# **Supporting information**

### Thermo-Responsive Polymer-Based Catalytic Nanoreactors for

#### **Controllable Catalysis of Selective Alcohols Oxidation in Water**

Xiuwu Wang, <sup>#</sup> <sup>a</sup> Xiaokang Zhu, <sup>#</sup> <sup>a</sup> Lianpei Zhou<sup>a</sup>, Dongming Qi,<sup>a,c,d</sup> Zan Hua,<sup>b\*</sup> Tao Chen

a,c,d\*

<sup>a</sup> Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing; Zhejiang Sci-Tech University, Hangzhou 310018, China

<sup>b</sup> The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 214002, P. R. China

<sup>c</sup> Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang, 323000, China

<sup>d</sup> Zhejiang Provincial Innovation Center of Advanced Textile Technology, Keqiao, Zhejiang, 312030 China

*Corresponding Authors: <u>zanhua23@ahnu.edu.cn</u> (Z. Hua); <u>tao.chen@zstu.edu.cn</u> (T. Chen) <sup>#</sup>Xiuwu Wang and Xiaokang Zhu contribute equally to this work* 

## Content

| 1. Preparation of PBMA <sub>18</sub> -NHS                                                                    | 3 |
|--------------------------------------------------------------------------------------------------------------|---|
| 2. General route for the synthesis of catalytic nanoreactor 11                                               | 3 |
| 3. Preparation of (PAMA <sub>11</sub> - <i>b</i> -PBMA <sub>18</sub> )-NHS                                   | 4 |
| 4. Preparation of (PDMA <sub>57</sub> - <i>b</i> -PAMA <sub>11</sub> - <i>b</i> -PBMA <sub>18</sub> )-NHS    | 4 |
| 5. Preparation of CL-(PDMA <sub>57</sub> - <i>b</i> -PAMA <sub>11</sub> - <i>b</i> -PBMA <sub>18</sub> )-NHS | 5 |
| 6. ESR characterization of CL-(PDMA <sub>57</sub> -b-PAMA <sub>11</sub> -b-PBMA <sub>18</sub> )-TEMPO (11)   | 6 |
| 7. GC-MS diagrams                                                                                            | 7 |

#### 1. Preparation of PBMA<sub>18</sub>-NHS



Figure S1. The <sup>1</sup>H NMR spectrum of PBMA<sub>18</sub>-NHS in CDCl<sub>3</sub>

#### 2. General route for the synthesis of catalytic nanoreactor 11



CL-(PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-NHS (10) CL-(PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-TEMPO (11)

Figure S2. General route for the synthesis of catalytic nanoreactor 11

### **3. Preparation of (PAMA<sub>11</sub>-b-PBMA<sub>18</sub>)-NHS**



Figure S3. The <sup>1</sup>H NMR spectrum of (PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-NHS in CDCl<sub>3</sub>

### 4. Preparation of (PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-NHS





5. Preparation of CL-(PDMA<sub>57</sub>-b-PAMA<sub>11</sub>-b-PBMA<sub>18</sub>)-NHS



(PDMA<sub>57</sub>-*b*-AMA<sub>11</sub>-*b*-BMA<sub>18</sub>)-NHS (9)

CL-(PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-NHS (10)



6. ESR characterization of CL-(PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-TE MPO (11)



Figure S6. The ESR spectrum of CL-(PDMA<sub>57</sub>-*b*-PAMA<sub>11</sub>-*b*-PBMA<sub>18</sub>)-TEMPO (11)

### 7. GC-MS diagrams







Figure S8. GC-MS diagram catalyzed by 6 at 41 °C



Figure S9. GC-MS diagram catalyzed by 8 at 0 °C



Figure S10. GC-MS diagram catalyzed by 8 at 41 °C



Figure S11. GC-MS diagram catalyzed by 8 (placed at 0 °C and 41 °C for four cycles before catalysis) at 0 °C.



Figure S12. GC-MS diagram catalyzed by 8 (placed at 0 °C and 41 °C for four cycles

before catalysis) at 41 °C.



Figure S13. GC-MS diagram catalyzed by 8 at 0 °C



Figure S14. GC-MS diagram catalyzed by 8 at 41 °C



Figure S15. GC-MS diagram catalyzed by 8 at 0 °C



Figure S16. GC-MS diagram catalyzed by 8 at 41 °C



Figure S17. GC-MS diagram catalyzed by 8 at 0 °C



Figure S18. GC-MS diagram catalyzed by 8 at 41 °C







Figure S20. GC-MS diagram catalyzed by 11 at 41 °C