PEG$_{27}$-OH (5) (40g, 1.0 eq) was dissolved with anhydrous dichloromethane (350 mL) in a round-bottomed flask followed by the addition of triethylamine (2 eq). The solution was then stirred at 0°C for 15min. MsCl (1.2 eq) was dissolved in anhydrous dichloromethane (50 mL) and added dropwise to the solution. The resulting mixture was stirred at room temperature overnight. The solution was quenched by water, and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give AcO-PEG$_{27}$-OMs as a yellow solid, 42.7g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.38 (t, J = 4.0Hz, 2H), 4.22 (t, J = 4.0 Hz, 2H), 3.85-3.50 (m, 87H), 3.09 (s, 3H), 2.08 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 170.89, 70.51, 69.29, 69.05, 68.96, 63.52, 37.66, 20.90.

Step 4 Synthesis of AcO-PEG$_{27}$-N$_3$ (7)
To a solution of AcO-PEG$_{27}$-OMs (6) (35g, 1.0 eq) dissolved in anhydrous C$_2$H$_5$OH (350 mL), NaN$_3$ (1.5 eq) was added. The resulting mixture was refluxed overnight at 80°C for 18h. The solution was quenched by water, and C$_2$H$_5$OH was removed in vacuum. The residue was dissolved in water and extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give AcO-PEG$_{27}$-N$_3$ as a white solid, 32.8g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.22 (t, J = 4.0 Hz, 2H), 3.85-3.50 (m, 87H), 3.39 (t, J = 4.0 Hz, 2H), 2.08 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 170.88, 70.51, 69.97, 69.04, 68.96, 63.52, 50.60, 20.89.

Step 5 Synthesis of N$_3$-PEG$_{27}$-OH (8)
To a solution of AcO-PEG$_{27}$-N$_3$ (7) (30g, 1.0 eq) dissolved in water (300 mL), NaOH (2.0 eq) was
added. Then the solution was stirred at room temperature for 18 h. The solution was extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give N$_3$-PEG$_{27}$-OH as a white solid, 28.4g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 89H), 3.39 (t, $J = 4.0$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.41, 70.41, 70.20, 69.88, 61.46, 50.51.

Step 6 Synthesis of N$_3$-PEG$_{27}$-OMs (9)

N$_3$-PEG$_{27}$-OH (8) (25g, 1.0 eq) was dissolved with anhydrous dichloromethane (250 mL) in a round-bottomed flask followed by the addition of triethylamine (2 eq). The solution was then stirred at 0°C for 15min. MsCl (1.2 eq) was dissolved in anhydrous dichloromethane (50 mL) and added dropwise to the solution. The resulting mixture was stirred at room temperature overnight. The solution was quenched by water, and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give N$_3$-PEG$_{27}$-OMs as a white solid, 26.7g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.38 (t, $J = 4.0$Hz, 2H), 3.85-3.50 (m, 87H), 3.39 (t, $J = 4.0$ Hz, 2H), 3.08 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 71.88, 70.52, 69.98, 58.96, 50.62.

Step 7 Synthesis of N$_3$-PEG$_{27}$-N(Boc)$_2$ (10)

N$_3$-PEG$_{27}$-OMs (9) (1) (20g, 1.0 eq) was dissolved with anhydrous acetonitrile (200 mL) in a round-bottomed flask. Then, t-BuOK (3.0 eq) and (Boc)$_2$NH (3.0 eq) were added to the solution. The mixture was stirred at 60°C for 18 h. The insoluble solid was filtered out and the solution was concentrated. The residue was dissolved in deionized water and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give N$_3$-PEG$_{27}$-N(Boc)$_2$ as a white solid, 22.2g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 89H), 3.39 (t, $J = 4.0$ Hz, 2H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.54, 82.14, 70.53, 70.16, 69.99, 69.22, 53.51, 50.63, 45.16, 28.01.

Step 8 Synthesis of N$_3$-PEG$_{27}$-NH$_2$

To a solution of N$_3$-PEG$_{27}$-N(Boc)$_2$ (10) (0.5 g) in CH$_2$Cl$_2$ (2 mL) at 0°C, TFA (5 mL) dissolved in CH$_2$Cl$_2$ (2 mL) was added dropwise. The solution was stirred under ice bath overnight. The TFA and CH$_2$Cl$_2$ was removed by a rotary evaporator in vacuum. The residue was diluted with deionized water (10 mL) and stirred at 0°C. Ammonium hydroxide (30 mL) was added dropwise until the pH
of the solution was 10~11. The solution was stirred for another 15 min and then extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give N$_3$-PEG$_{23}$-NH$_2$ as a white solid, 0.396g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 3.85-3.50 (m, 87H), 3.39 (t, $J = 4.0$Hz, 2H), 2.89 (t, $J = 4.0$Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ: 72.63, 70.52, 70.19, 69.99, 50.63, 41.60.

