Supporting Information

Thermoresponsive behaviour of poly(*N*,*N*-diethylacrylamide) in aqueous two-phase systems

Niamh Bayliss,^a Gokhan Yilmaz,^b Alexander Plucinski,^a C. Remzi Becer^b and Bernhard V. K. J. Schmidt^{*a}

a School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

b Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

Email: bernhard.schmidt@glasgow.ac.uk

Table of Contents

Section	Page	
Polymer synthesis	2	
Polymer analysis	3	
ATPS formation	5	
Thermoresponse	11	
Analysis of A3PS	14	

Polymer Synthesis:

RAFT-polymerisation of PDEA_{40k}

Destabilised DEA (4.0 g, 31.5 mmol, 788 eq.), EMP (9.0 mg, 0.04 mmol, 1.0 eq.), and DMF (4 mL) were mixed in a vial containing a stirring bar and sealed with a septum. The solution was bubbled with nitrogen for 30 min and the polymerisation was initiated using two visible light LEDs 20 cm apart (50 W Bridgelux BXRA-50C5300; λ > 410nm, connected to a self-made circuit and cooling system). The polymerisation was stopped after 24 h. Subsequently, the polymer was dialysed against deionised water (Spectra/Por 3500 Da) for 3 days. Finally, the sample was freeze-dried and a slightly yellow solid (2.17 g, $M_n = 40000 \text{ g} \cdot \text{mol}^{-1}$, D = 1.26) was obtained.

Polymer analysis:

Figure S1. a) Reaction scheme of the photo induced RAFT-polymerisation of *N*,*N*-diethylacrylamide (DEA), b) ¹H-NMR of PDEA_{55k} in CDCl₃ and c) ¹H-NMR of PDEA_{40k} in CDCl₃.

Figure S2. Results of SEC of PDEA samples in THF against PS standards.

Polymer	[DEA]/[EMP]	<i>Conversion</i> ^a	$M_{ m n, theory} \left({ m g}{ m \cdot mol}^{-1} ight)$	$M_{ m n, SEC} (m g{\cdot}mol^{-1})^{ m b}$	Ð
PDMA _{40k}	788	60%	60100	40000	1.26
PDEA _{55k}	1575	81%	162200	54800	1.30

Table S1. Analytical results for PDEA polymers.

a) measured via ¹H NMR

b) measured in THF against PS standards

ATPS formation:

Figure S3. ¹H-NMR in D₂O of the PDEA_{55k}/Dex ATPS using DMF as internal standard: 1/9 wt%, 3/7 wt%, 5/5 wt%, 7/3wt% and 13.5/1.5 wt% from top to bottom.

Figure S4. ¹H-NMR in D₂O of the PDEA_{55k}/PEG ATPS using DMF as internal standard: 3/7 wt%, 5/5 wt%, 7/3wt% and 13.5/1.5 wt% from top to bottom.

$$P_X = \frac{c_{XL_1}}{c_{XL_2}}$$

Equation S1. For the calculation of the partition coefficient for a polymer X in the ATPS with P_X -partition coefficient, c_{XL1} -concentration of the polymer in the upper phase (L1) and c_{XL2} -concentration of the polymer in the lower phase (L2).

$$F_{X,L_x} = \frac{c_{XL_1}}{c_{XL_1} + c_{XL_2}}$$

Equation S2. For the calculation of mole fractions for a polymer X in the A3PS with $F_{X,Lx}$ mole fraction, c_{XL1} -concentration of the polymer in the upper phase (L1) and c_{XL2} concentration of the polymer in the middle phase (L2).

[PDEA _{55k}]/[Dex] (wt%/wt%)	P _{PDEA,upper}	P PDEA,lower	P _{Dex,upper}	P _{Dex,lower}
1/0	5.19	0.19	0.74	1.35
1/9	(±0.294)	(±0.011)	(±0.042)	(±0.076)
2/7	25.25	0.04	0.23	4.39
3/ /	(±1.428)	(±0.002)	(±0.013)	(±0.248)
515	9.45	0.11	0.30	3.38
2/2	(±0.535)	(±0.006)	(±0.017)	(±0.191)
7/2	4.36	0.23	0.14	7.28
//3	(±0.247)	(±0.013)	(± 0.008)	(±0.412)
12 5/1 5	2.90	0.35	0.15	6.52
13.5/1.5	(±0.164)	(±0.020)	(±0.009)	(±0.369)

Table S2. Partition coefficients for PDEA_{55k}/Dex systems measured via ¹H NMR.

