SUPPORTING INFORMATION

γ-Thiobutyrolactone - Ethylene Carbonate Decarboxylative Copolymerization, an Original Pathway to Prepare Aliphatic Oxidizable Poly(γ-thioether ester)

Emma Mongkhoun^a, Philippe Guégan^a and Nicolas Illy^{*a}

^a Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 place Jussieu F-75005 Paris, France

γ-thiobutyrolactone

Figure S 1. ¹H NMR spectrum of TBL in DMSO- d_6 at room temperature

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 **Figure S 2.** ¹³C NMR spectrum of TBL in DMSO- d_6 at room temperature

Figure S 3. COSY NMR spectrum of TBL in DMSO-d₆ at room temperature

Ethylene carbonate

Figure S 4. ¹H NMR spectrum of ethylene carbonate in DMSO- d_6 at room temperature.

Figure S 5. ¹³C NMR spectrum of ethylene carbonate in DMSO- d_6 at room temperature

Poly(thioether-*alt***-ester)**

Figure S 6. Kinetic study of the synthesis of PTE using benzyl alcohol and *t*BuP4 as initiating system in bulk at 100°C (Table 1, run 7): $\ln(1/1-p) = f(t)$

Figure S 7. ¹H NMR spectrum of the reaction medium of the alternating copolymerization of TBL and ethylene carbonate initiated by benzyl alcohol - ^tBuP₄ in bulk at 100°C after 3 h (Table 1, run 8)

Figure S 8. COSY NMR spectrum of PTE in DMSO-*d*₆ at room temperature (Table 1, run 8)

Figure S 9. ¹H-¹³C HSQC NMR spectrum of PTE in DMSO- d_6 at room temperature (Table 1, run 8)

Figure S 10. ATR FT-IR analysis of TBL (blue curve), ethylene carbonate (purple curve) and PTE (green curve - Table 1, run 14)

Figure S 11. MALDI-ToF mass spectrum (linear mode) of a PTE synthesized using benzyl alcohol - $^{1}BuP_{4}$ as initiating system in bulk at 100°C (Table 1, run 8)

Figure S 12. Mechanism for the intramolecular transesterification of PTE explaining the formation of macrocycles.

PTE oxidation

Figure S 13. ATR FT-IR spectrum of PTE before (green dot curve) and after (orange curve) oxidation (Table 1, run 14)

Thermal properties

Figure S 14. TGA curve and its first derivative of a PTE (Table 1, run 8) measured under a stream of nitrogen between 25°C and 600 °C with a heating rate of 10 °C min⁻¹

Figure S 15. DSC figures of PTE at 2 °C /min (Table 1, run 8)

Figure S 16. TGA curve and its first derivative of a PTE after oxidation (Table 1, run 14) measured under a stream of nitrogen between 25°C and 600 °C with a heating rate of 10 °C min⁻¹

Figure S 17. DSC figures of a PTE after oxidation (Table 1, run 14). Cycle A is at 10°C/min from - 85°C to 155°C. Cycle B is at 2 °C /min from -85°C to 155°C ($T_c = 89°C$; $T_f = 133 °C$; the T_c located at 37°C is reflecting the crystallization of the previous heating cycle made at 10 °C/min where no fusion occurred). Cycle C follows cycle A at 2°C/min from -85°C to 155°C.

Figure S 18. SEC trace of PTE synthesized in THF using benzyl alcohol-*t*BuP₄ as initiating system (Table 1, run 6)

Figure S 19. SEC trace of PTE synthesized in bulk using benzyl alcohol-tBuP4 as initiating system (Table 1, run 8)

Table S 1. Solubility of alternated co	polymers in organic	solvent (10 mg/mL, room tem	perature, visual inspection)

Chemical nature	Solubility														
	H ₂ O	MeOH	EtOH	DMF	Acetone	THF	Toluene	CHCl ₃	Cyclohexane	CH ₂ Cl ₂	ACN	DMSO	Ethyl acetate	Diethyl ether	N- pentane
PTE (Table 1, run 7)	-	-	-	+	+	+	+/-	+	-	+	+/-	+	+	+	-
PTE_{ox} (Table 1, run 14) ^c	+	-	-	-	-	-	-	-	-	-	-	+	-	-	-

^c After oxidation in THF and 2 eq of H_2O_2 per repeating unit at room temperature and dialysis in 1 kDa membrane in water.