4.2 Synthesis of Alkyne-PEG$_{27}$-NH$_2$

Step 1 Synthesis of Bn-PEG$_{27}$-Alkyne (11)

To a solution of Bn-PEG$_{27}$-OH (50g, 1.0 eq) dissolved in anhydrous THF (400 mL), NaH (3.0 eq) was added in batches at 0$^\circ$C. After stirring for more than 30 min, 3-bromopropyl (3.0 eq) dissolved in THF (50 mL) was added dropwise. The resulting mixture was stirred at room temperature for 18 h under the protection of argon. The excess NaH was quenched by adding deionized water dropwise and the solvent was removed in vacuum. The residue was dissolved in deionized water and extracted with CH$_2$Cl$_2$ three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give Bn-PEG$_{27}$-Alkyne as a yellow solid, 51.4g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 7.39 -7 .22 (m, 5H), 4.56 (s, 2H), 4.20 (s, 2H), 3.85-3.50 (m, 91H), 2.46 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 137.94, 127.93, 127.26, 127.14, 79.31, 74.56, 72.74, 70.17, 69.99, 69.08, 68.66, 57.95.

Step 2 Synthesis of Alkyne-PEG$_{27}$-OH (12)

Bn-PEG$_{27}$-Alkyne (11) (48g) was added to a round-bottomed flask followed by the addition of TFA (250 mL). The solution was stirred at 90$^\circ$C by reflux for 18 h. TFA was removed. The residue was dissolved in deionized water and extracted with CH$_2$Cl$_2$ three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum. The product was dissolved in 1, 4-dioxane (300 mL) followed by the addition of activated carbon (45 g). The mixture was stirred at 40$^\circ$C for 12 h. Activated carbon was filtered off. The solvent was removed and the residue was precipitated with diethyl ether and dried under vacuum, to give Alkyne-PEG$_{27}$-OH as a white solid, 40.4g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.20 (d, $J = 4.0$ Hz, 2H), 3.85-3.50 (m, 91H), 2.45 (t, $J =4.0$Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 79.52, 74.61, 72.41, 70.40, 70.22, 68.91, 61.45, 58.20.
Step 3 Synthesis of Alkyne-PEG$_{27}$-OMs (13)

Alkyne-PEG$_{27}$-OH (12) (40g, 1.0 eq) was dissolved with anhydrous dichloromethane (400 mL) in a round-bottomed flask followed by the addition of triethylamine (2 eq). The solution was then stirred at 0°C for 15min. MsCl (1.2 eq) was dissolved in anhydrous dichloromethane (50 mL) and added dropwise to the solution. The resulting mixture was stirred at room temperature overnight. The solution was quenched by water, and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give Alkyne-PEG$_{27}$-OMs as a yellow solid, 42.7g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.38 (t, $J = 4.0$ Hz, 2H), 4.20 (d, $J = 4.0$ Hz, 2H), 3.85-3.50 (m, 100H), 3.08 (s, 3H), 2.44 (t, $J = 4.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ: 79.64, 74.63, 70.51, 70.35, 69.29, 69.04, 68.96, 58.33, 37.67.

Step 4 Synthesis of Alkyne-PEG$_{27}$-N(Boc)$_2$ (14)

Alkyne-PEG$_{27}$-OMs (13) (1) (35g, 1.0 eq) was dissolved with anhydrous acetonitrile (350 mL) in a round-bottomed flask. Then, t-BuOK (3.0 eq) and (Boc)$_2$NH (3.0 eq) were added to the solution. The mixture was stirred at 60°C for 18 h. The insoluble solid was filtered out and the solution was concentrated. The residue was dissolved in deionized water and extracted with dichloromethane for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give Alkyne-PEG$_{27}$-N(Boc)$_2$ as a yellow solid, 38.8g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.20 (d, $J = 4.0$ Hz, 2H), 3.85-3.50 (m, 102H), 2.44 (t, $J = 4.0$ Hz, 1H), 1.50 (s, 18H); 13C NMR (100 MHz, CDCl$_3$) δ: 152.64, 82.26, 79.71, 74.66, 70.62, 70.25, 69.32, 69.15, 58.44, 45.24, 28.10.