[PDEA55k]/[Dex] (wt%/wt%)	$F_{ m PDEA,upper}$	F _{PDEA} ,lower	F _{Dex,upper}	F _{Dex,lower}
1/0	0.84	0.16	0.43	0.57
1/9	(±0.047)	(±0.009)	(±0.024)	(±0.032)
3/7	0.96	0.04	0.19	0.81
5/7	(±0.054)	(±0.002)	(±0.011)	(±0.046)
	0.90	0.10	0.23	0.77
5/5	(±0.051)	(±0.005)	(±0.013)	(±0.044)
7/2	0.81	0.19	0.12	0.88
//3	(±0.046)	(±0.011)	(±0.007)	(±0.050)
12 5/1 5	0.74	0.26	0.13	0.87
13.3/1.5	(±0.042)	(±0.015)	(± 0.008)	(±0.049)

Table S3. Mole fractions for PDEA_{55k}/Dex systems measured via ¹H NMR.

Table S4. Partition coefficients for PDEA_{55k}/PEG systems measured via ¹H NMR.

[PDEA _{55k}]/[PEG] (wt%/wt%)	P _{PDEA,upper}	P _{PDEA,lower}	P _{PEG,upper}	P _{PEG,lower}
2/7	0.16	6.07	1.16	0.86
3/7	(±0.009)	(±0.343)	(±0.132)	(±0.097)
- 1-	0.18	5.41	3.93	0.25
5/5	(±0.010)	(±0.306)	(±0.445)	(±0.029)
7/2	0.14	7.00	3.87	0.26
1/3	(±0.008)	(±0.396)	(±0.437)	(±0.029)
12 - 14 -	0.51	1.94	2.32	0.43
13.5/1.5	(±0.029)	(±0.110)	(±0.263)	(±0.049)

[PDEA _{55k}]/[PEG] (wt%/wt%)	$F_{ m PDEA,upper}$	F PDEA,lower	$m{F}_{ ext{PEG,upper}}$	F _{PEG,lower}
2/7	0.14	0.86	0.54	0.46
3/7	(±0.008)	(±0.049)	(±0.061)	(±0.052)
5/5	0.16	0.84	0.80	0.20
515	(±0.009)	(± 0.048)	(±0.090)	(±0.023)
7/3	0.12	0.88	0.79	0.21
110	(±0.007)	(±0.049)	(±0.090)	(±0.023)
13 5/1 5	0.34	0.66	0.70	0.30
15.5/1.5	(±0.019)	(±0.037)	(±0.079)	(±0.034)

Table S5. Mole fractions for PDEA_{55k}/PEG systems measured via ¹H NMR.

Figure S5. Partition coefficients after phase separation (lower phase/upper phase), detected *via* ¹H-NMR in D₂O using DMF as internal standard: a) PDEA_{55k} and Dex; b) PDEA_{55k} and PEG.

Thermoresponse:

Figure S6. Thermoresponse of PDEA_{55k}/Dex ATPS (heating rate 2 °C min⁻¹): a) turbidimetry results of PDEA_{55k}/Dex 3 wt%/7 wt% (reference PDEA_{55k} in water at 3 wt%), b) turbidimetry results of PDEA_{55k}/Dex 5 wt%/5 wt% (reference PDEA_{55k} in water at 5 wt%), c) turbidimetry results of PDEA_{55k}/Dex 7 wt%/3 wt% (reference PDEA_{55k} in water at 7 wt%) and d) cloud points for various compositions of PDEA_{55k}/Dex ATPS (solid: heating, shaded: cooling; black: reference at the respective concentration in water, blue: top phase, red: bottom phase).

[PDEA _{40k}]/[Dex]	Tc,reference heat.	T _{c,reference}	T _{c,upper heat.}	T _{c,upper cool.}	$T_{ m c,lower}$ heat.	T _{c,upper cool.}
(wt%/wt%)	[°C]	cool. [°C]	[°C]	[°C]	[°C]	[°C]
3/7	40.9	21.4	34.8	18.8	36.9	18.1
5/5	41.2	20.5	40.5	23.7	35.5	17.4
7/3	41.5	21.4	38.7	22.7	37.7	20.8
[PDEA _{55k}]/[Dex]	T _{c,reference heat.}	T _{c,reference}	T _{c,upper heat.}	T _{c,upper cool.}	T _{c,lower heat} .	T _{c,upper cool.}
[PDEA _{55k}]/[Dex] (wt%/wt%)	T _{c,reference heat.} [°C]	T _{c,reference}	T _{c,upper heat.} [°C]	T _{c,upper cool.} [°C]	T _{c,lower heat.} [°C]	T _{c,upper cool.} [°C]
[PDEA _{55k}]/[Dex] (wt%/wt%) 3/7	T _{c,reference heat.} [°C] 41.8	T _{c,reference} cool. [°C] 21.4	<i>Т</i> _{с,upper heat.} [°С] 40.0	<i>Т</i> _{с,upper сооl.} [°С] 18.4	<i>T</i> _{c,lower heat.} [°C] 36.6	<i>Т</i> _{с,upper сооl.} [°С] 19.5
[PDEA _{55k}]/[Dex] (wt%/wt%) 3/7 5/5	<i>T</i> _{c,reference heat.} [°C] 41.8 41.7	T _{c,reference} cool. [°C] 21.4 20.5	<i>Т</i> _{с,upper heat.} [°С] 40.0 40.2	<i>Т</i> _{с,upper сооl.} [°С] 18.4 18.6	T _{c,lower heat.} [°C] 36.6 37.8 37.8	<i>T</i> _{c,upper cool.} [°C] 19.5 18.4