Step 5 Synthesis of Alkyne-PEG$_{27}$-NH$_2$

To a solution of Alkyne-PEG$_{27}$-N(Boc)$_2$ (14) (0.5 g) in CH$_2$Cl$_2$ (2 mL) at 0°C, TFA (5 mL) dissolved in CH$_2$Cl$_2$ (2 mL) was added dropwise. The solution was stirred under ice bath overnight. The TFA and CH$_2$Cl$_2$ was removed by a rotary evaporator in vacuum. The residue was diluted with deionized water (10 mL) and stirred at 0°C. Ammonium hydroxide (30 mL) was added dropwise until the pH of the solution was 10~11. The solution was stirred for another 15 min and then extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give Alkyne-PEG$_{27}$-NH$_2$ as a yellow solid, 0.396g, 99% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 4.20 (d, $J = 4.0$ Hz, 2H), 3.85-
3.50 (m, 100H), 2.87 (t, $J = 4.0$ Hz, 2H), 2.44 (t, $J = 4.0$ Hz, 1H); 13C NMR (100MHz, CDCl$_3$) δ: 79.61, 74.63, 73.13, 70.50, 70.33, 70.20, 69.02, 58.31, 41.71.

5. Synthesis of mPEG$_{114}$-GSH

5.1 Synthesis of mPEG$_{114}$-Mal

To a solution of Mal-COOH (1.0 eq) dissolved in CH$_2$Cl$_2$(10 mL), HOBt (2.0 eq) and EDCI (2.0 eq) was added. The mixture was stirred at room temperature for 2 h. Then mPEG$_{114}$-NH$_2$(1g, 1.0 eq) was added and the resulting mixture was reacted at room temperature for 48 h. The blocker 1, 4-p-diphenol was added and the solvent was removed. After that, the residue was dissolved in deionized water (50 mL) followed by the addition of HCl (10 mL, 1 mol/L). The solution was stirred for 2 h, and the insoluble matter was filtered off. The solution was extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give mPEG$_{114}$-Mal as a white solid, 0.98g, 95% yield. 1H NMR (400 MHz, CDCl$_3$) δ: 6.70 (s, 2H), 3.85-3.50 (m, 453H), 3.38 (s, 3H), 2.52 (t, $J = 4.0$ Hz, 2H). 13C NMR (100 MHz, CDCl$_3$) δ:175.92, 175.02, 137.05, 60.03, 41.50, 37.18, 37.01.

5.2 Synthesis of mPEG$_{114}$-GSH

To a solution of mPEG$_{114}$-Mal (0.5g, 1.0 eq) dissolved in acetonitrile and deionized water, GSH (3.0 eq), TFA (3.0 eq), PBS (100 µL) were added. The solution was stirred at 30°C for 48 h. The solvent was removed. The residue was dissolved in deionized water and extracted with CH$_2$Cl$_2$ for three times. The combined organic layer was dried with anhydrous Na$_2$SO$_4$, filtered, concentrated, precipitated with diethyl ether and dried under vacuum, to give mPEG$_{114}$-GSH as a white solid, 0.525g, 99% yield. 13C NMR (100 MHz, D$_2$O) δ:181.31, 180.09, 177.40, 177.01, 176.28, 175.64, 174.41, 60.53, 56.56, 55.28, 44.83, 41.56, 38.32, 36.07, 33.89, 28.65.
6. Supplemental Schemes, Tables, and Figures

Scheme S1. Chemical structure of mPEG\textsubscript{n}-OMss, MsO-PEG\textsubscript{n}-OMss, 4-arm-PEG\textsubscript{n}-OMss and 8-arm-PEG\textsubscript{n}-OMss

Scheme S2. Chemical structure of mPEG\textsubscript{n}-N(Boc)$_2$S, (Boc)$_2$N-PEG\textsubscript{n}-N(Boc)$_2$S, 4-arm-PEG\textsubscript{n}-N(Boc)$_2$S and 8-arm-PEG\textsubscript{n}-N(Boc)$_2$S
Scheme S3 The synthetic route of N$_3$-PEG$_{27}$-NH$_2$

Scheme S4 The synthetic route of Alk-PEG$_{27}$-NH$_2$
Table S1 Optimization of reaction conditions for the synthesis of mPEG$_{23}$-N(Boc)$_2$a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>Solvent</th>
<th>mPEG$_{23}$-OMs/ (Boc)$_2$NH/Base</th>
<th>Temp (℃)</th>
<th>Yield (%)b</th>
<th>End-group fidelity (1H NMR)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaH</td>
<td>THF</td>
<td>1/3/3</td>
<td>60</td>
<td>87</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>NaH</td>
<td>DMF</td>
<td>1/3/3</td>
<td>60</td>
<td>84</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>t-BuOK</td>
<td>THF</td>
<td>1/3/3</td>
<td>80</td>
<td>86</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>t-BuOK</td>
<td>DMF</td>
<td>1/3/3</td>
<td>80</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>t-BuOK</td>
<td>1,4-dioxane</td>
<td>1/3/3</td>
<td>80</td>
<td>89</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>t-BuOK</td>
<td>t-BuOH</td>
<td>1/3/3</td>
<td>80</td>
<td>89</td>
<td>77</td>
</tr>
<tr>
<td>7</td>
<td>t-BuOK</td>
<td>toluene</td>
<td>1/3/3</td>
<td>80</td>
<td>85</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/3/3</td>
<td>80</td>
<td>89</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/3/3</td>
<td>40</td>
<td>87</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/3/3</td>
<td>60</td>
<td>89</td>
<td>99</td>
</tr>
<tr>
<td>11</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/2.5/2.5</td>
<td>60</td>
<td>83</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/2/2</td>
<td>60</td>
<td>88</td>
<td>92</td>
</tr>
<tr>
<td>13</td>
<td>t-BuOK</td>
<td>CH$_3$CN</td>
<td>1/1.5/1.5</td>
<td>60</td>
<td>85</td>
<td>90</td>
</tr>
</tbody>
</table>

aReaction conditions: mPEG$_{23}$-OMs (1) (1.0 eq) were added to a mixture of (Boc)$_2$NH/base (1:1) in 10.0 mL of anhydrous solvent, and stirred for 18 h. bIsolated yield. cEnd-group fidelity of 2 were determined by 1H NMR.
Fig. S1 1H NMR of mPEG$_{23}$-OMs (1a) (400 MHz, CDCl$_3$)

Fig. S2 13C NMR of mPEG$_{23}$-OMs (1a) (100 MHz, CDCl$_3$)
Fig. S3 SEC of mPEG₂₃-OMs (1a) (DMF, 1.00 mL/min, PS as standard)

Fig. S4 ¹H NMR of mPEG₄₅-OMs (1b) (400 MHz, CDCl₃)
Fig. S5 13C NMR of mPEG$_{45}$-OMs (1b) (100 MHz, CDCl$_3$)

Fig. S6 SEC of mPEG$_{45}$-OMs (1b) (DMF, 1.00 mL/min, PS as standard)
Fig. S7 1H NMR of mPEG$_{114}$-OMs (1c) (400 MHz, CDCl$_3$)

Fig. S8 13C NMR of mPEG$_{114}$-OMs (1c) (100 MHz, CDCl$_3$)
Fig. S9 1H NMR of mPEG$_{233}$-OMs (1d) (400 MHz, CDCl$_3$)

Fig. S10 13C NMR of mPEG$_{233}$-OMs (1d) (100 MHz, CDCl$_3$)
Fig. S11 1H NMR of mPEG$_{485}$-OMs (1e) (400 MHz, CDCl$_3$)

Fig. S12 13C NMR of mPEG$_{485}$-OMs (1e) (100 MHz, CDCl$_3$)
Fig. S13 1H NMR of mPEG$_{682}$-OMs (1f) (400 MHz, CDCl$_3$)

Fig. S14 13C NMR of mPEG$_{682}$-OMs (1f) (100 MHz, CDCl$_3$)
Fig. S15 1H NMR of mPEG$_{909}$-OMs (1g) (400 MHz, CDCl$_3$)

Fig. S16 13C NMR of mPEG$_{909}$-OMs (1g) (100 MHz, CDCl$_3$)
Fig. S17 1H NMR of MsO-PEG$_{23}$-OMs (1h) (400 MHz, CDCl$_3$)

Fig. S18 13C NMR of MsO-PEG$_{23}$-OMs (1h) (100 MHz, CDCl$_3$)
Fig. S19 1H NMR of MsO-PEG$_{45}$-OMs (Ii) (400 MHz, CDCl$_3$)

Fig. S20 13C NMR of MsO-PEG$_{45}$-OMs (Ii) (100 MHz, CDCl$_3$)
Fig. S21 1H NMR of MsO-PEG$_{77}$-OMs (1j) (400 MHz, CDCl$_3$)

Fig. S22 13C NMR of MsO-PEG$_{77}$-OMs (1j) (100 MHz, CDCl$_3$)
Fig. S23 1H NMR of MsO-PEG$_{150}$-OMs (1k) (400 MHz, CDCl$_3$)

Fig. S24 13C NMR of MsO-PEG$_{150}$-OMs (1k) (100 MHz, CDCl$_3$)
Fig. S25 1H NMR of MsO-PEG$_{182}$-OMs (1I) (400 MHz, CDCl$_3$)