Table S6. Cloud points for the systems $PDEA_{40k}/Dex$ and $PDEA_{55k}/Dex$ (reference measured at the same concentration as in ATPS, heating rate 2 °C min⁻¹).

Figure S7. Thermoresponse of PDEA_{40k} in water (solid curves heating, dashed curves cooling) at a concentration of 0.5 wt% with heating rate of 2 °C min⁻¹ (black curves), 0.5 wt% with heating rate of 1 °C min⁻¹ (blue curves), 0.5 wt% with heating rate of 0.5 °C min⁻¹ (green curves) and 3 wt% with heating rate of 2 °C min⁻¹ (red curves).

Analysis of A3PS:

$$P_{X,L1-L2} = \frac{c_{XL_1}}{c_{XL_2}} P_{X,L2-L3} = \frac{c_{XL_2}}{c_{XL_3}} P_{X,L1-L3} = \frac{c_{XL1}}{c_{XL_3}}$$

Equation S3. For the calculation of the partition coefficient for a polymer X in the A3PS with $P_{X,Lx-Ly}$ -partition coefficient, c_{XL1} -concentration of the polymer in the upper phase (L1), c_{XL2} -concentration of the polymer in the middle phase (L2) and c_{XL3} -concentration of the polymer in the lower phase (L3).

$$F_{X,L_{x}} = \frac{c_{XL_{1}}}{c_{XL_{1}} + c_{XL_{2}} + c_{XL_{3}}}$$

Equation S4. For the calculation of mole fractions for a polymer X in the A3PS with $F_{X,Lx}$ mole fraction, c_{XL1} -concentration of the polymer in the upper phase (L1), c_{XL2} -concentration
of the polymer in the middle phase (L2) and c_{XL3} -concentration of the polymer in the lower
phase (L3).

P _{PDEA,upper-middle}	0.23 (±0.013)
P PDEA,middle-lower	8.07 (±0.457)
P PDEA,upper-lower	1.87 (±0.106)
P _{Dex,upper-middle}	0.14 (±0.005)
P _{Dex,middle-lower}	1.04 (±0.042)
P _{Dex,upper-lower}	0.14 (±0.008)
P _{PEG,upper-middle}	4.97 (±0.281)
P _{PEG,middle-lower}	0.20 (±0.011)
P _{PEG,upper-lower}	8.14 (±0.461)

Table S7. Partition coefficients for PDEA_{40k}/Dex/PEG (5/5/5 wt%) system measured via ¹H NMR.

F _{PDEA,upper}	0.17 (±0.010)
F _{PDEA,middle}	0.74 (±0.042)
F _{PDEA,lower}	0.09 (±0.005)
F Dex,upper	0.07 (±0.003)
F _{Dex,middle}	0.48 (±0.027)
F _{Dex,lower}	0.46 (±0.026)
F _{PEG,upper}	0.76 (±0.043)
F _{PEG,middle}	0.15 (±0.009)
F _{PEG,lower}	0.09 (±0.005)

Table S8. Mole fractions for PDEA_{40k}/Dex/PEG (5/5/5 wt%) system measured via 1 H NMR.

Figure S8. ¹H-NMR in D₂O of the PDEA_{55k}/Dex/PEG A3PS using DMF as internal standard (5/5/5 wt).

Table S9. Cloud points for the system PDEA_{40k}/Dex/PEG (5/5/5 wt%) (reference measured at the same concentration as in A3PS, heating rate 2 °C min⁻¹).

T _{c,ref. heat.}	T _{c,ref. cool.}	T _{c,upper heat.}	T _{c,upper} cool.	T _{c,middle} heat.	$T_{ m c,middle\ cool.}$	T _{c,lower} heat.	T _{c,upper cool.}
[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]	[°C]
41.3	20.5	26.6	13.4	27.9	16.8	45.4	26.1