Fig. S26 13C NMR of MsO-PEG$_{182}$-OMs (1I) (100 MHz, CDCl$_3$)
Fig. S27 ¹H NMR of MsO-PEG₂₂₇-OMs (1m) (400 MHz, CDCl₃)

Fig. S28 ¹³C NMR of MsO-PEG₂₂₇-OMs (1m) (100 MHz, CDCl₃)
Fig. S29 1H NMR of MsO-PEG$_{455}$-OMs (1n) (400 MHz, CDCl$_3$)

Fig. S30 13C NMR of MsO-PEG$_{455}$-OMs (1n) (100 MHz, CDCl$_3$)
Fig. S31 1H NMR of MsO-PEG$_{795}$-OMs (1o) (400 MHz, CDCl$_3$)

Fig. S32 13C NMR of MsO-PEG$_{795}$-OMs (1o) (100 MHz, CDCl$_3$)
Fig. S33 1H NMR of 4-ARM-PEG$_{227}$-OMs (1p) (400 MHz, CDCl$_3$)

Fig. S34 13C NMR of 4-ARM-PEG$_{227}$-OMs (1p) (100 MHz, CDCl$_3$)
Fig. S35 1H NMR of 4-ARM-PEG$_{455}$-OMs (1q) (400 MHz, CDCl$_3$)

Fig. S36 13C NMR of 4-ARM-PEG$_{455}$-OMs (1q) (100 MHz, CDCl$_3$)
Fig. S37 1H NMR of 8-ARM-PEG$_{227}$-OMs (1r) (400 MHz, CDCl$_3$)

Fig. S38 13C NMR of 8-ARM-PEG$_{227}$-OMs (1r) (100 MHz, CDCl$_3$)
Fig. S39 1H NMR of 8-ARM-PEG$_{455}$-OMs (1s) (400 MHz, CDCl$_3$)

Fig. S40 13C NMR of 8-ARM-PEG$_{455}$-OMs (1s) (100 MHz, CDCl$_3$)
Fig. S41 1H NMR of 8-ARM-PEG$_{300}$-OMs (1t) (400 MHz, CDCl$_3$)

Fig. S42 13C NMR of 8-ARM-PEG$_{300}$-OMs (1t) (100 MHz, CDCl$_3$)
Fig. S43 1H NMR of mPEG$_{23}$-N(Boc)$_2$ (2a) (400 MHz, CDCl$_3$)

Fig. S44 1H NMR of mPEG$_{45}$-N(Boc)$_2$ (2b) (400 MHz, CDCl$_3$)
Fig. S45 13C NMR of mPEG$_{45}$-N(Boc)$_2$ (2b) (100MHz, CDCl$_3$)

Fig. S46 SEC of mPEG$_{45}$-N(Boc)$_2$ (2b) (DMF, 1.00 mL/min, PS as standard)
Fig. S47 1H NMR of mPEG$_{114}$-N(Boc)$_2$ (2c) (400 MHz, CDCl$_3$)

Fig. S48 13C NMR of mPEG$_{114}$-N(Boc)$_2$ (2c) (100 MHz, CDCl$_3$)
Fig. S49 1H NMR of mPEG$_{233}$-N(Boc)$_2$ (2d) (400 MHz, CDCl$_3$)

Fig. S50 13C NMR of mPEG$_{233}$-N(Boc)$_2$ (2d) (100 MHz, CDCl$_3$)
Fig. S51 1H NMR of mPEG$_{485}$-N(Boc)$_2$ (2e) (400 MHz, CDCl$_3$)

Fig. S52 13C NMR of mPEG$_{485}$-N(Boc)$_2$ (2e) (100 MHz, CDCl$_3$)
Fig. S53 1H NMR of mPEG$_{682}$-N(Boc)$_2$ (2f) (400 MHz, CDCl$_3$)

Fig. S54 13C NMR of mPEG$_{682}$-N(Boc)$_2$ (2f) (100 MHz, CDCl$_3$)
Fig. S55 1H NMR of mPEG$_{909}$-N(Boc)$_2$ (2g) (400 MHz, CDCl$_3$)

Fig. S56 13C NMR of mPEG$_{909}$-N(Boc)$_2$ (2g) (100 MHz, CDCl$_3$)
Fig. S57 1H NMR of (Boc)$_2$N-PEG$_{23}$-N(Boc)$_2$ (2h) (400 MHz, CDCl$_3$)

Fig. S58 13C NMR of (Boc)$_2$N-PEG$_{23}$-N(Boc)$_2$ (2h) (100 MHz, CDCl$_3$)
Fig. S59 ¹H NMR of (Boc)₂N-PEG₄₅-N(Boc)₂ (2i) (400 MHz, CDCl₃)

Fig. S60 ¹³C NMR of (Boc)₂N-PEG₄₅-N(Boc)₂ (2i) (100 MHz, CDCl₃)
Fig. S61 1H NMR of (Boc)$_2$N-PEG$_{77}$-N(Boc)$_2$ (2j) (400 MHz, CDCl$_3$)

Fig. S62 13C NMR of (Boc)$_2$N-PEG$_{77}$-N(Boc)$_2$ (2j) (100 MHz, CDCl$_3$)
Fig. S63 1H NMR of (Boc)$_2$N-PEG$_{150}$-N(Boc)$_2$ (2k) (400 MHz, CDCl$_3$)

Fig. S64 13C NMR of (Boc)$_2$N-PEG$_{150}$-N(Boc)$_2$ (2k) (100 MHz, CDCl$_3$)
Fig. S65 1H NMR of $(\text{Boc})_2\text{N-PEG}_{182}\text{-N(Boc)}_2$ (2I) (400 MHz, CDCl$_3$)

Fig. S66 13C NMR of $(\text{Boc})_2\text{N-PEG}_{182}\text{-N(Boc)}_2$ (2I) (100 MHz, CDCl$_3$)
Fig. S67 1H NMR of (Boc)$_2$N-PEG$_{227}$-N(Boc)$_2$ (2m) (400MHz, CDCl$_3$)

Fig. S68 13C NMR of (Boc)$_2$N-PEG$_{227}$-N(Boc)$_2$ (2m) (100MHz, CDCl$_3$)
Fig. S69 1H NMR of (Boc)$_2$N-PEG$_{455}$-N(Boc)$_2$ (2n) (400 MHz, CDCl$_3$)

Fig. S70 13C NMR of (Boc)$_2$N-PEG$_{455}$-N(Boc)$_2$ (2n) (100 MHz, CDCl$_3$)
Fig. S71 1H NMR of (Boc)$_2$N-PEG$_{795}$-N(Boc)$_2$ (2o) (400 MHz, CDCl$_3$)

Fig. S72 13C NMR of (Boc)$_2$N-PEG$_{795}$-N(Boc)$_2$ (2o) (100 MHz, CDCl$_3$)
Fig. S73 1H NMR of 4-ARM-PEG$_{227}$-N(Boc)$_2$ (2p) (400 MHz, CDCl$_3$)

Fig. S74 13C NMR of 4-ARM-PEG$_{227}$-N(Boc)$_2$ (2p) (100 MHz, CDCl$_3$)
Fig. S75 1H NMR of 4-ARM-PEG$_{455}$-N(Boc)$_2$ (2q) (400 MHz, CDCl$_3$)

Fig. S76 13C NMR of 4-ARM-PEG$_{455}$-N(Boc)$_2$ (2q) (100 MHz, CDCl$_3$)
"Fig. S77 1H NMR of 8-ARM-PEG$_{227}$-N(Boc)$_2$ (2r) (400 MHz, CDCl$_3$)"

"Fig. S78 13C NMR of 8-ARM-PEG$_{227}$-N(Boc)$_2$ (2r) (100 MHz, CDCl$_3$)"
Fig. S79 1H NMR of 8-ARM-PEG$_{455}$-N(Boc)$_2$ (2s) (400 MHz, CDCl$_3$)

Fig. S80 13C NMR of 8-ARM-PEG$_{455}$-N(Boc)$_2$ (2s) (100 MHz, CDCl$_3$)
Fig. S81 1H NMR of 8-ARM-PEG$_{800}$-N(Boc)$_2$ (2t) (400 MHz, CDCl$_3$)

Fig. S82 13C NMR of 8-ARM-PEG$_{800}$-N(Boc)$_2$ (2t) (100 MHz, CDCl$_3$)
Fig. S83 1H NMR of mPEG$_{23}$-NH$_2$ (3a) (400 MHz, CDCl$_3$)

Fig. S84 1H NMR of mPEG$_{45}$-NH$_2$ (3b) (400 MHz, CDCl$_3$)
Fig. S85 13C NMR of mPEG$_{45}$-NH$_2$ (3b) (100 MHz, CDCl$_3$)

Fig. S86 SEC of mPEG$_{45}$-NH$_2$ (3b) (DMF, 1.00 mL/min, PS as standard)
Fig. S87 1H NMR of mPEG$_{114}$-NH$_2$ (3c) (400 MHz, CDCl$_3$)

Fig. S88 13C NMR of mPEG$_{114}$-NH$_2$ (3c) (100 MHz, CDCl$_3$)
Fig. S89 1H NMR of mPEG$_{233}$-NH$_2$(3d) (400 MHz, CDCl$_3$)

Fig. S90 13C NMR of mPEG$_{233}$-NH$_2$(3d) (100 MHz, CDCl$_3$)
Fig. S91 SEC of mPEG$_{233}$-NH$_2$ (3d) (DMF, 1.00 mL/min, PS as standard)

Fig. S92 1H NMR of mPEG$_{485}$-NH$_2$ (3e) (400 MHz, CDCl$_3$)
Fig. S93 13C NMR of mPEG$_{485}$-NH$_2$ (3e) (100 MHz, CDCl$_3$)

Fig. S94 SEC of mPEG$_{485}$-NH$_2$ (3e) (DMF, 1.00 mL/min, PS as standard)
Fig. S95 \(^1\)H NMR of mPEG\(_{682}\)-NH\(_2\) (3f) (400 MHz, CDCl\(_3\))

Fig. S96 \(^{13}\)C NMR of mPEG\(_{682}\)-NH\(_2\) (3f) (100 MHz, CDCl\(_3\))
Fig. S97 SEC of mPEG$_{682}$-NH$_2$ (3f) (DMF, 1.00 mL/min, PS as standard)

Fig. S98 1H NMR of mPEG$_{909}$-NH$_2$ (3g) (400 MHz, CDCl$_3$)
Fig. S99 13C NMR of mPEG$_{909}$-NH$_2$ (3g) (100 MHz, CDCl$_3$)

Fig. S100 SEC of mPEG$_{909}$-NH$_2$ (3g) (DMF, 1.00 mL/min, PS as standard)
Fig. S101 1H NMR of H$_2$N-PEG$_{23}$-NH$_2$ (3h) (400 MHz, CDCl$_3$)

Fig. S102 13C NMR of H$_2$N-PEG$_{23}$-NH$_2$ (3h) (100 MHz, CDCl$_3$)
Fig. S103 ¹H NMR of H₂N-PEG₄₅-NH₂ (3I) (400 MHz, CDCl₃)

Fig. S104 ¹³C NMR of H₂N-PEG₄₅-NH₂ (3I) (100 MHz, CDCl₃)
Fig. S105 1H NMR of H$_2$N-PEG$_{77}$-NH$_2$ (3j) (400 MHz, CDCl$_3$)

Fig. S106 13C NMR of H$_2$N-PEG$_{77}$-NH$_2$ (3j) (100 MHz, CDCl$_3$)
Fig. S107: 1H NMR of $\text{H}_2\text{N-PEG}_{150}-\text{NH}_2$ (3k) (400 MHz, CDCl$_3$)

Fig. S108: 13C NMR of $\text{H}_2\text{N-PEG}_{150}-\text{NH}_2$ (3k) (100 MHz, CDCl$_3$)
Fig. S109 1H NMR of H$_2$N-PEG$_{182}$-NH$_2$ (3l) (400 MHz, CDCl$_3$)

Fig. S110 13C NMR of H$_2$N-PEG$_{182}$-NH$_2$ (3l) (100 MHz, CDCl$_3$)
Fig. S111 ¹H NMR of H₃N-PEG₂₂₇-NH₂ (3m) (400 MHz, CDCl₃)

Fig. S112 ¹³C NMR of H₃N-PEG₂₂₇-NH₂ (3m) (100 MHz, CDCl₃)
Fig. S113 SEC of H$_2$N-PEG$_{227}$-NH$_2$ (3m) (DMF, 1.00 mL/min, PS as standard)

Fig. S114 1H NMR of H$_2$N-PEG$_{455}$-NH$_2$ (3n) (400 MHz, CDCl$_3$)
Fig. S115 13C NMR of H$_2$N-PEG$_{455}$-NH$_2$ (3n) (100 MHz, CDCl$_3$)

Fig. S116 1H NMR of H$_2$N-PEG$_{795}$-NH$_2$ (3o) (400 MHz, CDCl$_3$)
Fig. S117 13C NMR of H$_2$N-PEG$_{795}$-NH$_2$ (3o) (100 MHz, CDCl$_3$)

Fig. S118 1H NMR of 4-ARM-PEG$_{227}$-NH$_2$ (3p) (400 MHz, CDCl$_3$)
Fig. S119 13C NMR of 4-ARM-PEG$_{227}$-NH$_2$ (3p) (100 MHz, CDCl$_3$)

Fig. S120 SEC of 4-ARM-PEG$_{227}$-NH$_2$ (3p) (DMF, 1.00 mL/min, PS as standard)
Fig. S121 1H NMR of 4-ARM-PEG$_{455}$-NH$_2$ (3q) (400 MHz, CDCl$_3$)

Fig. S122 13C NMR of 4-ARM-PEG$_{455}$-NH$_2$ (3q) (100 MHz, CDCl$_3$)
Fig. S123 1H NMR of 8-ARM-PEG$_{227}$-NH$_2$ (3r) (400 MHz, CDCl$_3$)

Fig. S124 13C NMR of 8-ARM-PEG$_{227}$-NH$_2$ (3r) (100 MHz, CDCl$_3$)
Fig. S125 1H NMR of 8-ARM-PEG$_{455}$-NH$_2$ (3s) (400 MHz, CDCl$_3$)

Fig. S126 13C NMR of 8-ARM-PEG$_{455}$-NH$_2$ (3s) (100 MHz, CDCl$_3$)
Fig. S127 1H NMR of 8-ARM-PEG$_{909}$-NH$_2$ (3t) (400 MHz, CDCl$_3$)

Fig. S128 13C NMR of 8-ARM-PEG$_{909}$-NH$_2$ (3t) (100 MHz, CDCl$_3$)
Fig. S129 1H NMR of Bn-PEG$_{27}$-OAc (4) (400 MHz, CDCl$_3$)

Fig. S130 13C NMR of Bn-PEG$_{27}$- OAc (4) (100 MHz, CDCl$_3$)
Fig. S131 1H NMR of AcO-PEG$_{27}$-OH (5) (400 MHz, CDCl$_3$)

Fig. S132 13C NMR of AcO-PEG$_{27}$-OH (5) (100 MHz, CDCl$_3$)
Fig. S133 1H NMR of AcO-PEG$_{27}$-OMs (6) (400 MHz, CDCl$_3$)

Fig. S134 13C NMR of AcO-PEG$_{27}$-OMs (6) (100 MHz, CDCl$_3$)
Fig. S135 ¹H NMR of AcO-PEG₂₇₋₃₇ (7) (400 MHz, CDCl₃)

Fig. S136 ¹³C NMR of AcO-PEG₂₇₋₃₇ (7) (100 MHz, CDCl₃)
Fig. S137 1H NMR of N$_3$-PEG$_{27}$-OH (8) (400 MHz, CDCl$_3$)

Fig. S138 13C NMR of N$_3$-PEG$_{27}$-OH (8) (100 MHz, CDCl$_3$)
Fig. S139 1H NMR of N$_3$-PEG$_{27}$-OMs (9) (400 MHz, CDCl$_3$)

Fig. S140 13C NMR of N$_3$-PEG$_{27}$-OMs (9) (100 MHz, CDCl$_3$)
Fig. S141 \(^1\)H NMR of N\textsubscript{3}-PEG\textsubscript{27}-N(Boc)\textsubscript{2} (10) (400 MHz, CDCl\textsubscript{3})

Fig. S142 \(^{13}\)C NMR of N\textsubscript{3}-PEG\textsubscript{27}-N(Boc)\textsubscript{2} (10) (100 MHz, CDCl\textsubscript{3})
Fig. S143 13C NMR of N$_3$-PEG$_{27}$-NH$_2$ (100 MHz, CDCl$_3$)

Fig. S144 SEC of N$_3$-PEG$_{27}$-NH$_2$ (DMF, 1.00 mL/min, PS as standard)
Fig. S145 1H NMR of Alkyne-PEG$_{27}$-Bn (11) (400 MHz, CDCl$_3$)

Fig. S146 13C NMR of Alkyne-PEG$_{27}$-Bn (11) (100 MHz, CDCl$_3$)
Fig. S147 1H NMR of Alkyne-PEG$_{27}$-OH (12) (400 MHz, CDCl$_3$)

Fig. S148 13C NMR of Alkyne-PEG$_{27}$-OH (12) (100 MHz, CDCl$_3$)
Fig. S149 1H NMR of Alkyne-PEG$_{27}$-OMs (13) (400 MHz, CDCl$_3$)

Fig. S150 13C NMR of Alkyne-PEG$_{27}$-OMs (13) (100 MHz, CDCl$_3$)
Fig. S151 1H NMR of Alkyne-PEG$_{27}$-N(Boc)$_2$ (14) (400 MHz, CDCl$_3$)

Fig. S152 13C NMR of Alkyne-PEG$_{27}$-N(Boc)$_2$ (14) (100 MHz, CDCl$_3$)
Fig. S153 13C NMR of Alkyne-PEG$_{27}$-NH$_2$ (100 MHz, CDCl$_3$)

Fig. S154 SEC of Alkyne-PEG$_{27}$-NH$_2$ (DMF, 1.00 mL/min, PS as standard)
Fig. S155 1H NMR of mPEG$_{144}$-Mal (400 MHz, CDCl$_3$)